6-2相似矩阵与矩阵的相似对角化资料
- 格式:pdf
- 大小:1.02 MB
- 文档页数:42
矩阵的相似与对角化矩阵是线性代数中的重要概念之一,而相似性与对角化是矩阵理论中的两个关键概念。
本文将从相似性与对角化的概念入手,探讨它们的定义、性质以及在线性代数中的应用。
1. 相似矩阵的定义与性质相似矩阵是线性代数中一个重要的概念,它描述了两个矩阵具有相同的特征值,但其特征向量的基和矩阵元素可能不同。
具体来说,如果存在一个可逆矩阵P,使得矩阵A和矩阵B满足A = PBP^(-1),则可以称矩阵A和矩阵B是相似的。
相似矩阵的性质包括:1) 相似矩阵具有相同的特征值,即它们的特征多项式相同。
2) 相似矩阵的特征向量对应相同的特征值,但基可能不同。
3) 相似矩阵具有相同的迹、行列式和秩。
4) 相似矩阵具有相同的幂,即A^k与B^k相似。
2. 对角化的定义与性质对角化是线性代数中与相似性概念紧密相关的一个概念。
简而言之,对角化就是将一个矩阵通过相似变换变成对角矩阵的过程。
具体来说,如果一个n阶矩阵A相似于一个对角矩阵D,即存在一个可逆矩阵P,使得A = PDP^(-1),则称矩阵A是可对角化的。
对角化的性质包括:1) 可对角化矩阵与其特征值和特征向量有关,特征向量构成的基是将矩阵对角化的基。
2) 可对角化矩阵具有简洁的形式,对角线上的元素是矩阵的特征值,其他元素都为0。
3) 可对角化矩阵的幂可以通过对特征值的幂进行对角化得到。
3. 相似与对角化的关系和应用相似的关系为矩阵的对角化提供了有力的理论基础。
具体而言,如果一个矩阵是可对角化的,那么它就必然与一个对角矩阵相似。
换句话说,对角化是相似的一种特殊情况。
相似与对角化的关系在线性代数中有广泛的应用,例如:1) 矩阵的相似性可以简化矩阵的计算,例如求解线性方程组、计算矩阵的幂等等。
2) 对角化可以简化矩阵的求幂运算,从而方便计算高阶矩阵的幂。
3) 对角化可以帮助我们理解矩阵的性质,例如特征向量的重要性、矩阵的谱分解等。
总结:本文从相似性与对角化的定义和性质出发,对相似矩阵与对角化的关系与应用进行了讨论。
矩阵相似和对角化矩阵的相似和对角化是线性代数中重要的概念和技术。
它们在矩阵理论、线性变换和特征值理论等领域具有广泛的应用。
下面将对矩阵相似和对角化进行详细介绍和相关参考内容的分享。
1. 矩阵的相似性(Matrix Similarity):矩阵相似性是指两个矩阵具有相同的特征值与特征向量。
具体来说,对于n阶矩阵A和B,如果存在一个可逆矩阵P,使得P^(-1)AP=B,则称矩阵A与B相似。
矩阵相似性的特性包括:(1) 相似矩阵具有相同的特征值,但不一定有相同的特征向量;(2) 相似矩阵具有相同的迹、行列式和秩;(3) 相似矩阵表示相同的线性变换,只是在不同的坐标系下表示。
矩阵的相似性在计算机图形学、信号处理和网络分析等领域有广泛的应用。
下面是几篇相关的参考文献:- "Matrix Similarity and Its Applications"(作者:Yu Zhang)是一篇介绍矩阵相似性及其应用的综述文章。
它详细讨论了相似矩阵的定义、性质和计算方法,并列举了相似矩阵在网络分析和信号处理中的应用案例。
- "On Similarity of Matrices"(作者:Pe tar Rajković et al.)是一篇关于相似矩阵的形式定义和性质研究的论文。
它推导了相似矩阵的充要条件和相似变换的表达式,并给出了相似矩阵的几何解释和应用示例。
- "Graph Similarity and Matching"(作者:Michaël Defferrard et al.)是一本关于图相似性和匹配算法的专著。
它介绍了基于矩阵相似性的图匹配方法,包括谱聚类、图嵌入和子图匹配等技术,对于矩阵相似性的理解和应用具有参考价值。
2. 矩阵的对角化(Matrix Diagonalization):矩阵的对角化是指将一个可对角化矩阵相似转化成对角矩阵的过程。
矩阵的相似性与对角化矩阵是线性代数中的重要概念之一,广泛应用于各个领域。
在矩阵的研究中,相似矩阵和对角化是两个关键概念。
本文将探讨矩阵的相似性和对角化,并分析它们在实际问题中的应用。
一、相似矩阵相似矩阵是指具有相同特征值的矩阵。
具体而言,设A和B为两个n阶矩阵,若存在一个可逆矩阵P,使得PAP^{-1}=B成立,则称A和B相似,P为相似变换矩阵。
矩阵的相似性可以理解为同一线性变换在不同基下的表示。
相似矩阵保持了线性变换的关键属性,例如特征值和特征向量。
对于相似矩阵,它们之间存在一系列重要性质:1. 相似矩阵具有相同的特征值。
设A和B为相似矩阵,如果λ是A 的特征值,则B的特征值也是λ。
2. 相似矩阵具有相同的行列式、迹和秩。
3. 相似矩阵具有相同的特征多项式和最小多项式。
相似矩阵的概念对于矩阵的性质分析和计算求解具有重要意义。
我们可以通过相似矩阵的性质来简化矩阵的计算和求解过程。
二、对角化对角化是将一个矩阵变换为对角矩阵的过程。
一个可对角化的矩阵可以表示为D=P^{-1}AP,其中D为对角矩阵,P为相似变换矩阵。
要判断一个矩阵是否可对角化,需要满足两个条件:1. 矩阵A必须有n个线性无关的特征向量,其中n为矩阵的阶数。
换句话说,A的特征向量必须能够张成整个n维空间。
2. 矩阵A的每一个特征向量都对应一个不同的特征值。
符合上述条件的矩阵A称为可对角化矩阵,对角化的好处在于简化矩阵的计算。
对角矩阵具有简单的形式,只有对角线上有非零元素,其余元素都为零。
对角矩阵的求幂、求逆和乘法等运算都非常容易,因此对角化可以极大地简化矩阵的计算过程。
三、相似矩阵和对角化的应用相似矩阵和对角化在数学和工程中有广泛的应用,下面重点介绍其中几个典型的应用领域:1. 工程中的状态空间表示:在控制系统的分析和设计中,矩阵的相似性和对角化被广泛运用。
通过相似变换将系统的状态空间表示转化为对角形式,可以方便地进行系统的特征分析和控制器设计。
相似矩阵与对角化矩阵是线性代数中最为重要的概念之一,相似矩阵与对角化是矩阵理论中常被提及的概念。
本文将介绍相似矩阵的定义及性质,以及对角化的概念和相关定理。
1. 相似矩阵相似矩阵是指两个矩阵具有相同特征多项式(即它们的特征值相同),这样的矩阵可以通过线性变换相互转化而得到。
具体来说,设A 和 B 是 n 阶矩阵,如果存在一个可逆矩阵 P,使得 P⁻¹AP = B,则我们称矩阵 A 与 B 相似,记作 A ∼ B。
相似矩阵有以下特性:(1)相似关系是一种等价关系,即自反性、对称性和传递性都成立。
(2)相似矩阵具有相同的特征多项式和特征值。
(3)如果 A 与 B 相似,则它们的多项式函数也相似。
2. 对角化对角化是一种将矩阵转化为对角矩阵的操作。
对于 n 阶方阵 A,如果存在一个可逆矩阵 P,使得 P⁻¹AP = D,其中 D 是一个对角矩阵,则我们称 A 可对角化。
对角化有以下几个重要的定理:(1)一个矩阵可对角化的充分必要条件是它有 n 个线性无关的特征向量。
(2)如果一个矩阵 A 有 n 个不同的特征值,则 A 是可对角化的。
(3)如果 A 是可对角化的,则 A 的幂Aⁿ 也可以对角化,其中 n是正整数。
(4)如果 A 可对角化,则存在一个对角矩阵 D,使得 A 和 D 相似。
3. 相似矩阵与对角化的联系相似矩阵和对角化之间存在着密切的联系。
具体来说,如果矩阵 A 和 B 相似,则它们可以通过线性变换相互转化,即存在一个可逆矩阵P,使得 P⁻¹AP = B。
而对角化是相似矩阵的一种特殊情况,即当 P 的选择为 A 的 n 个线性无关的特征向量时,A 可以对角化为对角矩阵 D,即 P⁻¹AP = D。
对角化的好处在于简化了矩阵的计算,对于对角矩阵,其乘法和幂运算均非常简单。
此外,对角矩阵还具有很多重要的性质,如行列式等于特征值的乘积,矩阵的迹等于特征值的和,这些性质在实际应用中有着广泛的应用。
矩阵的相似和对角化的性质和应用矩阵的相似和对角化是线性代数中比较基础的概念,也是常常用到的重要工具。
在本文中,我将介绍矩阵相似的定义及其一些性质,探讨矩阵对角化的方法和应用。
一、矩阵相似1.1 定义设 $A$ 和 $B$ 是 $n$ 阶矩阵,若存在一个可逆矩阵 $P$,使得$B=P^{-1}AP$,则称 $B$ 与 $A$ 相似,$P$ 叫做相似变换矩阵。
1.2 性质(1)相似关系是一种等价关系。
对于任意的 $n$ 阶矩阵 $A$,有 $A\sim A$。
若 $A\sim B$,则$B\sim A$。
若 $A\sim B$,$B\sim C$,则 $A\sim C$。
(2)相似关系保持一些矩阵的特性。
若 $A$ 是一个对称矩阵,则 $B=P^{-1}AP$ 也是对称矩阵。
若$A$ 是一个正定矩阵,则 $B=P^{-1}AP$ 也是一个正定矩阵。
(3)相似矩阵有相同的特征值和相同的秩。
若 $A\sim B$,则 $A$ 和 $B$ 有相同的特征值。
即它们的特征多项式相同。
并且相似矩阵有相同的秩。
二、对角化2.1 定义设 $A$ 是 $n$ 阶矩阵。
若存在一个可逆矩阵 $P$,使得 $P^{-1}AP=D$,其中 $D$ 是一个对角矩阵,则称 $A$ 可对角化,$D$ 叫做 $A$ 的一个对角化矩阵,$P$ 叫做对角化矩阵。
2.2 对角化的必要条件若$A$ 可对角化,则$A$ 必须有$n$ 个线性无关的特征向量。
即存在一组线性无关的向量$\{\vec{v_1},\vec{v_2},\cdots,\vec{v_n}\}$,使得$A\vec{v_i}=\lambda_i\vec{v_i}$,其中 $\lambda_i$ 是 $A$ 的特征值。
2.3 对角化的方法(1)在求解 $A$ 的特征值 $\lambda$ 和特征向量 $\vec{v}$ 后,将特征向量按列组成矩阵 $P$,得到 $D=P^{-1}AP$。
主讲人:同济大学殷俊锋相似矩阵及可对角化是线性代数中的非常重要的知识点包含矩阵可相似对角化的充分必要条件、相似对角化的方法,实对称矩阵的特征值、用正交变换化实对称矩阵为对角矩阵等基本概念.广泛用于今后惯性定理、用正交变换化二次型为标准型等高级知识.一、知识要点1、定义:设A和B是两个n阶方阵,如果存在可逆矩阵P满足B=P-1AP,则称矩阵A和B是相似的,记作A~B. 矩阵的相似关系是一种等价关系,具有自反性、对称性和传递性.设A~B,则有(1)矩阵A和B具有相同的行列式;(2)矩阵A和B具有相同的特征多项式、特征方程以及相同的特征值;(3)A T~B T,A-1~B-1(可逆时),一般地,若φ(t)=a0+a1t+a2t2+…+a m t m,则有φ(A) ~φ(B).2、矩阵可相似对角化的充分必要条件若矩阵A和对角矩阵Λ是相似的,则称矩阵A可对角化.定理设A是一个n阶方阵,则A 可对角化的充分必要条件是:A有n 个线性无关的特征向量.由于不同特征值对应的特征向量一定是线性无关的,因此,当矩阵A的特征值互异时,必可相似对角化.定理设A是一个n 阶方阵,则A 可对角化的充分必要条件是:对于A 的任意一个k重特征值λ,矩阵A 的属于特征值λ的线性无关的特征向量的个数为k,即r(A-λ E) =n-k.将矩阵相似对角化的方法:设n 阶方阵有n 个线性无关的特征向量ξ1,ξ2,…,ξn ,对应的特征值分别为λ1,λ 2,…,λ n ,即A ξ1=λ1 ξ1 (i =1,2,…,n),则有若记(可逆),则.需要注意的是:①相似矩阵P 不唯一;②矩阵P 的列与对角矩阵Λ的列的对应关系.()()()()121212112212,,,,,,,,,,,,λλξξξξξξλξλξλξξξξλ⎛⎫ ⎪ ⎪=== ⎪ ⎪⎝⎭n n n n n n A A A A ()12,,,ξξξ=n P 121λλλ-⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭n P AP3、实对称矩阵的性质(1)特征值全为实数;(2)不同特征值对应的特征向量必正交;(3)A必可正交相似于一个对角阵,即存在正交矩阵P,使得P-1AP=P T AP=Λ,其中Λ是以A的特征值为对角元的对角矩阵.4、将n阶对称实方阵A正交相似对角化的方法(1)求出矩阵A 的互异特征值λ1,λ 2,…,λ n,其重数分别为k1,k2,…,k n (k1+k2+…+k n =n);(2)对每个特征值λi,求齐次线性方程组(A-λi E) x=0 的基础解系,得矩阵A 的属于特征值λi的k i个线性无关的特征向量,将其正交化,单位化,得k i 个两两正交的单位特征向量,一共可以得到n个两两正交的单位特征向量;(3)将(2)中得到的n 个两两正交的单位特征向量按列构成正交矩阵P,则有P-1AP=P T AP=Λ,注意Λ中的对角元的排列次序与矩阵P中的列向量的排列次序相对应.特别地,如果矩阵A的特征值为λ1,λ 2,…,λ n互异,则只需要将对应的特征向量单位化即可(特征向量已经正交).二、教学要求1、理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件;2、掌握将矩阵化为相似对角矩阵的方法;三、例题精讲例1、矩阵与相似的充分必要条件是解:由于已知矩阵都是对称矩阵,且1111⎛⎫ ⎪ ⎪ ⎪⎝⎭a a b a a 20000000⎛⎫ ⎪ ⎪ ⎪⎝⎭b ()()21111022111111λλλλλλλλλλλ--⎛⎫⎪⎡⎤-=-=-=----⎣⎦ ⎪⎪--⎝⎭a a ab a E a b a a b a b a a a a 故,矩阵相似两个矩阵具有相同的特征值,的根为0,2,b ,⇔⇔⇔()()2220λλλ⎡⎤----=⎣⎦b a 0=a例2、设矩阵可对角化,则a,b 满足什么条件?解:先求特征值0011100⎛⎫ ⎪= ⎪ ⎪⎝⎭A a b ()()20111110λλλλλλ--=-=--+-A E a b 故矩阵A 的特征值为:1(2重),-1,所以,矩阵A 可对角化属于特征值1的线性无关的特征向量的个数为2()1⇔-=r A E ⇔另一方面,101101()000101000--⎛⎫⎛⎫ ⎪ ⎪-=→+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E a b a b 所以,a+b=0.例3、设为3阶方阵,且,求.解:由题意,可知矩阵A 20,20,30+=+=-=A E A E A E A 2001~002003A -⎛⎫ ⎪⎪- ⎪ ⎪⎝⎭从而()123 3.2⎛⎫=--= ⎪⎝⎭A例4、求可逆矩阵P 将方阵对角化.解:先求特征值200121143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A 当时,()()220012121143λλλλλλ--=--=--+--A E 故矩阵A 的特征值为:2(2重),-1,2λ=0002141,141⎛⎫ ⎪-=- ⎪ ⎪-⎝⎭A E 12411,0;01ξξ-⎛⎫⎛⎫⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得,当时,1λ=-300111,144⎛⎫ ⎪+=- ⎪ ⎪-⎝⎭A E 301,1ξ⎛⎫⎪= ⎪ ⎪⎝⎭解得,所以,所求矩阵410101,011-⎛⎫⎪= ⎪ ⎪⎝⎭P 1200020.001-⎛⎫⎪= ⎪ ⎪-⎝⎭P AP 使得例5、设,求.解:先求特征值111111111-⎛⎫⎪=-- ⎪ ⎪--⎝⎭A ()21111113111λλλλλλ---=---=-+---A E 10A 当时,0λ=1110111,111-⎛⎫⎪-=-- ⎪ ⎪--⎝⎭A E 12111,0;01ξξ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭解得,当时,3λ=-2113121,112⎛⎫⎪+=- ⎪ ⎪-⎝⎭A E 311;1ξ-⎛⎫ ⎪= ⎪ ⎪⎝⎭解得,111101,011-⎛⎫ ⎪= ⎪ ⎪⎝⎭P 1000000.003-⎛⎫ ⎪= ⎪⎪-⎝⎭A P P 所以,找到矩阵使得10101110110000000031110001111010001010110030111113111111--⎛⎫ ⎪= ⎪ ⎪-⎝⎭--⎛⎫⎛⎫⎛⎫ ⎪⎪⎪= ⎪⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭--⎛⎫ ⎪=-⎪ ⎪-⎝⎭A P P 从而例6、设矩阵问为何值时,矩阵A 可对角化?解:矩阵A 的特征多项式为:102014.522⎛⎫ ⎪= ⎪ ⎪+--⎝⎭A a a a 故特征值为,下面分三个情形.a ()[]1021020142110(1)(2)(21)522522λλλλλλλλλλλ---=-=---=-----+---+---A E a a a a a a a 1,2,21-a情形1 当,即,时,矩阵A 有三个不同的特征值,此时A 可对角化;情形2 当,即,时,矩阵A 的特征值为1和2(二重),此时211,2-≠a 31,2≠a 矩阵A 的属于特征值2的线性无关的特征向量只有一个,故A 不可对角化;212-=a 32=a ()1022014,(2)2,137122⎛⎫⎪-⎪-=--= ⎪ ⎪-⎪⎝⎭A E r A E情形3 当,即,时,矩阵A 的特征值为1(二重)和2,此时矩阵A 的属于特征值1的线性无关的特征向量只有一个,故A 不可对角化;211-=a 1=a ()002004,()2,631A E r A E ⎛⎫ ⎪-=-= ⎪ ⎪-⎝⎭综上,当时,矩阵A 可对角化.31,2≠a例7、设A 为3阶矩阵,是3个线性无关的三维列向量,且满足解:(1)由已知条件得:所以矩阵123,,ααα1123223323,2,23.αααααααααα=++=+=+A A A (1)求矩阵B , 使得;(2)求矩阵A 的特征值;(3)求可逆矩阵P 使得P -1AP 为对角阵.()()123123,,,,αααααα=A B ()()123123100,,,,122,113αααααα⎛⎫ ⎪= ⎪ ⎪⎝⎭A 100122.113⎛⎫ ⎪= ⎪ ⎪⎝⎭B(2)记,因是3个线性无关的三维列向量,故矩阵可逆. 由(1)知:即B 与A 相似,B 与A 具有相同的特征值. 另一方面,123,,ααα()1123,,ααα=P 1P 11111,,-==AP PB B P AP ()()210012214,113λλλλλλ--=-=----B E 故矩阵B 的特征值为1,1,4,所以矩阵A 的特征值也为1,1,4;当时,相应的特征向量为11λ=()000112112000,112000⎛⎫⎛⎫ ⎪ ⎪-=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭B E ()()121,1,0,2,0,1,ξξ=-=-T T 当时,相应的特征向量为24λ=()3001004122011,111000-⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭B E ()30,1,1,ξ=T(3)先将矩阵B 对角化,()2123,,,ξξξ=P 令则有122100010,004-⎛⎫⎪= ⎪ ⎪⎝⎭P BP 结合上述条件,则有112112100010,004--⎛⎫ ⎪= ⎪ ⎪⎝⎭P P APP 取使得P -1AP 为对角阵,其中12=P PP ()()12123121323120,,101,2,,011ααααααααα⎛⎫ ⎪==-=--+ ⎪ ⎪-⎝⎭P PP谢谢!。