低压、大电流电源中提高效率的有效方法是同步整流
- 格式:doc
- 大小:20.50 KB
- 文档页数:5
(19)中华人民共和国国家知识产权局(12)实用新型专利(10)授权公告号 (45)授权公告日 (21)申请号 202021512548.1(22)申请日 2020.07.27(73)专利权人 武汉海德博创科技有限公司地址 430000 湖北省武汉市东湖新技术开发区高新大道999号武汉新能源研究院大楼G2-1012(72)发明人 赵勇兵 段双意 夏华东 (74)专利代理机构 武汉经世知识产权代理事务所(普通合伙) 42254代理人 马君胜(51)Int.Cl.H02M 3/335(2006.01)H02M 7/217(2006.01)H02M 1/32(2007.01)(54)实用新型名称双管正激输出同步整流电路(57)摘要本实用新型涉及一种双管正激输出同步整流电路,包括:主变压器,所述主变压器包括:初级绕组和次级绕组;初级逆变单元,初级逆变单元包括:与初级绕组相连接的第一整流管和第二整流管、与第一整流管和第二整流管相连接的第一二极管和第二二极管;次级整流单元,次级整流单元包括:依次与次级绕组相连接的第三整流管、第四整流管和第五整流管、连接于所述第五整流管两端的调配电容,以及,第三二极管;以及,滤波单元。
由于肖特基二极管无恢复时间,所以在死区时间里第一整流管的寄生二极管导通不会造成主变压器的次级绕组短时短路,因此也不会产生电流、电压尖峰,拓扑的可靠性、自兼容性和电磁兼容性相比普通同步整流电路更佳。
权利要求书1页 说明书4页 附图1页CN 212392810 U 2021.01.22C N 212392810U1.一种双管正激输出同步整流电路,其特征在于,包括:主变压器,所述主变压器包括:初级绕组和次级绕组;与电压输入端相连接的初级逆变单元,所述初级逆变单元包括:与所述初级绕组相连接的第一整流管和第二整流管、与所述第一整流管和第二整流管相连接的第一二极管和第二二极管;与所述次级绕组相连接的次级整流单元,所述次级整流单元包括:依次与所述次级绕组相连接的第三整流管、第四整流管和第五整流管、连接于所述第五整流管两端的调配电容,以及,一端连接于所述第三整流管、另一端连接于所述第五整流管的第三二极管;以及,连接于所述第三二极管相连接的滤波单元。
随着现代电子技术向高速度高频率发展的趋势,电源模块的发展趋势必然是朝着更低电压、更大电流的方向发展,电源整流器的开关损耗及导通压降损耗也就成为电源功率损耗的重要因素。
而在传统的次级整流电路中,肖特基二极管是低电压、大电流应用的首选。
其导通压降基本上都大于0.4V,当电源模块的输出电压随着现代电子技术发展继续降低时,电源模块的效率就低得惊人了,例如在输出电压为3.3V时效率降为80%,1.5V输出时效率不到70%,这时再采用肖特基二极管整流方式就变得不太可能了。
为了提高效率降低损耗,采用同步整流技术已成为低电压、大电流电源模块的一种必然手段。
同步整流技术大体上可以分为自驱动(selfdriven)和他驱动(controldriven)两种方式。
本文介绍了一种具有预测时间和超低导通电阻(低至2.8mΩ/25℃)的他驱动同步整流技术,既达到了同步整流的目的,降低了开关损耗和导通损耗,又解决了交叉导通问题,使同步整流的效率高达95%,从而使整个电源的效率也高达90%以上。
1SRM4010同步整流模块功能简介SRM4010是一种高效率他激式同步整流模块,它直接和变压器的次级相连,可提供40A的输出电流,输出电压范围在1∽5V之间。
它能够在200∽400kHz 工作频率范围内调整,且整流效率高达95%。
如果需要更大的电流,还可以直接并联使用,使设计变得非常简单。
SRM4010模块是一种9脚表面封装器件,模块被封装在一个高强电流接口装置包里,感应系数极低,接线端功能强大,具有大电流低噪声等优异特性。
SRM4010引脚功能及应用方式一览表引脚号引脚名称引脚功能应用方式1CTCHCatch功率MOSFET漏极接滤波电感和变压器次级正端2FWDForward功率MOSFET漏极接变压器次级负端3SGND外控信号参考地外围控制电路公共地4REGin内部线性调整器输入可以外接辅助绕组或悬空5REGout5V基准输出可为次级反馈控制电路提供电压6PGND同步整流MOSFET功率地Catch和Forward功率MOSFET公共地7CDLY轻载复位电容端设置变压器轻载时的复位时间8CPDT同步整流预测时间电容端Catch同步整流管设置预置时间9SPD振铃鉴别端区分CatchMOSFET导通和振铃2SRM4010同步整流模块的应用实例及其工作原理分析SRM4010模块仅和C2、C3两只电容就完成了同步整流功能,其工作原理如下:在初级开关管(V3)导通期间,模块中的CatchMOSFET截止,电流从变压器次级正端流经输出电感、输出电容和负载,在经ForwardMOSFET回到变压器次级负端;当初级开关管截止时,变压器中电流回零,模块的1脚因输出电感的电流因素也下降到0V,在这种情况下,电流流经CatchMOSFET的体二极管,随即Catc hMOSFET导通以减小电压降,体二极管的导通时间要特别短。
D C D C中的同步与异步整流The latest revision on November 22, 2020关于DCDC同步降压和异步降压的区别(图)DCDC分同步和异步降压,同步是外接MOS管,异步是外接续流二极管。
DCDC-同步与异步的区别所谓同步模式是指可以用外部周期信号控制DC-DC振荡频率的工作方式,该方式可以减少电源对数字电路的干扰。
主要看续流元件是二极管还是MOS。
同步整流是采用通态电阻极低的功率MOSFET来取代整流二极管,因此能大大降低整流器的损耗,提高DC/DC变换器的效率,满足低压、大电流整流的需要。
得出结论,同步DCDC比异步DCDC贵,呵呵!DC-DC芯片中的同步和异步的区别大家好:在使用电源芯片时,经常看到一些电源芯片有的是同步模式,有的是异步模式,请问同步模式和异步模式对整个系统的供电方面有什么优缺点,谢谢!比如如下:XRP7664这颗芯片是同步模式,相应的电路图是第一张图片,而下面第二张是SP7656的异步工作模式电路图,请问下那个二极管有什么作用,谢谢!第一个是集成了High side和Low side MOSFET,组成同步整流模式,可实现高效率,价格相对贵。
第二个只有High side MOSFET;配合外部使用传统的续流二极管,组成非同步整流,效率相对低,价格便宜。
不知道你有没有注意,同步和异步的区别从外部来看,是一个多了一个有续流的二极管,一个没有续流的二极管。
其实BUCK的输出电流分成两个部分的,一个部分是来自电源,一个部分是来自异步电路中的这个二极管,只是同步电路把这个二极管用一个MOSFET给替代了,但是这个MOSFET的开和关需要和开关MOSFET保持一定的相位关系,大家习惯把这样的关系叫做同步模式,这个你可以参考下NS的LM5116因为它将两个MOSFET都要外加,你就可以看的比较清楚了,同步比异步的好处就是拥有更快的导通速度,和更小的导通压降,因而效率会更高。
同步整流技术在低压大电流电源模块中的应用
钟才惠; 王德贤; 王之纯
【期刊名称】《《电源技术》》
【年(卷),期】2013(37)5
【摘要】提出了基于单周期控制的同步整流Buck变换器的实现方法,推导得到单周期控制Buck变换器的控制模型并给出了仿真验证。
详细给出了主电路设计方法,包括主开关管和同步整流管的选择、输出滤波器的设计方法等。
最后制作了一台输出为1.8V、20A的低压大电流电源模块样机,实验结果证明了设计方法的有效性和准确性。
【总页数】3页(P857-859)
【作者】钟才惠; 王德贤; 王之纯
【作者单位】三峡大学电气与新能源学院湖北宜昌443002
【正文语种】中文
【中图分类】TM571
【相关文献】
1.双向同步整流技术在转移式实时电池均衡器中的研究与应用 [J], 周宝林;周全
2.同步整流技术在通信电源模块中的应用 [J], 李芊
3.同步整流技术在通信电源模块中的应用 [J], 李芊
4.通信电源模块的同步整流技术应用和发展 [J], 朱建华
5.基于准谐振技术和同步整流技术在直流开关电源中的应用 [J], 张小红
因版权原因,仅展示原文概要,查看原文内容请购买。
电流中的同步整流是什么意思?同步整流的意义是什么?半波全波桥式整流电路特点都是什么?同步整流工作原理:从同步整流原理图中可以看出,整流管VT3和续流管VT2的驱动电压从变压器的副边绕组取出,加在MOS管的栅G和漏D之间,如果在独立的电路中MOS管这样应用不能完全开通,损耗很大,但用在同步整流时是可行的简化方案。
由于这两个管子开关状态互琐,一个管子开,另一个管子关,所以我们只简要分析电感电流连续时的开通情况,我们知道MOS管具有体内寄生的反并联二极管,这样电感电流连续应用时,MOS管在真正开通之前并联的二极管已经开通,把源S和漏D相对栅的电平保持一致,加在GD之间的电压等同于加在GS之间的电压,这样变压器副边绕组同铭端为正时,整流管VT3的栅漏电压为正,整流管零压开通,当变压器副边绕组为负时,续流管VT2开通,滤波电感续流。
栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
同步整流是采用通态电阻极低的专用功率MOSFET,来取代整流二极管以降低整流损耗的一项新技术。
它能大大提高DC/DC变换器的效率并且不存在由肖特基势垒电压而造成的死区电压。
同步整流的基本电路结构:功率MOSFET属于电压控制型器件,它在导通时的伏安特性呈线性关系。
用功率MOSFET做整流器时,要求栅极电压必须与被整流电压的相位保持同步才能完成整流功能,故称之为同步整流。
为什么要应用同步整流技术:电子技术的发展,使得电路的工作电压越来越低、电流越来越大。
低电压工作有利于降低电路的整体功率消耗,但也给电源设计提出了新的难题。
开关电源的损耗主要由3部分组成:功率开关管的损耗,高频变压器的损耗,输出端整流管的损耗。
在低电压、大电流输出的情况下,整流二极管的导通压降较高,输出端整流管的损耗尤为突出。
快恢复二极管(FRD)或超快恢复二极管(SRD)可达1.0~1.2V,即使采用低压降的肖特基二极管(SBD),也会产生大约0.6V的压降,这就导致整流损耗增。
用于通信系统的低电压、大电流电源及其设计实例为了处理日益复杂的实时计算问题,当今的通信系统采用了大量的高性能计算芯片,包括各种CPU,FPGA和存储器。
对更高计算速度的需求促使人们相应地提高时钟频率,电源电流也随之增加。
有些器件所要求的电源电流已超过了100A。
在电源电流增加的同时,电压已经降至1V左右,这主要是因为计算芯片的特征线宽越来越细。
低电压、大电流容易导致功率损耗,此时线性调压器电路已经很难适应电源设计的要求。
不过,采用高性能的开关型电源结构,则可以获得高效率的电源。
面临的挑战与当今许多类型的系统一样,通信系统中电路板的面积非常宝贵。
尺寸限制,连同降低成本的压力和其他一些新的技术方面的挑战,使低电压、大电流的电源设计成为通信系统设计中最困难的设计任务之一。
对电压调节能力的挑战随着电源电压降低到1V, 即使小到50mV的电压摆动,也会使计算电路性能发生剧烈的波动。
因此必须对直流输出电压进行严格的调控。
大的输出电流是电压波动的一个主要诱因,包括PCB导线或电源输出与CPU电源引脚间的连接器引入的10mV~50mV压降。
当电源电压为1~1.5V时,这些压降会产生显著影响。
因此,要求对正向和负向电压输出轨都实现远程电压监测。
另一个问题是,先进的计算芯片能根据系统指令瞬时地改变电源电流,变化幅度超过20A。
这样大的负载阶跃,再加上电流的快速换向,将使电源电压下降或超调。
要处理这类动态变化的负载并减小输出电容的尺寸,电源就必须具有很快的瞬态响应能力。
传热学方面的挑战由于系统封装密度随系统复杂程度的增加而增加,散热已成为系统硬件设计人员要面对的一个愈发严峻的挑战。
同时,对电压稳定有严格要求的高性能计算芯片要求电源就位于其附近。
因此,重要的是要减小电源的功率损耗,并消除PCB上的过热点和功率元件,以避免让计算芯片热上加热。
输入噪声带来的挑战由于在许多通信子系统中,主要的负载驱动电源大多为3.3V, 因此必须抑制3.3V汇流排的噪声,以确保所驱动的逻辑器件能正常工作。
正激变换器中同步整流驱动分析摘要:对同步整流的概念进行了定义并按驱动方式将它分为自驱动同步整流和外驱动同步整流;然后对正激变换器中自驱动和外驱动同步整流的特性分别进行了比较分析,在自驱动部分重点分析了RCD 箝位和有源箝位2 种形式的同步整流正激变换器电路;并讨论了影响同步整流效率的因素及提高效率应采取的措施;最后通过实验得出结论,同步整流是低压、大电流电源中提高效率的有效方法。
关键词: 正激变换器; 同步整流; 自驱动; 外驱动计算机、通信交换机等数据处理设备在电路密度和处理器速度不断提高的同时,电源系统也向低压、大电流和更加高效、低耗、小型化方向发展。
如今IC 电压已经从5 V 降为3. 3 V 甚至1. 8 V ,今后还会更低。
在DC2DC 变换器中,整流部分的功耗占整个输出功率的比重不断增大,已成为制约整机效率提高的障碍。
传统整流电路一般采用功率二极管整流,由于二极管的通态压降较高,因此在低压、大电流时损耗很大。
这就使得同步整流技术得到了普遍关注并获得大量应用[1 ,2 ] 。
同步整流技术就是用低导通电阻MOSFET 代替传统的肖特基整流二极管,由于MOSFET 的正向压降很小,所以大大降低了整流部分损耗[2 ] 。
同时对MOSFET 给出开关时序随电路拓扑工作要求作相应变化的门极驱动信号。
由于门极驱动信号与MOSFET开关动作接近同步,所以称为同步整流(Synchronous Rectification ,简称SR) 。
1 正激变换器中的同步整流自驱动同步整流是指直接从变压器副边绕组或副边电路的某一点上获取电压驱动信号,来驱动同步整流管。
外驱动同步整流是指通过附加的逻辑和驱动电路,产生随主变压器副边电压作相应时序变化的驱动信号,驱动SR 管。
这种驱动方法能提供高质量的驱动波形,但需要一套复杂的驱动控制电路。
相比较来说,自驱动同步整流的电路结构简单,所需元件数量较少;同时自驱动同步整流续流二极管靠复位电压驱动,所以工作特性依赖于功率变压器的复位方式。
低压、大电流电源中提高效率的有效方法是同步整流
1. 概要计算机、通信交换机等数据处理设备在电路密度和处理器速度不断提高的同时,电源系统也向低压、大电流和更加高效、低耗、小型化方向发展。
如今IC 电压已经从5 V 降为3. 3 V 甚至1. 8 V ,今后还会更低。
在DC2DC 变换器中,整流部分的功耗占整个输出功率的比重不断增大,已成为制约整机效率提高的障碍。
传统整流电路一般采用功率二极管整流,由于二极管的通态压降较高,因此在低压、大电流时损耗很大。
这就使得同步整流技术得到了普遍关注并获得大量应用。
同步整流技术就是用低导通电阻MOSFET 代替传统的肖特基整流二极管,由于MOSFET 的正向压降很小,所以大大降低了整流部分损耗。
同时对MOSFET 给出开关时序随电路拓扑工作要求作相应变化的门极驱动信号。
由于门极驱动信号与MOSFET开关动作接近同步,所以称为同步整流(SynchrONous RecTIficaTIon ,简称SR)。
2.正激变换器中的同步整流自驱动同步整流是指直接从变压器副边绕组或副边电路的某一点上获取电压驱动信号,来驱动同步整流管。
外驱动同步整流是指通过附加的逻辑和驱动电路,产生随主变压器副边电压作相应时序变化的驱动信号,驱动SR 管。
这种驱动方法能提供高质量的驱动波形,但需要一套复杂的驱动控制电路。
相比较来说,自驱动同步整流的电路结构简单,所需元件数量较少;同时自驱动同步整流续流二极管靠复位电压驱动,所以工作特性依赖于功率变压器的复位方式。
理想情况是变压器复位时间与主开关管关断时间相等,这样,输出电流将在整个关断期间内通过同步整流管续流。
由于漏源极间PN 结的存在,使MOSFET 漏源极之间存在一个集成的反向并联体二极管。
电路拓扑要求整流管有反向阻断功能,因此MOSFET 作为整流管使用时,流过电流的方向必须是从源极到漏极,而不是通常的从漏极到源极。
实际应用中,2 只SR 管的驱动信号之间应保证足够的死区时间。
因为在2 个SR 管换流期间,如果一只整流管已处于导通态,而另外一只还没有关断,就会造成短路,导致较大的短路电流,可能会烧毁MOS 管。
但死区时间也不能过长,因为在死区时间内,负载电流从SR 管的体二极管流过,完成MOSFET 作为整流管的功能,如果死区时间过长,电路虽然仍能正常工作,但会增加损耗。
因此,从减小。