四格表分析
- 格式:ppt
- 大小:3.30 MB
- 文档页数:28
案例分析—四格表确切概率法【例1-5】为比较中西药治疗急性心肌梗塞的疗效,某医师将27例急性心肌梗塞患者随机分成两组,分别给予中药和西药治疗,结果见表1-4。
经检验,得连续性校正χ22=3.134,P>0.05,差异无统计学意义,故认为中西药治疗急性心肌梗塞的疗效基本相同。
表1-4两种药物治疗急性心肌梗塞的疗效比较药物有效无效合计有效率(%)中药12(9.33)2(4.67)1485.7西药6(8.67)7(4.33)1346.2合计1892766.7【问题1-5】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?【分析】(1)该资料是按中西药的治疗结果(有效、无效)分类的计数资料。
该资料是按中西药的治疗结果(有效、无效)分类的计数资料完全随机设计方案。
(2)27例患者随机分配到中药组和西药组,属于例患者随机分配到中药组和西药组,属于完全随机设计方案(3)患者总例数n=27<40,该医师用χ2检验是不正确的。
当n<40或T<1时,不宜计算χ2值,需采用四格表确切概率法(exact probabilities in2×2table)直接计算概率案例分析-卡方检验(一)【例1-1】某医师为比较中药和西药治疗胃炎的疗效,随机抽取140例胃炎患者分成中药组和西药组,结果中药组治疗80例,有效64例,西药组治疗60例,有效35例。
该医师采用成组t检验(有效=1,无效=0)进行假设检验,结果t=2.848,P=0.005,差异有统计学意义检验,故认为中西药治疗胃炎的疗效有差别,中药疗效高于西药。
【问题1-1】(1)这是什么资料?(2)该资料属于何种设计方案?(3)该医师统计方法是否正确?为什么?(4)该资料应该用何种统计方法?【分析】(1)该资料是按中西药疗效(有效、无效)分类的该资料是按中西药疗效(有效、无效)分类的二分类资料,即计二分类资料,即计数资料。
(2)随机抽取140例胃炎患者分成西药组和中药组,属于属于完全随机设完全随机设计方案。
四格表资料的χ2检验生存率四格表资料的卡方检验是一种用于比较观察值与期望值之间差异的统计方法。
在生存率研究中,卡方检验可以用来比较两个或多个组群在不同条件下的生存情况,以确定是否存在显著差异。
卡方检验是基于观察值与期望值之间的差异来进行的。
在生存率研究中,我们通常会将样本人群分为不同的组群,根据他们的特征或接受的治疗方式等因素。
然后我们会观察每个组群中生存和死亡的人数,并计算出每个组群中期望的生存和死亡人数。
卡方检验的原假设是组群之间没有显著差异,即观察值和期望值之间的差异是由于随机性引起的。
如果计算出的卡方值足够小,就可以拒绝原假设,得出结论认为组群之间存在显著差异,即生存率之间存在显著差异。
在进行卡方检验时,首先需要定义显著性水平,通常我们选择0.05作为显著性水平。
接下来,需要计算观察值与期望值之间的差异。
差异可以用卡方检验的统计量来计算,该统计量的公式如下:χ2 = ∑ [(Oij - Eij)² / Eij]其中,Oij表示观察到的频数,Eij表示期望的频数。
计算完卡方值后,需要查找卡方分布表来确定对应的p值,p值是指在原假设成立的情况下,观察到的卡方值更极端的概率。
如果p值小于显著性水平0.05,则可以拒绝原假设,得出结论认为组群之间存在显著差异。
如果p值大于0.05,则不能拒绝原假设,即认为组群之间没有显著差异。
在实际应用中,我们需要根据具体的研究目的和数据情况来选择适当的四格表和实施卡方检验。
举例来说,我们可以比较两种不同治疗方式对癌症患者的生存率是否有影响。
我们可以将患者分为两个组群,一组接受A治疗,另一组接受B治疗。
然后观察每个组群中生存和死亡的人数,并计算出期望的生存和死亡人数。
最后,使用卡方检验来比较两个组群的生存情况。
卡方检验的优点是:可以应用于多种情况下的数据分析,适用于比较样本数据与理论预期之间的差异;计算方法相对简单,不需要任何参数估计;可以得到一个明确的结果,即接受或拒绝原假设。
完全随机设计四格表资料的卡方检验,其校正公式完全随机设计四格表资料的卡方检验及校正公式 卡方检验是一种常用的统计方法,用于判断两个或多个分类变量之间是否存在关联性。
在实际应用中,有一类叫做四格表的数据分析问题,即由两个分类变量构成的表格。
本文将介绍如何进行完全随机设计四格表资料的卡方检验,并给出相应的校正公式。
一、完全随机设计四格表资料的卡方检验的步骤:1. 确定研究问题和假设: 在进行卡方检验之前,需要明确研究问题和研究假设。
例如,我们想知道两个分类变量X和Y是否存在关联性,即是否存在某种程度的相关关系。
2. 构建四格表: 根据研究问题,我们需要构建一个四格表来表示变量X和Y的关系。
四格表由两个分类变量构成,每个变量有两个水平。
研究中可以将观察单位按照两个变量进行分类,并统计每个分类组合的数量。
将这些数量填入四格表格中,得到以下形式:Y=1 Y=03. 计算期望频数: 在进行卡方检验时,需要计算期望频数,即在假设不存在关联性的情况下,每个格子的期望数量。
计算方法为:在保持边际分布不变的条件下,计算每个格子的期望频数。
即计算每个分类组合的边际比例乘以总体数量。
4. 计算卡方统计量: 卡方统计量用于判断观察频数和期望频数之间的差异。
计算方法为:将每个格子的观察频数与期望频数之差的平方,除以期望频数,然后将所有格子的结果相加。
得到的卡方统计量符合自由度为1的卡方分布。
5. 判断是否存在关联性: 根据卡方统计量的分布,可以计算出其对应的p值。
通过比较p值和显著性水平(通常为0.05),可以判断是否存在关联性。
若p 值小于显著性水平,即拒绝原假设,说明存在关联性。
二、校正公式: 在实际应用中,四格表可能会出现某个格子的期望频数小于5的情况。
这会导致卡方统计量的计算结果不准确,影响判断结果的可靠性。
为了解决这个问题,可以使用校正公式进行修正。
1. 构建校正后的四格表: 在校正前,首先需要确定哪些格子的期望频数小于5。
计数资料的数据分析1、四格表资料(1)简单四格表资料i.非配对的四格表资料例:比较A、B两种疗法治愈率,数据如下:分析目的:A、B疗法有效率是否有差异?数据如用通用符号表示:分析方法:Pearson 卡方检验其中,Oi 表示观察数,Ei表示理论期望数, n 格子数(这里等于4)Yates'连续性校正关联分析:计算A疗法有效率相对于B疗法的优势比Odds Ratio (比值比)= (a/b) / (b/d) = (ad)/(bc) = (20*14)/(16*10) = 1.75易侕统计软件输入界面:易侕统计软件输出结果:ii. 配对的四格表资料例:比较A、B两种疗法治愈率,配对设计,每个病人与另一个年龄、性别、病程等相同的病人配对,一个用 A疗法治疗,另一个病人用B疗法治疗,数据如下分析目的:A、B疗法有效率是否有差异?: H0:A、B疗法有效率相同,即p b=p c数据如用通用符号表示:McNemar 卡方检验Edwards 连续性校正:McNemar精确检验:总共有b+c (8+4=12)不一致的对子数,按H0,理论上b与c出现的概率相同,即b占(b+c)的比例为50%,相当于OR=b/c=1。
实际观察到的OR = b/c = 8/4 =2,计算出现8/4 或更极端的情况(9/3,10/2,11/1,12/0)的概率。
易侕统计软件输入界面:易侕统计软件输出结果:McNemar 配对四格表卡方检验(2)诊断试验四格表资料分析目的:分析试验结果与真实情况(金标准)的吻合程度。
金标准是指当前公认的诊断疾病最可靠的标准方法,可正确区分“有病”或“无病”。
数据如用通用符号表示:分析指标:1. 检测患病率(prevalence)是指被检测的全部对象中,检测出来的患者的比例。
即:检测患病率 = (a+b)/(a+b+c+d)2. 实际患病率(prevalence)是指被检测的全部对象中,真正患者的比例。