矩阵对角化,实对称矩阵的相似标准形分解概述.
- 格式:ppt
- 大小:1.45 MB
- 文档页数:35
第四章 矩阵的对角化对于一个矩阵,如何寻找一个适当的变换,在将其变为简单矩阵的同时,保留原矩阵的一些重要特征,这是矩阵论中一个非常重要的问题.在这一问题的研究中,矩阵的特征值和特征向量的概念起着非常重要的作用.拉普拉斯在19世纪初提出了矩阵的特征值的概念.1854年,若尔当研究了矩阵化为标准形的问题.1885年,埃尔米特证明了一些特殊矩阵的特征根的性质,后人称之为埃尔米特矩阵的特征根性质,凯莱1858年发表了一篇论文《矩阵论的研究报告》,文中研究了方阵的特征方程和特征值的一些基本结果,克莱布什等证明了对称矩阵的特征根性质.在这一问题的研究史上,值得重点介绍的是下面两位数学家:第一位是柯西,他首先给出了特征方程的术语,并证明了阶数超过3的矩阵有特征值及任意阶实对称矩阵都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值.第二位是弗罗贝尼乌斯,正是他引入了矩阵的相似变换、合同矩阵、正交矩阵等重要概念,并讨论了正交矩阵和合同矩阵的一些重要性质.矩阵的特征值、特征向量和仿真的对角化理论与方法是矩阵理论的重要组成部分,它不仅在数学的各个分支有重要作用,而且在其他学科如工程技术、数量经济分析等领域有着广泛的应用.本章主要讨论方阵的特征值与特征向量理论及方阵在相似意义下的对角化问题,并应用这些理论和方法解决一些实际问题.§4.1 矩阵的特征值和特征向量一、特征值和特征向量的概念在工程实践及经济管理等许多领域中,经常会遇到矩阵的特征值和特征向量的问题.例 4.1.1 经济发展与环境污染是当今世界亟待解决的两个突出问题.为了研究某地区经济发展与环境污染之间的关系,可建立如下数学模型:设,分别为某地区目前 x 0 y 0 的环境污染水平与经济发展水平,,分别为该地区若干年后的环境污染水平与经济 x 1 y 1 发展水平,且有如下关系{ x 1 = 3x 0 +y 0 ,y 1 = 2x 0 +2y 0 .令, , α0=( x 0 y 0 )α1=( x1 y 1 )A =(3 12 2),则上述关系的矩阵形式为:α1=Aα0 .若该地区目前的环境污染水平与经济发展水平,则若干年后的环境污染水α0=( x0 y 0)=(11)平与经济发展水平为,α1=Aα0=(3 12 2) ( x 0 y 0 )=(3 12 2) (11)= (44)=4 (11)=4α0即这里,4就是矩阵的一个特征值,是矩阵的对应于4的一个特征向量.Aα0=4α0 . A α0 A 定义 4.1.1 设为阶矩阵,若存在数 和维非零列向量,使得A n λ n α ;Aα=λα则称为矩阵的特征值,是矩阵一个特征值,称为的属于(或对应于)特征值 λ A α0 A α0 A λ的特征向量.由特征值、特征向量的定义可得(1)若为的属于的特征向量,则对于非实数,也是的属于的特征向量. α A λk k α A λ (2)若为的属于的特征向量,则当时,也是的属于α1,α2 A λα1+α2 ≠0 α1+α2 A 的特征向量.λ (3)若为的互异特征值,分别为的属于的特征向量,则λ1, λ2 A α1,α2 A λ1, λ2 .α1≠α2 证 若,则,即,故.由于 α1≠α2 Aα1≠Aα2 λ1α1=λ2α2=λ2α1 (λ1-λ2)α1=0,所以,矛盾.因此.λ1≠λ2α1≠0 α1≠α2 例 4. 1. 2 求阶方阵的一个特征值与所对应的特征向量. n A =(a b b ⋯ bb a b ⋯ b ⋮ ⋮ ⋮ ⋮b b b ⋯ a )解 取维向量,则n α=(1,1,1)TAα=(a b b ⋯ bb a b ⋯ b⋮ ⋮ ⋮ ⋮b b b ⋯ a)(11⋮1)=(a +(n -1)b a +(n -1) b ⋮ a +(n -1) b),故 是的一个特=[a +(n -1) b ](11⋮1)= [a +(n -1) b ] αλ=a +(n -1) b A 征值,是 属于特征值的一个特征向量.α A λ=a +(n -1) b 将(4.1.1)写成下面形式.(λE ‒A ) α=0根据定义,特征向量就是齐次线性方程组α. (4.1.2)(λE ‒A ) α=0的非零解.由于(4.1.2)有非零解的充要条件是其系数行列式等于零,故知阶矩阵的 n A 特征值满足方程λ .|λE ‒A |=0为叙述方便,引入下面的概念.定义4. 1. 2 .,称A =(a ij )n ×n f (λ)=|λE ‒A |=|λ-a 11 a 12 ⋯ -a 1n -a 21 λ-a 22 ⋯ -a 2n⋮ ⋮ ⋮-a n1 -a n2 ⋯ λ- a nn|为矩阵 的特征多项式,称为的特殊矩阵,称为的特征方程.A λE ‒A A |λE ‒A |=0 A 二、特征值与特征向量的计算求阶矩阵的特征值和特征向量,可按如下步骤进行:n A (1)计算的特征多项式,求出特征方程的全部根,,,.A |λE ‒A | |λE ‒A |=0 λ1λ2⋯λn对每个特征值,求解齐次线性方程组.设它的一个基础λi (i =1,2,⋯,n )(λi E ‒A ) x =0解系为,,,,则的属于的全部特征向量为αi 1 αi 2 ⋯αini A λ i k 1αi 1+k 2αi 2+⋯+k n iαini其中为不全为零的任意常数.k 1,k 2,⋯,k ni 限于本教材适用范围,我们将不讨论的复特征值和特征向量.A 例 4.1.3 求矩阵A =(2 -2 0- 2 1 -20 -2 0)的特征值与特征向量.解 矩阵的特征多项式A f (λ)=|λE ‒A |=|λ-2 2 02 λ-1 20 2 λ|=λ(λ-1)(λ-8)-8(λ-1)=(λ+2)(λ-1)(λ-4)由,得的特征值为,,.|λE ‒A |=0 A λ1=-2λ2=1λ3=4对于,解齐次线性方程组,即解方程组λ1=-2(-2E ‒A )x =0,,(- 4 2 02 -3 20 2 -2)(x 1x 2x 3)=(000)得基础解系,所以对应于,的全部特征向量为(ξ1=(1,2,2)Tλ1=-2k 1ξ1).k 1≠0对于,解齐次线性方程组 ,即解方程组λ2=- 2 (E ‒A )x =0(- 1 2 02 0 20 2 1)(x 1x 2x 3)=(00)得基础解系,所以对应于的全部特征向量为ξ2=(2,1,‒2)T λ2= 1 ()..k 2ξ2k 2≠0对于,解齐次线性方程组 ,即解方程组λ3= 4 (4E ‒A )x =0,(2 2 023 20 2 4)(x 1x 2x 3)=(0)得基础解系,所以对应于的全部特征向量为(ξ3=(2,-2,1)Tλ3= 4 k 3ξ3)..k 3≠0例4.1.4 求矩阵的特征值与特征向量 A =(3 2 42 0 24 2 3)解 矩阵的特征多项式为Af (λ)=|λE ‒A |=|λ-3 - 2 -- 2 λ - -4 -2 λ |λ+1 0 -(λ+1)- 2 λ -2 -4 -2 λ-3|=,(λ+1)2(λ‒8)由,得的特征值为,.|λE ‒A |=0A λ1= λ2=-1 λ3=8对于,解齐次线性方程组,即解方程组λ1= λ2=-1(-E ‒A )x =0,(- 4 - 2 -4- 2 - 1 -2- 4 - 2 -4)(x 1x 2x 3)=(000)得基础解系,,所以对应于的全ξ1=(-1,2,0)T ξ2=(2,1,‒2)Tλ1= λ2=-1部特征向量为不全为零).k 1ξ1+k 2ξ2(k 1,k 2 对于,解齐次线性方程组,即解方程组λ3=8(8E ‒A )x =0,(5 -2 -4- 2 8 -2- 4 - 2 5 )(x 1x 2x 3)=(00)得基础解系,所以对应于的全部特征向量为().ξ3=(-1,2,0)Tλ3=8 k 3ξ3k 3≠0例4.1.5求矩阵的特征值与特征向量 A =(3 2 42 0 24 2 3)解 矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-3 1 -- 2 λ - -1 1 λ-2||λ-2 1 -1λ-2 λ -1 0 1 λ-2|=,(λ-2)2(λ‒1)由,得的特征值为,.|λE ‒A |=0A λ1= λ2=2 λ3=1对于,解齐次线性方程组,即解方程组λ1= λ2=2(2E ‒A )x =0,(- 1 1 -1- 2 2 -1- 1 1 0)(x 1x 2x 3)=(000)得基础解系,所以对应于的全部特征向量为ξ1=(1,1,0)Tλ1= λ2= 2 ().k 1ξ1k 1≠0对于,解齐次线性方程组,即解方程组λ3=1(E ‒A )x =0,(- 2 1 -1- 2 1 -1- 1 1 -1)(x 1x 2x 3)=(000)得基础解系,所以对应于的全部特征向量为(.ξ2=(0,1,1)Tλ3= 1 k 2ξ2k 2≠0)三、特征值与特征向量的性质定理4.1.1 阶矩阵与有相同的特征值.n A A T证 由,知与有相同的特征多项式,故有相同的特|λE ‒A T|=|(λE ‒A )T|=|λE ‒A | A A T 征值.定理4.1.2 设 ,,,,为方阵的个特征值,则有A =(a ij )n ×n λ1λ2⋯λn A n (1)λ1λ2⋯λn =|A |(2)λ1+λ2+⋯+λn =a 11+a 22+⋯+a nn 证 (1)根据多项式因式分解与方程根的关系,有(4.1.3)|λE ‒A |=(λ-λ1)(λ-λ2)⋯(λ-λn )令,得,即λ=0|-A |=(-λ1)(-λ2)⋯(-λn )=(-1)nλ1λ2⋯λn |A |=λ1λ2⋯λn(2)比较(4.1.3)式两端的系数,右端为,而左端含λn -1-(λ1+λ2+⋯+λn )的项来自的主对角线元乘积项,其含的λn-1|λE ‒A |(λ-a 11)(λ-a 22)⋯(λ-a nn ) λn-1系数为,因此.-(a 11+a 22+⋯+a nn )λ1+λ2+⋯+λn =a 11+a 22+⋯+a nn 我们将阶矩阵的主对角线元之和称为矩阵的迹,记为,即n A A tr (A )=tr (A )a 11+a 22+⋯+a nn =∑=nk 1a kk推论4.1.1 阶矩阵可逆的充分条件是它的任一特征值不等于零.n A 定理4.1.3 若为的特征值,是对应的特征向量,则 λ A α (1)为的特征值();a λ a A a 为常数(2)为的特征值();λk A kk 为正整数(3)为的多项式,则为的特征值;若φ(x ) x φ( λ)φ(A )(4)若可逆,则为的特征值,为的特征值.A 1λA -11λ|A |A *证 由题意,对于,有.α≠0 Aα=λα(1)因为,故为的特征值.(a A )α=a (Aα)=(a λ)αa λ a A (2)由,得,假设Aα= λα A 2α=A ( Aα)=A ( λα)=λ( Aα)= λ2α,A k-1α=λk-1α于是,由数学归纳法知结论成立.A k α=A ( Ak-1α)=A ( λk -1α)=λk-1( Aα)= λk α(3)设,由(2)可得φ(x )=a 0x m +a 1x m-1+⋯+a m-1x+a mφ(A )α=(a 0A m +a 1A m -1+⋯+a m-1A+a m E ) α =a 0A m α+a 1A m-1α+⋯+a m -1Aα+a m α=a 0λm α+a 1λm-1α+⋯+a m-1λα+a m α=(a 0λm +a 1λm -1+⋯+a m-1λ+a m ) α=φ(λ)α(4) 由于可逆,故,从而,故 A λ≠0α= A -1(Aα)= A -1(λα)=λ A-1α,,即为的特征值,为的特征A-1α=1λαA*α=| A | A-1α=| A |λα 1λ A-11λ|A |A*值.下面给出方阵的特征向量的性质A 定理4.1.4 设,,,阶矩阵的个互异特征值,,,,分别是 λ1λ2⋯λm 为 n A m α1 α2 ⋯αm 的属于,,,的特征向量,则,,,线性无关. A λ1λ2⋯λm α1 α2 ⋯αm 证 设有常数,,,,使得k 1 k 2 ⋯k m k 1α1+k 2α2+⋯+k m αm =0(4.1.4)上式两边左乘,并注意到,有A Aαi =λi αi (i =1,2,⋯,m ).k 1λ1α1+k 2λ2α2+k m λm αm =0 按这种方法再依次用左乘(4.1.4),并应用定理4.1.3(2)的结论,A 2, A 3, A m ‒1得{k 1α1+k 2α2+k m αm =0 ,k 1λ1α1+k 2λ2α2+k m λm αm =0,k 1λ21α1+k 2λ22α2+k m λ2m αm =0, ⋯⋯⋯⋯k 1λm ‒11α1+k 2λm ‒12α2+k m λm ‒1m αm =0.上式的矩阵形式为,( k 1α1,k 2α2,⋯,k m αm )(1 λ1 ⋯ λm ‒111λ2 ⋯ λm ‒12⋮ ⋮ ⋮1 λm ⋯ λm ‒1m)=(0,0,⋯,0)上式左端第二个矩阵的行列式是范德蒙德行列式,因为,,,互不相同,λ1λ2⋯λm 所以该行列式的值不为零,从而该矩阵可逆.用该矩阵的逆右乘上述等式两边,得( k 1α1,k 2α2,⋯,k m αm )=(0,0,⋯,0)于是,由于特征向量非零,因此只有k i αi =0(i =1,2,⋯,m )αi (i =1,2,⋯,m )上式才能成立,故,,,为线性无关.k i =0(i =1,2,⋯,m )α1 α2 ⋯αm 定理4.1.5 设,,,阶矩阵的个互异特征值,,,,分别λ1λ2⋯λm 为 n A m α1 α2 ⋯αm是的属于的线性无关的特征向量,则向量组A λi (i =1,2,⋯,m ),,,, ,,,, ,,,线性无关.α11 α12 ⋯α1s 1α21 α22 ⋯α2s 2αm 1 αm 2 ⋯αms m 证明略.关于对应同一个特征值的特征向量间的关系,有定理4.1.6 设阶矩阵的重特征值,则对应于的线性无关特征向量个数 λ0是 n A k λ0不超过个.k 显然,依据定理4.1.6,当特征值为单根时,对应的线性无关特征向量个数只能是一个.根据上述定理,对于阶矩阵的每一个不同的特征值,求出齐次线性方程组n A λi 的基础解系,就得到的属于的线性无关的特征向量.然后,把它们合成一(λi E ‒A )=0 A λi 起所得的向量组仍然线性无关.阶矩阵的线性无关特征向量个数不大于.n A n 例4.1.6 设三阶矩阵的特征值为,,求A λ1= λ2=3 λ3=3(1)的特征值.A -1(2)的特征值.A *(3)的特征值及.B =12(A-1)2‒A *+2E |B |解 (1)由于,因此可逆,由定理4.1.3知,的特征值为,| A |= λ1λ2λ3=12≠0A A-112,.1213(2)由定理4.1.3知,的特征值为6,6,4.A *(3)因为,所以).A *|A |A-1=12A -1B =12(A -1)2‒A*+2E 设,由定理4.1.3知,的特征值为,1,2,3.f (x )=12x 2-12x +2B =f (A-1)f(1λi )i =由此得的特征值为,.B -1,-1,-23|B |=-23例4.1.7 设为正交矩阵,若,则有特征值A |A |=-1A -1证 ,则f (λ)=|λE ‒A |.f (-1)=|-E ‒A |=|(-E ‒A )T|=|-E ‒A T|另一方面,由于及,则AA T=E |A |=1f (-1)=|-E ‒A |=|AA T -A |=|A || ‒A T-E |=-| -E ‒A T|=-f (-1)因此,即为的特征值.f (-1)=0-1 A §4.2 相似矩阵在矩阵的运算中,对角矩阵的运算最方便.我们自然要问,一个阶矩阵是否可化为n A 对角矩阵,且保持矩阵的一些重要性质不变.本节将讨论这个问题.A 一、相似矩阵定义4.2.1 设为阶矩阵,如果存在阶可逆矩阵,使得A ,B n n P ,P -1AP =B 则称矩阵相似,也称是的相似矩阵,记作.可逆矩阵称为相似变换矩阵.A 和B B A A~B P例4.2.1 设,,,不难A =(4 6 0- 3 -5 0- 3 -6 1)B =(1 0 00 1 00 0 -2)P =(- 2 0 -11 0 10 1 1)验证可逆,且.由于P P-1=(- 1 - 1 0- 1 - 2 11 2 0),P-1AP =(- 1 - 1 0- 1 - 2 11 2 0)(4 6 0- 3 -5 0- 3 -6 1)(- 2 0 -11 0 10 1 1)=(1 0 00 1 00 0 -2)=B 因此.A~B 两个相似矩阵是等价矩阵,相似是方阵之间的一种关系,这种关系具有如下性质:(1)反身性:;A~A (2)对称性:若,则;A~B B~A (3)传递性:若,,则;A~B B~C A~C 此外,相似矩阵之间有许多共同的性质定理4.2.1 若阶矩阵相似,则n A 与B (1);|A |=|B |(2);R (A )=R (B )(3)有相同的特征值;A ,B (4).tr (A )=tr (B )证 由于,故存在阶可逆矩阵,使得,从而A~B n P P-1AP =B (1);|B |=|P-1AP |=|P-1||A ||P |=|A |(2);R (B )=R (P -1AP )=R (AP )=R (A )(3)由于,|λE ‒B |=|λE ‒P-1AP |=|P-1(λE ‒A )P |=|λE ‒A |即有相同的特征多项式,于是有相同的特征值.A ,B A ,B (4)由(3)即得.推论4.2.1 若阶矩阵对角矩阵n A 与 =Λ(λ1λ2⋱λn)相似,则,,,是的个特征值. λ1λ2⋯λn A n 例4.2.2 若,求.A =(- 2 0 02 x 23 1 1)~(- 1 0 00 2 00 0 y )=B x ,y 解 对角矩阵的特征值为,,,由于,因此的特征值也为,,,再B -12y A~B A -12y 根据相似矩阵有相同的迹,可得{|2E ‒A |=0,tr (A )=tr (B ),解此方程组得, .x =0y =-2两个相似的矩阵还具有下面的性质(1)若,则,(为正整数);A~B k A~kB A m ~B mm (2)若, 为多项式,则;A~B f (x )f (A )~f (B )(3)若,且均可逆,则;A~B A ,B A-1~B -1证 只证,故存在阶矩阵,使得,从而 A m ~B m n P P-1AP =B B m =(P-1AP )m =(P-1AP )(P-1AP )⋯(P-1AP )=P-1A mP即.A m ~B m 二、矩阵的对角化定义 4.2.2 若阶矩阵与对角矩阵相似,则称可对角化.n A A 相似矩阵有许多共同性质.在我们熟悉的矩阵中,形式最简单的一类是对角矩阵,若矩阵相似于对角矩阵,就可以借助对角矩阵来研究,如何求相应的可逆矩阵?下面我A A P 们就来讨论这个问题.定理4.2.3 阶矩阵相似于对角矩阵(可对角化)的充要条件是有个线性无n A A A n 关的特征向量.证 必要性.设存在可逆矩阵,使得P = =.P -1AP Λ(λ1λ2⋱λn)设,由 =,得 =,或P =( α1,α2,⋯,αn )P-1AP ΛAP P Λ.A ( α1,α2,⋯,αn )=( α1,α2,⋯,αn )(λ1λ2⋱ λn)即A ( α1,α2,⋯,αn )=( λ1α1,λ2α2,⋯,λm αm )因此,,由于可逆,因此,从而Aαi =λi αi (i =1,2,⋯,n )P |P |≠0都是非零向量,故分别是的属于特征值αi (i =1,2,⋯,n )α1,α2,⋯,αn A 的特征向量,再由可逆知线性无关.λ1,λ2,⋯,λn P α1,α2,⋯,αn 充分性.设分别是的属于特征值的个线性无关的特征α1,α2,⋯,αn A λ1,λ2,⋯,λn n 向量,则有Aαi =λi αi (i =1,2,⋯,n )取,因为线性无关,所以可逆,于是有P =( α1,α2,⋯,αn )α1,α2,⋯,αn P =.,AP P(λ1λ2⋱λn)即个m==P -1AP (λ1λ2⋱λn)Λ因此矩阵相似于对角矩阵.A A 因为特征向量不是唯一的,所以矩阵不具有唯一性.P 推论4.2.2 若阶矩阵有个互异的特征值,则必可对角化.n A n A 推论4.2.3 阶矩阵的充分必有条件是的每个重特征值个线性无n A 可对角化A t i λi 都有ti 关的特征向量.即.R (λi E ‒A )=n ‒t i由上述结论可知,例4.1.3和例4.1.4给出的矩阵可对角化,而例4.1.5给出的矩阵不能对角化.根据上述结论,可以归纳出将矩阵对角化的具体计算步骤:A (1)求出阶矩阵的全部互异特征值,,,,它们的重数依次为n A λ1λ2⋯λn ;t 1,t 2,⋯,t m (t 1+t 2+⋯+t m =n )(2)求的特征向量.对每个特征值求方程组的基础解系,即为的对A λi (λi E ‒A ) x =0应的线性无关的特征向量,设为;ξi 1,ξi 2,⋯,ξis i (i =1,2,⋯,m )(3)判定是否可对角化.若对每一个特征值都有,则可对A s i =t i (i =1,2,⋯,m )A 角化,否则不可对角化;(4)当可对角化时,令A ,P =(ξ11,ξ12,⋯,ξ1s i,ξ21,ξ22,⋯,ξ2s i,ξm 1,ξm 2,⋯,ξmsm),,,,,,,,,Λ=diag (λ1λ1⋯λ1,λ2λ2⋯λ2,⋯,λm λm ⋯λm )且可逆,且有P =P-1AP Λ例4.2.3 判断下列矩阵能否对角化,若能,求出可逆矩阵,使得为对角矩阵.P P -1AP (1);(2)A =(1 2 22 1 ‒2‒2 ‒2 1)B =(1 2 22 1 22 2 1)(1)矩阵的特征多项式为解A f (λ)=|λE ‒A |=|λ-1 -2 -2- 2 λ- 1 22 2 λ-1||λ-1 λ-1 λ-1- 2 λ- 1 22 2 λ-1|= (λ+1)(λ-1)(λ-3)由,得的特征值为.由推论4.2.2知,矩阵可对|λE ‒A |=0A λ1=-1,λ2=1,λ3=3A 角化.下面求可逆矩阵.P 个1个2个s m r 1+r 2r 1+r 3对于,解齐次线性方程组,即解方程组λ1=-1(-E ‒A )x =0,,(- 2 - 2 -2- 2 - 2 22 2 -2)(x 1x 2x 3)=(000)得基础解系,即为即为的属于特征值的一ξ1=(-1,-1,0)Tξ1 ξ2A λ1=-1个特征向量.对于,解齐次线性方程组 ,即解方程组λ2= 1 (E ‒A )x =0(0 ‒2 ‒2‒2 0 22 2 0)(x 1x 2x 3)=(0)得基础解系,即为的属于特征值的一个特征向量.ξ2=(1,-1,0)Tξ2A λ2=1对于,解齐次线性方程组 ,即解方程组λ3= 3 (3E ‒A )x =0,(2 -2 -2- 2 2 22 2 2)(x 1x 2x 3)=(0)得基础解系,即为的属于特征值的一个特征向量.ξ3=(0,1,-1)Tξ3A λ3=3取,则有P =( ξ1,ξ2,ξ3)=(1 1 0- 1 - 1 10 1 -1)==P-1AP (- 1 0 00 1 00 0 3)Λ(2)矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-1 -2 -2- 2 λ- 1 22 2 λ-1|λ-1 λ-1 λ-1- 2λ- 1 22 2 λ-1|= (λ+1)2(λ-5)由,得的特征值为.|λE ‒B |=0B λ1=λ2=‒1,λ3=5当−1,即−1为的二重特征值时,λ1=λ2=B .(-E ‒B )=(‒2 ‒2 ‒2‒2 ‒2 ‒2‒2 ‒2 ‒2) 1 1 1)故,依据推论4.2.3知,矩阵可对角化,且−1对应的线R (-E ‒B )=1=3‒2B λ1=λ2=性无关的特征向量为,.ξ1=(-1,1,0)T ξ2=(-1,0,1)T对于,解齐次线性方程组 ,得的属于特征值的一个特λ3= 5 (5E ‒A )x =0B λ3=5征向量.取ξ3=(1,1,1)T取,P =( ξ1,ξ2,ξ3)=(- 1 - 1 11 0 1 0 1 1)则有==P-1BP (- 1 0 00 ‒1 00 0 5)Λ对于可对角化的矩阵,我们可应用来求方程的幂,例如,对上例的矩阵,A A m =P Λm P ‒1A 我们有(1 2 22 1 ‒2‒2 ‒2 1)m=( 1 1 0‒1 ‒1 10 1 ‒1)=((‒1)m 0 00 1 00 0 3m)=(0 ‒1 ‒11 1 11 1 0).=(1 1+(‒1)m +1 1+(‒1)m +13m ‒1 3m ‒1+(‒1)m (‒1)m ‒11‒3m 1‒3m 1)例4.2.4 设,求为何值时,A =(a 1 11 a ‒11 ‒1 a )A (1)可对角化,并求相似变换矩阵;A P (2)为可逆矩阵.A ‒E 解 (1)矩阵的特征多项式为A f (λ)=|λE ‒A ||λ-a -1 -1- 1 λ-a -1- 1 2 λ-a| |λ-a -1 -1 -1λ-a -1 λ-a 10 1 λ-a |=,(λ-a -1)2(λ-a +2)故的特征值为,.A λ1=λ2=a +1λ3=a ‒2对于,解齐次线性方程组 ,得的属于特征值λ1=λ2=a +1((a +1)E ‒A )x =0A 的特征向量为,.λ1=λ2=a +1ξ1=(1,1,0)T ξ2=(-,0,1)T 对于,解齐次线性方程组 ,得的属于特征值 λ3=a -2((a -2)E ‒A )x =0A 的特征向量为.依据推论4.2.3知,无论为何值,矩阵 λ3=a -2 ξ3=(-1,1,1)T a 均可对角化.令A ,P =( ξ1,ξ2,ξ3)=(1 1 -11 0 10 1 1)则有==.P-1AP (a +1 0 00 a +1 00 0 a ‒2)Λ的特征值分别为,故当时,为可逆矩阵.(2)A ‒E a ,a ,a ‒3a ≠0且a ≠3A ‒E §4.3 实对称矩阵的对角化c 1+c 2我们已经知道,不是每个矩阵都能对角化.但本节讨论的实对称矩阵一定可以对角化,而且还能正交相似于对角矩阵,本节将讨论实对称矩阵的对角化.一、实对称矩阵的特征值与特征向量的性质实对称矩阵的特征值和特征向量具有一些特殊的性质,这些性质可以保证实对称矩阵一定可以对角化.定理4.3.1 实对称矩阵的特征值都是实数.证 设为实对称矩阵的特征值,为对应的特征向量,即λα.Aα=λα, α≠0用表示的共轭复数,用表示的共轭复向量.则λλαα,Aα=Aα=Aα=λα=λα于是有,αT Aα=αT (Aα)=λαT α及,αT Aα=(αT A T )α=(Aα)T α=(λα)T α=λαT α以上两式相减得,(λ-λ)αT α=0以为所以.因而,即为实数.α≠0αTα≠0λ=λλ由于实对称矩阵的特征值为实数,那么为实矩阵,则齐次线性方程组的解A λE ‒A 可取为实向量,亦即实对称矩阵的特征向量为实向量.(λE ‒A )x =0A 定理4.3.2 实对称矩阵不同的特征值对应的特征向量正交,证 设为实对称矩阵的两个不同的特征值,分别为它们对应的特征向量,则λ1,λ2A α1,α2,从而,因是对称矩阵,又有Aα1=λ1α1,Aα2=λ2α2,α1,α2≠0αT 1(Aα2)=λ2∙αT1α2A ,于是αT 1(Aα2)=αT 1(A T α2)=( Aα1)T α2=( Aα1)T α2=( λ1α1)T α2=λ1α1T ∙α2,(λ1-λ2)α1Tα2=0因,故,即正交.λ1≠λ2α1Tα2=0α1与α2定理4.3.3 设为阶实对称矩阵,为的重特征根,则,从而特A n λA k R (λE ‒A )=n ‒k 征值恰好对应个线性无关的特征向量.λk 证明略.二、实对称矩阵的对角化由定理4.3.2和定理4.3.3可得定理4.3.4 设为阶实对称矩阵,则存在正交矩阵,使得A n Q =Q-1AQ Q T AQ =Λ=(λ1λ2⋱λn)其中,,,为的全部特征值.λ1λ2⋯λn A (1)求出阶实对称矩阵的全部互异特征值,,,,它们的重数依次为n A λ1λ2⋯λn ;t 1,t 2,⋯,t m (t 1+t 2+⋯+t m =n )(2)求实对称矩阵的特征向量.对每个特征值求方程组的基础解系,A λi (λi E ‒A ) x =0即为的对应的线性无关的特征向量,设为;(i =1,2,⋯,m )(3)用施密特正交化方法,将特征向量正交αi1,αi 2,⋯,αis i(i =1,2,⋯,m )单位化,得到一个标准正交向量组αi 1,αi 2,⋯,αiti ;βi 1,βi 2,⋯,βit i(i =1,2,⋯,m )(4)令Q =(β11,β12,⋯,β1t i,β21,β22,⋯,β2t i,βm 1,βm 2,⋯,βmtm),,,,,,,,,Λ=diag (λ1λ1⋯λ1,λ2λ2⋯λ2,⋯,λm λm ⋯λm )且为正交矩阵,且有Q =Q-1AQ Q T AQ =Λ例4.3.1 设实对称矩阵,A = (3 -3 -3- 3 1 -1- 3 - 1 1)求正交矩阵,使得=为对角矩阵.Q Q-1AQ Q T AQ =Λ解 矩阵的特征多项式为A f (λ)=|λE ‒A |=|λ-3 3 33 λ-1 13 1 λ-1|λ+3 λ+3 λ+33 λ-1 13 1 λ-1|=,(λ+3)(λ-2)(λ-6)=0因此,矩阵的特征值为.A λ1=-3,λ2=2,λ3=6对于,解齐次线性方程组,得基础解系;λ1=-3(-3E ‒A )x =0α1=(1,1,1)T对于,解齐次线性方程组 ,得基础解系; λ2= 2 (2E ‒A )x =0 α2=(0,1,-1)T对于,解齐次线性方程组 , 得基础解系.λ3= 6 (6E ‒A )x =0 α3=(-2,1,1)T将单位化,可得α1,α2,α3β1=1||α1||α1=13(1,1,1)T ,β2=1||α2||α2=12(0,1,‒1)T ,β3=1||α3||α3=16(-2,1,1)T令个s 1个2个s m,Q =( β1,β2,β3)=(130 2613 1216131216)且为正交矩阵,且有Q =Q-1AQ Q TAQ =(- 3 0 00 2 00 0 6)例4.3.2 设实对称矩阵,A = (1 -2 2- 2 - 2 42 4 -2)求正交矩阵,使得=为对角矩阵.Q Q-1AQ Q T AQ =Λ解 矩阵的特征多项式为A f (λ)=|λE ‒A ||λ-1 2 -22 λ+2 -4- 2 - 4 λ+2| |λ-1 2 -22 λ+2 -4- 2 λ- 2 λ-2|=,(λ-2)2(λ+7)=0因此,矩阵的特征值为.A λ1=λ2=2,λ3=7对于,解齐次线性方程组,得基础解系,λ1=λ2=2(2E ‒A )x =0α1=(-2,1,0)T;先将向量正交化,令α2=(2,0,1)T α1,α2,η1=α1=(-210),η2=α2=-(α2,η1)(η1,η1)=(201)+45(-210)=(25451)再单位化,得β1=1||η1||η1=15(-210),β2=1||η2||η2=135(245),对于,解齐次线性方程组 , 得基础解系,λ3=‒7 (‒7E ‒A )x =0 α3=(1,2,‒2)T将其单位化,得.β3=1||α3||α3=13(12-2)令r 3+r 2,Q =( β1,β2,β3)=(‒25235 1315435 230 535 ‒23)且为正交矩阵,且有Q =.Q -1AQ Q TAQ = (2 0 00 2 00 0 ‒7)例4.3.3设三阶实对称矩阵的特征值为,且属于的特征矩阵A λ1=-1,λ2=λ3=1λ1为,求矩阵.α1=(0,1,1)TA 解 设的属于特征值的特征向量为,则与正交,即A λ2=λ3=1α=(x 1,x 2,x 3)Tαα1,α1T α=x 2+x 3=0解此齐次线性方程组,得基础解系,α2=(1,0,0)T ,α3=(0,1,‒1)T 易见,正交. 将单位化,可得α2,α3 α1,α2,α3β1=1||α1||α1=12(011),β2=1||α2||α2=(100),β3=1||α3||α3=12(01-1)令,则为正交矩阵,且有Q =( β1,β2,β3)=12(0 2 01 0 11 0 -1)Q =,Q-1AQ Q TAQ =B =(- 1 0 00 1 00 0 1)从而= A =Q-1BQ Q T BQ.=12(0 2 01 0 11 0 ‒1)(- 1 0 00 1 00 0 1)(0 1 12 0 00 1 ‒1)=(1 0 00 0 ‒10 ‒1 0)习题四(A )一、填空题1.为阶矩阵,有非零解,则必有一个特征值__________.A n Ax =0A 2.若阶可逆方阵的每行元之和,则的一个特征值为__________.n A a 3A-1+E3.设为三阶可逆矩阵,其逆矩阵的特征值为,则行列式 __________.A 12,13,14|E ‒A |=4.设是非奇异矩阵的一个特征值,则矩阵有一个特征值为__________.λ=2(13A 2)-15.若为四阶实对称矩阵,,且2是的三重特征值,则的相似对角矩阵为A |A |=-8A A __________.6. 设为阶矩阵,有个互异特征值,,,,则有__________A n A n λ1λ2⋯λn R (λj E ‒A ) x =.(j =1,2,⋯,n )7. 设是三阶实对称矩阵,的特征值是,则有__________.A A λ1=λ2=1,λ3=-1A 2n =8.若四阶矩阵相似,矩阵的特征值为,则A 与B A 12,13,14,1513|(B -1)∗+E |=__________.9.已知矩阵只有一个线性无关的特征向量,则A =(4 a2 6)a =__________.10.设,矩阵,为自然数,则行列式α=(2,1,‒1)T A =ααTn |a E -A*|=__________.11.已知三阶实对称矩阵的一个特征值为,对应的特征向量,且A λ=2α=(1,2,‒1)T的主对角线上的元全为零,则A A =__________.二、单选题1.设三阶矩阵,则的特征值是()A =(1 1 01 0 10 1 1)A (A )1,0,1(B )1,1,2(C )-1,1,2(D )1,-1,12.若可对角化的阶矩阵只有一个特征值为零,则=()n A R (A )(A )n(B )n -1(C )1(D )03.设是矩阵对应于特征值的特征向量,当线性组合满足αi (i =1,2,⋯,n )A A ∑=ni 1k i αi ()时,也是矩阵对应于特征值的特征向量.∑=ni 1k i αi A A (A )其中不全为零k i (B )其中全不为零k i (C )是非零向量(D )是任一向量4.当满足下列()条件时,矩阵相似.A 与B (A )|A |=|B |(B )R (A )=R (B )(C )有相同的特征多项式.A 与B (D )阶矩阵有相同的特征值且个特征值不相同.n A 与B n 5.已知二阶实对称矩阵的特征向量为,且,则必为的特征向量的是()A (-31)|A |<0A (A )c (-31)(B )c (13),c ≠0(C )c 1(-31)+c 2(13),c 1≠0,c 2≠0(D )c 1(-31)+c 2(13),c 1,c 2不同时为零6.设是阶非零矩阵,,下列命题不正确的是().A n A k=O (A )的特征值只有零A (B )必不能对角化A (C )必可逆E +A +⋯+A k ‒1(D )只有一个线性无关的特征向量A 7.设是矩阵的两个不同的特征值,对应的特征向量分别为,则λ1,λ2A α1,α2线性无关的充要条件是()α1,A (α1+α2)(A )λ1=0(B )λ2=0(C )λ1≠0(D )λ2≠08.若,且,则以下结论错误的是().A 2≠A A ≠E ,O (A )|A ‒E |≠0(B )(A +E )‒1=‒12(A ‒2E )(C )为不可逆矩阵A (D )必有特征值A λ≠09.设,有特征值(二重),且有三个线性无关的特A =(1 -1 12 4 x- 3 - 3 5)A λ1=6,λ2=2A 征向量,则.x =( )(A )4(B )2(C )‒4(D )‒210.设为阶矩阵,且相似,则()A ,B n A 与B (A )λE ‒A =λE ‒B(B )均相似于同一个对角矩阵.A 与B (C )有相同的特征值与特征向量A 与B (D )对任意常数,相似.a aE ‒A 与aE ‒B 三、综合题1.求下列矩阵的特征值与特征向量:(1); (2);(3);(4).(- 3 2- 2 2)(0 0 10 1 01 0 0)(2 0 01 2 -11 0 1)(2 0 01 1 11 ‒1 3)2.判断下列矩阵是否相似:A 与B (1);A =(3 1 00 3 10 0 3),B =(3 0 00 3 00 0 3)(2);A =(1 1 00 2 10 0 3),B =(1 0 00 2 00 0 3)(3);A =(1 1 00 2 10 0 3),B =(1 0 00 2 00 0 3)(4).A =(1 1 1 11 1 1 11 1 1 11 1 1 1),B =(4 0 0 01 0 0 01 0 0 01 0 0 0)3.求下列矩阵的次幂:k (1); (2).A =(- 3 2- 2 2)A =(1 4 20 -3 40 4 3)4. 求正交矩阵,使得为对角矩阵.Q Q TAQ (1);(2).A =(0 -2 2- 2 - 3 42 4 - 3)A =(1 2 42 -2 24 2 1)5.设是阶方阵的一个特征值,且的伴随矩阵为,试证:λ0n A (λ0E ‒A )(λ0E ‒A )*的非零列向量是的属于的特征向量.(λ0E ‒A )*A λ06.考察栖息地在同一地区的兔子和狐狸的生态模型,对两种动物的数量的相互依存的关系可用以下模型描述:{x n = 1.1x n -1-0.15y n -1,y n =0.1x n -1-0.85y n -1,n =1,2,⋯,其中分别表示第年时兔子和狐狸的数量,而分别表示基年时兔子和狐x n ,y n x 0,y 0(n =0)狸的数量,记,αn =(x ny n )n =1,2,⋯,(1)写出该模型的矩阵形式;(2)如果,求.α0=(x0y 0)=(108)αn (3)求lim n→∞αn7.设相似,求:(1),的值;(2)求正交矩阵A =(1 0 00 a 10 1 0),B =( 1 0 00 b 00 0 -1)a b ,使得.Q Q-1AQ =B8.设向量,,且记α=(a 1,a 2,⋯,a n )T ≠0β=(b 1,b 2,⋯,b n )T≠0αT β=0,,求的所有特征值及特征向量.A =αβTA 9.设为三维单位列向量,且,令,证明与相似.α,βαT β=0A =αT β+αβTA (1-1 0)10.设三阶实对称矩阵的特征值是1,2,3,矩阵的属于特征值1,2,3的特征向量分别是A A ,.(1)求的属于特征值3的特征向量;(2)α1=(-1,-1,1)T α2=(1,‒2,‒1)T A 求矩阵.A 11.设,若为的一个特征值,求;(2)求.A =(2 0 01 2 -11 0 k ) λ=1A k An(-142)12.若存在正交矩阵,使矩阵同时相似于对角矩阵,则必有.Q A ,B AB =BA 13.设为三阶实对称矩阵,且满足条件,的秩.求的全部特征值.A A 2+2A =O A R (A )=2A 14.设,求实对称矩阵,使.A =(8 -2 -2- 2 5 4- 2 - 4 5)B A =B 215.设矩阵,求.(1 4 20 -3 40 4 3)A 201316.已知三阶矩阵相似,是的两个特征值,,计算A 与B λ1=1,λ2=2A |B |=2,其中是的伴随矩阵.|(A +E )‒1 OO ( 2B )∗|( 2B )∗2B (B )1.设矩阵相似,相似,试证:与相似.A 与B C 与D (A O O C )(B O O D )2.已知与对角矩阵相似,求.A =(0 0 1x 1 2x -31 0 0)x 3.设是阶实幂等矩阵(即),且.A n A =A 2R (A )=r ,0<r ≤n (1)设,试证.R (A ‒E )=s ,0<s ≤n r +s =n (2)试证:;A~( 1 ⋱ 10 ⋱0)(3)求|2E -A |4.设为阶矩阵,,证明A ,B n R (A )+R (B )<n (1)是的相同特征值;λ=0A 与B (2)与的基础解系线性相关.Ax =0Bx =05.设是阶矩阵,且任一非零维向量都是的特征向量,试证:A n n A (即为数量矩阵)A =(λλ⋱λ)A 6.已知三阶非零矩阵满足,,,证明:A ,B A =A 2B 2=B AB =BA =O (1)0和1必是的特征值;A 与B (2)若的特征向量,的个特征值两两互异,若的特征向量总是的特α是A 关于λ=1A n A B 征向量,证明.AB =BA 8.设均为阶非零矩阵,且满足,,证明:A ,B n A +A 2=O B +B 2=O (1)是的特征值.-1A ,B (2)若,分别是对应于的特征向量,则线AB =BA =O ξ1,ξ2A ,B λ=-1ξ1,ξ2性无关.答案:一、填空题1.02.3a+13.-64.345.. (2 22-1)6. n -17.E8.14 7639.-1210.a 2(a -6n )11.A =(0 2 22 0 -22 -2 0)二、单选题1-5 CBCDB 6-10 DDADD 三、综合题1.(1),,的属于的特征向量;的属于λ1=1λ2=-2A λ1=1c 1(12),c 1≠0A的特征向量.λ2=-2c 2(21),c 2≠0(2),;的属于的特征向量为λ1=λ2=1λ3=-1A λ1=λ2=1不全为零;的属于的特征向量为c 1(101)+c 2(010),c 1,c 2A λ3=-1c 3(-101),c 3≠0(3),;的属于的特征向量为不λ1=λ2=2λ3=1A λ1=λ2=2c 1(101)+c 2(010),c 1,c 2全为零;的属于的特征向量为.A λ3=1c 3(011),c 3≠0(4)(三重);的属于的特征向量为不全为零;λ=2A λ=2c 1(110)+c 2(-101),c 1,c 22.(1)不相似;(2)相似;(3)相似.3.(1);A k=13((-1)k 2k +2- 1 (-1)k +12k +1+2(-1)k 2k +1- 2 (-1)k +12k +4)(2)当为偶数时,;当为奇数时,k A k =(1 0 -1+5k0 5k 00 0 5k )k .A k =(1 4×5k -1 -1+3×5k -10 - 3×5k -1 4×5k -10 4×5k -1 3×5k -1 )。
矩阵对角化的方法
矩阵对角化是将一个方阵通过相似变换,转化为对角矩阵的过程。
常用的矩阵对角化方法有以下几种:
1. 特征值分解:对于一个可对角化的矩阵,可以通过求解其特征值和特征向量来进行对角化。
首先求解矩阵的特征值,然后求解每个特征值对应的特征向量,并将这些特征向量排列成一个矩阵,将原矩阵相似变换到对角矩阵。
2. 正交对角化:对于实对称矩阵,可以通过正交对角化的方法进行对角化。
首先通过特征值分解求解出特征值和对应的特征向量,然后将特征向量单位化得到正交矩阵,再进行相似变换得到对角矩阵。
3. Jordan标准形:对于不可对角化的矩阵,可以通过Jordan标准形对其进行对角化。
首先求解矩阵的特征值和对应的特征向量,然后通过Jordan标准形的分块结构将矩阵进行相似变换得到对角矩阵。
需要注意的是,并不是所有矩阵都可以对角化。
只有满足一定条件的矩阵才可以进行对角化。
第五讲对角化与Jordan标准形一、正规矩阵1.实对称矩阵与厄M特vHermite)矩阵实对称矩阵:实矩阵占,。
实反对称矩阵:实矩阵吕,s 。
厄M特vHermite)矩阵:复矩阵列,。
反厄M特vHermite)矩阵:复矩阵占,=* .2.正交矩阵和酉矩阵正交矩阵:实矩阵----- 11v )。
酉矩阵:复矩阵口,亠」V耳).3.正交相似变换和酉相似变换设为正交矩阵,」为实矩阵,称一1为对」的正交相似变换;设耳为酉矩阵,占为复矩阵,称S 为对占的酉相似变换。
4.正规矩阵实矩阵因,若满足,则凶称为实正规矩阵;复矩阵占,若满足GO ,则占称为复正规矩阵。
注1 :实对称矩阵、实反对称矩阵、正交矩阵均为实正规矩阵;注2:厄M特矩阵、反厄M特矩阵、酉矩阵均为复正规矩阵。
5.相似矩阵的性质相似矩阵具有相同的特征多项式,从而具有相同的特征值、迹、行列式。
【证】二、酉对角化1. Schur 定理:<1)设匸丑的特征值为矩阵吕,使LKI <2)设—的特征值为—LHJ【证】只证V1)结论,V2)的证明类似.对矩阵」的阶数施行数学归纳法•当二|时,结论显然成立•,则存在酉,则存在正交矩阵,使假定对凹阶矩阵结论成立•下面证明对上阶矩阵结论也成立.设丨是」的属于特征值.的特征向量,即|冋,将丨扩充为-的一组标准正交基令 _____________ I ,贝yEKJ即为酉矩阵.对」进行酉相似变换:其第I列元素:LEJ相似矩阵具有相同的特征值,因此,对于I阶矩阵因,其特征值为m ,根据归纳法假设,存在I阶酉矩阵I,使得[KI 记K H则二',即凶是酉矩阵,且LHJ[证毕]☆什么样的矩阵能够通过酉相似变换成为对角阵呢?2.定理:<1)设I口,则」酉相似于对角矩阵的充要条件是:」为正规矩阵;<2)设H ,且」的特征值都是实数,则」正交相似于对角矩阵的充要条件是:」为正规矩阵。
【证】只证<1)结论,<2)的证明类似.必要性:设存在酉矩阵」,使得——1<对角矩阵),则有即」为正规矩阵•充分性:设」为正规矩阵,即Schur定理,存在酉矩阵1,使得其中•亠J 是的特征值要证.旦.因为,=] , 9」,所以又丨丨=I L^Jr^i 由对角元素相等可得—.,所以LEJ[证毕]推论:实对称矩阵正交相似于对角矩阵.说明:不能酉对角化的矩阵仍有可能采用其它可逆变换将其对角化,例如冋,_)——«,」不是正规矩阵;但二「,两个特征值互异,可以相似变换对角化。
第三章 矩阵的相似标准形矩阵的相似标准形有着广泛的应用.在线性代数中,已讨论了可对角化方阵的相似标准形——对角形矩阵.但并不是所有方阵都可对角化,本章将从任意方阵的特征矩阵入手,介绍矩阵相似的判别法和两种常用的相似标准形,并进一步讨论方阵可对角化的条件,最后给出一类特殊矩阵的对角化方法.§3.1 λ矩阵及其Smith 标准形一、λ矩阵的基本概念定义1 设()(1,2,,,1,2,,)ij a i m j n λ== 是数域F 上的多项式,以()ij a λ为元素的m n ⨯矩阵111212122212()()()()()()()()()()n n m m mn a a a a a a A a a a λλλλλλλλλλ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭称为多项式矩阵或λ矩阵,多项式()(1,2,,,1,2,,)ij a i m j n λ== 中的最高次数称为()A λ的次数,数域F 上m n ⨯λ矩阵的全体记为[]m n F λ⨯.为了与λ矩阵相区别,我们把以数域F 中的数为元素的矩阵称为数字矩阵.显然,数字矩阵是λ矩阵的特例.数字矩阵A 的特征矩阵E A λ-就是1次λ矩阵.如果m n ⨯的λ矩阵()A λ的次数为k ,则()A λ可表示为1110()k k k k A A A A A λλλλ--=++++ ,其中(0,1,,)i A i k = 是m n ⨯数字矩阵,并且0k A ≠.例如22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭2010101100000111000111000100λλ-⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.如果另一个m n ⨯的λ矩阵()B λ可表示为1110()λλλλ--=++++ l l l l B B B B B ,则当且仅当k l =,(0,1,,)j j A B j k == 时()A λ与()B λ相等,记为()()A B λλ=. 由于λ的多项式可作加法、减法、乘法三种运算,并且它们与数的运算有相同的运算规律;而矩阵的加法、减法、乘法和数量乘法的定义仅用到其元素的加法、减法、乘法.因此,我们可以同样定义λ矩阵的加法、减法、乘法和数量乘法,并且λ矩阵的这些运算同数字矩阵的加法、减法、乘法和数量乘法具有相同的运算规律.矩阵行列式的定义也仅用到其元素的加法与乘法,因此,同样可以定义一个n 阶λ矩阵的行列式,一般说来λ矩阵的行列式是λ的多项式,λ矩阵的行列式与数字矩阵的行列式有相同的性质,例如,对两个n 阶λ矩阵()A λ与()B λ,有()()()()A B A B λλλλ=.有了λ矩阵行列式的概念,可以同样定义λ矩阵的子式、代数余子式.定义2 设()[]m n A P λλ⨯∈,如果()A λ中有一个(1min{,})≤≤r r m n 阶子式不为零,而所有1r +阶子式(如果有的话)全为零,则称()A λ的秩为r ,记为(())rank A r λ=.规定零矩阵的秩为0.例1 设A 是n 阶数字矩阵,则λ-E A 是λ的n 次多项式,因此A 的特征矩阵λ-E A 的秩为n ,即λ-E A 总是满秩的.定义3 设()[]λλ⨯∈n n A P ,如果存在一个n 阶λ矩阵()B λ,使得()()()()λλλλ==A B B A E , (1)则称λ矩阵()A λ是可逆的,并称()B λ为()A λ的逆矩阵,记作1()λ-A .容易证明如果n 阶λ矩阵()A λ可逆,则它的逆矩阵是唯一的.定理1 设()[]n n A P λλ⨯∈,则()A λ可逆的充分必要条件是()A λ是一个非零常数.证 必要性 设()A λ可逆,则存在n 阶λ矩阵()B λ满足(1),从而()()1A B λλ=. 因为()A λ与()B λ都是λ的多项式,则由上式可知()A λ与()B λ都是零次多项式,故()A λ是非零常数.充分性 设()A d λ=是非零常数,*()A λ是()A λ的伴随矩阵,则*1()A dλ是一个n 阶λ矩阵,并且**11()()()()A A A A E d dλλλλ==, 因此()A λ可逆,并且1*1()()λλ-=A A d . 二、λ矩阵的初等变换与等价与数字矩阵类似,对于λ矩阵,也可进行初等变换.定义4 下列三种变换称为λ矩阵的初等变换(1) 互换λ矩阵的两行(列);(2) 用非零常数k 乘以λ矩阵的某一行(列);(3) 将λ矩阵的某一行(列)的()ϕλ倍加到另一行(列),(其中()ϕλ是λ的多项式).对单位矩阵施行上述三种初等变换便得相应的三种λ矩阵的初等矩阵(,),(()),(,())P i j P i k P i j ϕ,即11011(,)11011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭iP i j j ,11(())11⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭P i k k i ,11()(,())11i P i j j ϕλϕ⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭.与数字矩阵的情形完全一样,对一个m n ⨯的λ矩阵()A λ作一次初等行变换相当于在()A λ左边乘上相应的m 阶初等矩阵;对()A λ作一次初等列变换相当于在()A λ的右边乘上相应的n 阶初等矩阵.容易证明初等矩阵都是可逆的,并且1111(,)(,),(())(()),(,())(,())P i j P i j P i k P i k P i j P i j ϕϕ----===-.为方便起见,我们用下列记号表示初等变换:[,]i j 表示第,i j 行(列)互换位置;[()]i k 表示用非零常数k 乘第i 行(列);[()]i j ϕ+表示将第j 行(列)的()ϕλ倍加到第i 行(列).定义5 设(),()[]m n A B P λλλ⨯∈,如果()A λ可以经过有限次初等变换化为()B λ,则称λ矩阵()A λ与()B λ等价,记为()()A B λλ≅由初等变换的可逆性可知,等价是λ矩阵之间的一种等价关系.利用初等变换与初等矩阵的对应关系可得定理2 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件为存在一系列m 阶初等矩阵1(),,()l P P λλ 与n 阶初等矩阵1(),,()t Q Q λλ ,使得11()()()()()()l t A P P B Q Q λλλλλλ= .与数字矩阵不同,具有相同秩的两个λ矩阵未必等价,例如22(),()02A B λλλλλλ-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 因为2(),()4A B λλλλ==,所以()A λ与()B λ的秩均为2.因为初等变换是可逆的,则由定理 2知,两个等价的λ方阵的行列式只能相差一个非零常数,故()A λ与()B λ不等价,因此,秩相等不是λ矩阵等价的充分条件.§3.2 λ矩阵在等价下的标准形现在我们讨论λ矩阵在初等变换下的标准形.为此,先证明一个引理. 引理1 设λ矩阵()[()]ij A a λλ=的左上角元素11()0a λ≠,并且()A λ中至少有一个元素不能被11()a λ整除,则存在一个与()A λ等价的λ矩阵()[()]ij B b λλ=,使得11()0b λ≠,且1111(())(())b a λλ∂<∂. 证 根据()A λ中不能被11()a λ整除的元素所在的位置,分三种情形来讨论.1)若在()A λ的第一列中有一个元素1()i a λ不能被11()a λ整除,则由多项式的带余除法,存在多项式()q λ和()r λ,使得111()()()()i a q a r λλλλ=+,其中()0r λ≠,且11(())(())r a λλ∂<∂.对()A λ作两次初等行变换,首先将()A λ第1行的()q λ-倍加到第i 行,这时第i 行第1列位置的元素是()r λ;然后将第1行与第i 行互换,即得所要求的λ矩阵()B λ.2)在()A λ的第一行中有一个元素1()i a λ不能被11()a λ整除,这种情形的证明与1)类似,但是对()A λ进行的是初等列变换.3)()A λ的第一行与第一列中的元素都能被11()a λ整除,但()A λ中有另一个元素()ij a λ(1,1)i j >>不能被11()a λ整除,因为111()|()j a a λλ,所以存在一个多项式()ϕλ,使得111()()()j a a λϕλλ=.对()A λ作两次初等列变换.首先将()A λ第1列的()ϕλ-倍加到第j 列,这时第1行第j 列位置的元素是0,第i 行第j 列位置的元素变为1()()()ij i a a λϕλλ-;然后把第j 列的1倍加到第1列,此时第1行第1列位置的元素仍是11()a λ,而第i 行第1列位置的元素变为1()[1()]()ij i a a λϕλλ+-,它不能被11()a λ整除,这就化为已经证明的情形1).定理3 设()[()][]m n ij A a P λλλ⨯=∈,且(())rank A r λ=,则()A λ必等价于如下对角形矩阵12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1) 其中()(1,,)i d i r λ= 是首项系数为1的多项式,且1()|()i i d d λλ+(1,2,i =, 1)r -.证 若0r =,则()A λ为零矩阵,结论显然成立,现设0r >,且()A λ=[()]ij a λ的左上角元素11()0a λ≠.否则可通过行、列交换做到这一点,由引理1知,()A λ进行一系列初等变换可得一个与()A λ等价的λ矩阵()[()]ij B b λλ=,并且11()b λ是首项系数为1的多项式,11()b λ整除()B λ的全部元素,即有11()()(),ij ij b q b λλλ= 1,,;1,,i m j n == .则可对()B λ作一系列初等变换,使得第1行、第1列除对角元11()b λ外全为零,即11()000()()0d B A λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中1111()(),()d b A λλλ=是(1)(1)m n -⨯-矩阵.因为1()A λ的元素是()B λ中元素的组合,而11()b λ(即1()d λ)整除()B λ的所有元素,所以1()d λ整除1()A λ的所有元素.如果1()0A λ≠,则对1()A λ重复上述过程,进而把矩阵化成122()000()000()00d d A λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中12(),()d d λλ都是首项系数为1的多项式,并且122()|(),()d d d λλλ整除2()A λ的全部元素.继续上述过程,最后把()A λ化成所要求的形式.定理3中的对角形矩形(1)称为λ矩阵()A λ在等价下的标准形即Smith 标准形.定义 6 λ矩阵()[]m n A P λλ⨯∈的Smith 标准形的主对角线上的非零元12(),(),,()r d d d λλλ 称为()A λ的不变因子.例1 用初等变换把λ矩阵22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭化为标准形.解222[31(1)][13(1)]222[3(1)][32(1)][21()][31()]2211()00100100100000.0000A λλλλλλλλλλλλλλλλλλλλλλ+-+-++-+-⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−−→- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪−−−−→-−−−→ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭①变换记号写在“→”的上边表示行变换,写在下边表示列变换.例2 用初等变换将λ矩阵100010()001000a a A a a λλλλλ--⎛⎫ ⎪-- ⎪= ⎪-- ⎪-⎝⎭化为Smith 标准形.解2[21()][1,2]1001000100()10()001001000000a a a a a A a a a a λλλλλλλλλλ+-----⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪−−−→−−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭22[1(1)][2,3][21()]100010000()1001()0001001000000a a a a a a a λλλλλλλ-+-+⎛⎫⎛⎫ ⎪ ⎪---- ⎪ ⎪−−−−−→−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ 22[32()]33[32(())][2(1)]1000100001()0010000()100()1000000a a a a a a a λλλλλλλ+-+--⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪−−−−→−−−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭ [43()]33[3,4]41000100001000100001()001()000000()a a a a a λλλλλ+-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪−−−→−−−−→ ⎪ ⎪---- ⎪ ⎪--⎝⎭⎝⎭3[43(())][3(1)]4111()a a λλ+--⎛⎫ ⎪ ⎪−−−−−→ ⎪ ⎪-⎝⎭. 一般地1111()m m m a a a a λλλλ⨯--⎛⎫⎛⎫ ⎪ ⎪- ⎪ ⎪≅ ⎪ ⎪- ⎪ ⎪--⎝⎭⎝⎭ .§3.3 λ矩阵的行列式因子本节讨论λ矩阵Smith 标准形的惟一性,并给出两个λ矩阵等价的条件.因此,需要引进λ矩阵的行列式因子.定义7 设()[]m n A P λλ⨯∈,且(())r a n k A r λ=.对于正整数(1)k k r ≤≤,()A λ的全部首项系数为1的k 阶子式的最大公因式称为()A λ的k 阶行列式因子,记为()k D λ.例1 求22221()1A λλλλλλλλλλ⎛⎫-+ ⎪=- ⎪ ⎪+-⎝⎭的各阶行列式因子.解 由于1λ-与λ的首项系数为1的最大公因式为1,故(1,)1λλ-=,所以1()1D λ=.又 2211(1)()λλλλλϕλλλ-+=--+=,232221(1)()1λλλλϕλλλ-+=--=+,而12((),())ϕλϕλλ=,其余的二阶子式(还有7个)都包含因子λ,所以2()D λλ=.最后,由于32det(())A λλλ=--,所以323()D λλλ=+.行列式因子的重要性在于它在初等变换下是不变的.定理4 等价的λ矩阵具有相同的秩和相同的各阶行列式因子.证 只需要证明,λ矩阵经过一次初等变换后,其秩与行列式因子是不变的.设λ矩阵()A λ经过一次初等变换后变成()B λ,()f λ和()g λ分别是()A λ和()B λ的k 阶行列式因子,针对3种初等变换来证明()()f g λλ=.1)交换()A λ的某两行得到()B λ.这时()B λ的每个k 阶子式或者等于()A λ的某个k 阶子式,或者是()A λ的某个k 阶子式的1-倍.因此()f λ是()B λ的k 阶子式的公因子,从而()|()f g λλ.2)用非零数α乘()A λ的某一行得到()B λ.这时()B λ的每个k 阶子式或者等于()A λ的某个k 阶子式,或者等于()A λ的某个k 阶子式的α倍,因此()f λ是()B λ的k 阶子式的公因子,从而()|()f g λλ.3)将()A λ第j 行的()ϕλ倍加到第i 行得到()B λ.这时,()B λ中那些包含第i 行与第j 行的k 阶子式和那些不包含第i 行的k 阶子式都等于()A λ中对应的k 阶子式;()B λ中那些包含第i 行但不包含第j 行的k 阶子式等于()A λ中对应的一个k 阶子式与另一个k 阶子式的()ϕλ±倍之和,也就是()A λ的两个k 阶子式组合,因此()f λ是()B λ的k 阶子式的公因式,从而()|()f g λλ.由初等变换的可逆性,()B λ也可以经过一次初等行变换变成()A λ,由上面的讨论,同样有()|()g f λλ,所以()()f g λλ=.对于初等列变换,可以完全一样地讨论,总之,如果()A λ经过一次初等变换变成()B λ,则()()f g λλ=.当()A λ的全部k 阶子式为零时,()0f λ=,则()0g λ=,()B λ的全部k 阶子式也为零;反之亦然,因此()A λ与()B λ既有相同的行列式因子,又有相同的秩.由定理4知,任意λ矩阵的秩和行列式因子与其Smith 标准形的秩和行列式因子是相同的.设λ矩阵()A λ的Smith 标准形为12()()()00r d d d λλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, (1) 其中()(1,2,,)i d i r λ= 是首项系数为1的多项式,并且1()|()(1,2,,1)i i d d i r λλ+=- .容易求得()A λ的各阶行列式因子1121212()(),()()(),()()()().r r D d D d d D d d d λλλλλλλλλ=⎧⎪=⎪⎨⎪⎪=⎩ (2) 于是有12231()|(),()|(),,()|()r r D D D D D D λλλλλλ- ,211211()()()(),(),,()()()r r r D D d D d d D D λλλλλλλλ-=== . (3) 从而得如下结论.定理5 λ矩阵()A λ的Smith 标准形是惟一的.证 因为()A λ的各阶行列式因子是惟一的,则由(3)知()A λ的不变因子也是惟一的,因此()A λ的Smith 标准形是惟一的.应用λ矩阵的Smith 标准形,可以证明如下定理.定理6 设(),()[]m n A B P λλλ⨯∈,如果()A λ与()B λ和同一个Smith 标准形等价,那么()A λ与()B λ等价.一般说来,通过行列式因子来求不变因子比较复杂,但对一些特殊的λ矩阵,先求行列式因子再求不变因子反而简单.例2 求100()100m ma a A a λλλλ⨯--⎛⎫ ⎪- ⎪= ⎪- ⎪-⎝⎭ 的行列式因子和不变因子.解 由于()A λ的一个1m -阶子式111(1)1m a a λλ----=---,故1()1m D λ-=,由(3)式的第一式,即行列式因子的“依次”整除性,有122()()()1m D D D λλλ-==== .而()()m m D a λλ=-,因此()A λ的不变因子为121()()()1,()()m m m d d d d a λλλλλ-=====- .由此可知()A λ的标准形为1()1()m m m A a λλ⨯⎛⎫ ⎪ ⎪≅ ⎪ ⎪-⎝⎭ . 定理7 设()[]n n A P λλ⨯∈,则()A λ可逆的充分必要条件是()A λ可表示为一系列初等矩阵的乘积.证 必要性 设()A λ为一个n 阶可逆矩阵,则由定理1知()0A d λ=≠,从而()A λ的行列式因子为12()()()1n D D D λλλ==== .于是()A λ的不变因子为12()()()1n d d d λλλ==== .因此()A λ与单位矩阵等价,即存在一系列初等矩阵1(),,(),l P P λλ 1(),,()t Q Q λλ 使得1111()()()()()()()()()l t l t A P P EQ Q P P Q Q λλλλλλλλλ== .充分性 设()A λ可表示为一系列初等矩阵的乘积,即存在一系列初等矩阵1(),,(),l P P λλ 1(),,()t Q Q λλ 使得11()()()()()l t A P P Q Q λλλλλ= ,则 111111()()()()()l t P P A Q Q E λλλλλ----= , 则()A λ的行列式是一个非零常数,因此由定理1知()A λ可逆.利用定理2和定理7容易证明下面定理.定理8 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件是存在两个可逆λ矩阵()[]m m P P λλ⨯∈与()[]n n Q P λλ⨯∈,使得()()()()B P A Q λλλλ=.§3.4 矩阵的初等因子下面再引进λ矩阵的初等因子,设λ矩阵()A λ的不变因子为1(),d λ 2(),,()r d d λλ ,在复数域内将它们分解成一次因式方幂的乘积:11112221221211221212()()()(),()()()(),()()()(),s s rs r r k k k s k k k s k k k rs d d d λλλλλλλλλλλλλλλλλλλλλ⎧=---⎪=---⎪⎨⎪⎪=---⎩ (1) 其中1,,s λλ 是互异的复数,ij k 是非负整数,因为1()|()(1,2,,1)i i d d i r λλ+=- ,所以ij k 满足如下关系1121112222120,0,0.r r s s rs k k k k k k k k k ≤≤≤≤⎧⎪≤≤≤≤⎪⎨⎪⎪≤≤≤≤⎩ 定义8 在(1)式中,所有指数大于零的因子()ij kj λλ-,(0,1,2,,,1,2,,)ij k i r j s >==称为λ矩阵()A λ的初等因子.例如,若λ矩阵()A λ的不变因子为 122232334()1,()(1),()(1)(1),()(1)(1)(2),d d d d λλλλλλλλλλλλλ=⎧⎪=-⎪⎨=-+⎪⎪=-+-⎩则()A λ的初等因子为22323,,,1,(1),(1),(1),(1),2λλλλλλλλλ---++-.由定义8知,若给定λ矩阵()A λ的不变因子,则可惟一确定其初等因子;反过来,如果知道一个λ矩阵的秩和初等因子,则也可惟一确定它的不变因子.事实上,λ矩阵()A λ的秩r 确定了不变因子的个数,同一个一次因式的方幂作成的初等因子中,方幂最高的必在()r d λ的分解中,方幂次高的必在1()r d λ-的分解中,如此顺推下去,可知属于同一个一次因式方幂的初等因子在不变因子的分解式中出现的位置是惟一确定的.例如,若已知56⨯λ矩阵()A λ的秩为4,其初等因子为22333,,,1,(1),(1),(),()i i λλλλλλλλ---+-,则可求得()A λ的不变因子23334()(1)()()d i i λλλλλ=-+-,23()(1)d λλλ=-,2()(1)d λλλ=-,1()1d λ=.从而()A λ的Smith 标准形为223231000000(1)000000(1)000000(1)(1)00000000λλλλλλλ⎛⎫ ⎪- ⎪ ⎪- ⎪-+ ⎪ ⎪⎝⎭. 由定理6以及不变因子与初等因子之间的关系容易导出如下定理. 定理9 设(),()[]m n A B P λλλ⨯∈,则()A λ与()B λ等价的充分必要条件是它们有相同的秩和相同的初等因子.分块对角矩阵()0()0()B A C λλλ⎛⎫= ⎪⎝⎭, 不能从()B λ与()C λ的不变因子求得()A λ的不变因子,但是能从()B λ与()C λ的初等因子求得()A λ的初等因子.定理10 设λ矩阵()0()0()B A C λλλ⎛⎫= ⎪⎝⎭ (2) 为分块对角矩阵,则()B λ与()C λ的初等因子的全体是()A λ的全部初等因子.证 将()B λ与()C λ分别化为Smith 标准形1()()()00B r b b B λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 1()()()00C r c c C λλλ⎛⎫ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭, 其中1(()),(()),(),,()B BC r r r a n k B r r a n k C b b λλλλ== 与1(),,()C r c c λλ 分别为()B λ与()C λ的不变因子,则(())B C rank A r r r λ==+.把()i b λ和()j c λ分解为不同的一次因式的方幂的乘积,不妨设1212()()()(),1,2,,i i is b b b i s B b i r λλλλλλλ=---= ,1212()()()(),1,2,,j j js c c cj s C c j r λλλλλλλ=---= . 则()B λ与()C λ的初等因子分别为1212(),(),,(),1,2,,i i is b b b s B i r λλλλλλ---=和1212(),(),,(),1,2,,j j js c c cs C i r λλλλλλ---=中非常数的多项式.我们先证明()B λ与()C λ的初等因子是()A λ的全部初等因子.不失一般性,仅考虑()B λ与()C λ中只含1λλ-的方幂的那些初等因子,将1λλ-的指数 1121111211,,,,,,,B C r r b b b c c c按由小到大的顺序排列,记为120r j j j ≤≤≤≤ ,由(2)可知,对()B λ与()C λ进行初等变换实际上是对()A λ进行初等变换,于是11()()()()()00B C r r b b c A c λλλλλ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪≅ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭1211121()()()()()()00r j j j r λλϕλλλϕλλλϕλ⎛⎫- ⎪- ⎪ ⎪ ⎪≅- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ , 其中多项式1(),,()r ϕλϕλ 都不含因式1λλ-.设()A λ的行列式因子和不变因子分别为12(),(),,()r D D D λλλ 和12(),(),,()r d d d λλλ ,则在这些行列式因子中因子1λλ-的幂指数分别为111211,,,,r ri i i i j j j j j -==+∑∑ ,而由§3.3行列式因子与不变因子的关系式(3)知,12(),(),,()r d d d λλλ 中因子1λλ-的幂指数分别为121,,,,r r j j j j - .因此()A λ中与1λλ-相应的初等因子是1()i j λλ-,0i j >,1,2,,i r = ,也就是()B λ、()C λ中与1λλ-相应的全部初等因子.对23,,,r λλλλλλ--- 进行类似的讨论,可得相同结论.于是()B λ和()C λ的全部初等因子都是()A λ的初等因子.下面证明,除()B λ、()C λ的初等因子外,()A λ再没有其他的初等因子. 因为()r D λ为()A λ的所有初等因子的乘积,而11()()()()()B C r r r D b b c c λλλλλ= .如果()k a λ-是()A λ的初等因子,则它必包含在某个()(1,,)i B b i r λ= 或()j c λ(1,,C j r = )中,即()A λ的初等因子包含在()B λ与()C λ的初等因子中,因此,除()B λ、()C λ的全部初等因子外,()A λ再没有别的初等因子.定理10可推广为定理11 若λ矩阵()A λ等价于块对角阵12()()()()t A A A A λλλλ⎛⎫⎪ ⎪≅ ⎪ ⎪⎝⎭, 则12(),(),,()t A A A λλλ 的各个初等因子的全体就是()A λ的全部初等因子.对t 应用数学归纳法,请读者自行证明. 例1 求λ矩阵22000000()00(1)10022A λλλλλλλ⎛⎫+ ⎪ ⎪= ⎪++ ⎪ ⎪--⎝⎭ 的初等因子,不变因子和标准形.解 记22123(1)1(),(),()22A A A λλλλλλλλλ⎛⎫++=+== ⎪--⎝⎭,则 123()00()0()000()A A A A λλλλ⎛⎫ ⎪= ⎪ ⎪⎝⎭.对于3()A λ,其初等因子为,1,1λλλ-+,利用定理11可得()A λ的初等因子为,,,1,1,1λλλλλλ-++.因为()A λ的秩为4,故()A λ的不变因子为4321()(1)(1),()(1),(),()1d d d d λλλλλλλλλλ=-+=+==.因此()A λ的Smith 标准形为100000000(1)0000(1)(1)λλλλλλ⎛⎫⎪⎪ ⎪+ ⎪+-⎝⎭.§3.5 矩阵相似的条件设A 是n 阶数字矩阵,其特征矩阵E A λ-是λ矩阵,它是研究数字矩阵的重要工具.应用特征矩阵也可以给出两个n 阶数字矩阵A 与B 之间相似性的判断准则.为此,我们先证明两个引理.引理2 设,A B 是两个n 阶数字矩阵.如果存在n 阶数字矩阵,P Q 使得()E A P E B Q λλ-=-. (1)则矩阵A 与B 相似.证 比较(1)两边λ的同次幂的系数矩阵,得,PQ E A PBQ ==.由此11,Q P A PBP --==,故A 与B 相似.引理3 设A 是n 阶非零数字矩阵,()U λ与()V λ是n 阶λ矩阵,则必存在n 阶λ矩阵()Q λ、()R λ以及n 阶数字矩阵0U 、0V ,使得0()()()U E A Q U λλλ=-+, (2) 0()()()V R E A V λλλ=-+. (3)(2)式与(3)式的证明类似,这里仅证(2)式.把()U λ改写成1011()m m m m U D D D D λλλλ--=++++ ,其中01,,,m D D D 都是n 阶数字矩阵.并且00D ≠(1) 若0m =,则取()0Q λ=及00U D =,它们显然满足要求. (2) 若0m >,令120121()m m m m Q Q Q Q Q λλλλ----=++++ ,其中011,,,m Q Q Q - 是待定的n 阶数字矩阵.由1010()()()m m E A Q Q Q AQ λλλλ--=+-+1121()()m k k k m m m Q AQ Q AQ AQ λλ-----+-++-- .只需取0011022111201,,,,,m m m m m Q D Q D AQ Q D AQ Q D AQ U D AQ ----==+=+=+=+ , 则(2)式成立.定理12 n 阶矩阵A 和B 相似的充分必要条件是它们的特征矩阵E A λ-和E B λ-等价.证 充分性 设E A λ-和E B λ-等价,由定理8知存在可逆的λ矩阵(),()U V λλ使()()()E A UE B V λλλλ-=-. (4) 由引理3,存在λ矩阵()Q λ与()R λ以及数字矩阵0U 与0V 使得0()()()U E A Q U λλλ=-+, (5) 0()()()V R E A V λλλ=-+, (6) 把(4)式改写为1()()()()U E A E B V λλλλ--=-, (7) 1()()()()E A V U E B λλλλ--=-. (8) 将()V λ的表达式(6)代入(7)式,得10[()()()]()()U E B R E A E B V λλλλλ----=-.因为上式右边的λ的次数1≤,所以1()()()U E B R λλλ---是数字矩阵,记为T ,即1()()()T U E B R λλλ-=-- , (9) 0()()T E A EB Vλλ-=- . (10) 由(9)式,并利用(5)式和(8)式,得()()()()E U T U E B R λλλλ=+-1()()()()U T E A V R λλλλ-=+- 1[()()]()()()E A Q U T E A V R λλλλλ-=-++- 10()[()()()]U T E A Q T V R λλλλ-=+-+.上式右边第二项必为零;否则右边λ的次数至少是1,等式不可能成立.因此0E U T =,从而0,U T 可逆,并且10T U -=.由(10)式得00()E A U E B V λλ-=-.由引理2知,A 和B 相似.定义9 设A 是n 阶数字矩阵,其特征矩阵E A λ-的行列式因子、不变因子和初等因子分别称为矩阵A 的行列式因子、不变因子和初等因子.由定理6和定理12立即得定理13 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的行列式因子,或者说它们有相同的不变因子.由定理9和定理12得定理14 n 阶矩阵A 和B 相似的充分必要条件是它们有相同的初等因子.§3.6 矩阵的Jordan 标准形定义10 形式为1010t tJ λλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪ ⎪⎝⎭ (1)的矩阵称为Jordan(若尔当)块,其中λ为复数.由若干个Jordan 块组成的块对角矩阵称为Jordan 形矩阵,其一般形式如12s J J J J ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭. 其中 101,1,2,,1i ii ii i k k J i s λλλ⨯⎛⎫ ⎪⎪⎪== ⎪ ⎪⎪⎝⎭并且12,,,s λλλ 中有一些可以相等.例如,矩阵11000010000004000000100000100000i i i ⎛⎫ ⎪⎪ ⎪⎪- ⎪ ⎪- ⎪⎪-⎝⎭是一个Jordan 形矩阵.容易验证,i n 阶Jordan 块i J 具有如下性质:1)i J 具有一个i n 重特征值i λ,对应于特征值i λ仅有一个线性无关的特征向量. 2)i J 的方幂有明显的表示式(1)11()()()()2!(1)!()(),1,2,1()2!()()i n p i p i p i p i i p i p i pi p i p i p i f f f f n f f J p f f f λλλλλλλλλ-⎛⎫''' ⎪- ⎪ ⎪ ⎪' ⎪⎪=='' ⎪⎪⎪⎪' ⎪⎪⎝⎭其中()p p f λλ=. 3)i J 的不变因子为11()()1,()()i i i n n n i d d d λλλλλ-====- .从而i J 的初等因子为()i n i λλ-.设12(,,,)s J diag J J J =是Jordan 形矩阵,其中i J 为形如(1)的Jordan 块.J 的特征矩阵为11(,,)sn n s E J diag E J E J λλλ-=--由定理11知Jordan 形矩阵J 的初等因子为1212(),(),,()s n n n s λλλλλλ--- .可见,Jordan 形矩阵的全部初等因子由它的全部Jordan 块的初等因子组成,而Jordan 块被它的初等因子惟一决定,因此,Jordan 形矩阵除去其中Jordan 块排列的次序外被它的初等因子惟一决定.定理15 每个n 阶复矩阵A 都与一个Jordan 形矩阵相似,这个Jordan 形矩阵除去其中Jordan 块的排列次序是被矩阵A 惟一决定的.证 设A 的初等因子为1212(),(),,()s n n n s λλλλλλ--- (2)其中12,,,s λλλ 可能有相同的,1,,s n n 也可能有相同的.每一个初等因子()i n i λλ-对应于一个Jordan 块 11,1i ii ii i n n J λλλ⨯⎛⎫ ⎪⎪⎪= ⎪ ⎪⎪⎝⎭1,2,i s = (3) 这些Jordan 块构成一个Jordan 形矩阵12(,,,)s J diag J J J = (4)其初等因子也是(2).因为J 与A 有相同的初等因子,由定理14知J 与A 相似.Jordan 形矩阵(3)称为矩阵A 的Jordan 标准形.若有另一个Jordan 形矩阵'J 与A 相似,则'J 与A 有相同的初等因子.因此,J '与J 除去其中Jordan 块排列的次序外是相同的,这就证明了惟一性.利用矩阵在相似变换下的Jordan 标准形,可得线性变换的结构. 定理16 设A 是复数域上n 维线性空间V 的线性变换,则在V 中存在一组基,使得A 在这组基下的矩阵是Jordan 形矩阵.证 在V 中任取一组基12,,,n εεε ,设线性变换A 在这组基下的矩阵是A .由定理15知,存在可逆矩阵P ,使得1P AP J -=为Jordan 形矩阵.令1212(,,,)(,,,)n n P ηηηεεε= .则线性变换A 在基12,,,n ηηη 下的矩阵是1P AP J -=为Jordan 形矩阵.如果1i n =,则i i J λ=是一阶Jordan 块,当矩阵A 的Jordan 标准形中的Jordan 块都是一阶块时,A 的Jordan 标准形就是对角矩阵.因为一阶Jordan 块的初等因子是一次的,所以对角矩阵的初等因子都是一次的.由此得定理17 设n n A C ⨯∈,则A 与一个对角矩阵相似的充分必要条件是A 的初等因子都是一次的.例1 求矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭的Jordan 标准形.解 因为21261001301011400(1)E A λλλλλλ+-⎛⎫⎛⎫ ⎪ ⎪-=-≅- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭,则A 的初等因子为1λ-,2(1)λ-.故A 的Jordan 标准形为100011001J ⎛⎫⎪= ⎪ ⎪⎝⎭.由定理15知,对任意的n 阶矩阵A ,存在n 阶可逆矩阵P ,使得1P AP J -=为Jordan 标准形.下面介绍求变换矩阵P 的方法.先看一个例子.例2 求化矩阵126103114A --⎛⎫ ⎪=- ⎪ ⎪--⎝⎭为Jordan 标准形的变换矩阵.解 由例1知,存在3阶可逆矩阵P 使得1100011001P AP J -⎛⎫⎪== ⎪ ⎪⎝⎭.记123(,,)P p p p =,则得123123100(,,)(,,)011001Ap Ap Ap p p p ⎛⎫⎪= ⎪ ⎪⎝⎭.比较上式两边得1122323,,.Ap p Ap p Ap p p =⎧⎪=⎨⎪=+⎩ 由此可见,12,p p 是A 的对应于特征值1的两个线性无关的特征向量. 从方程组()0E A x -=,可求得两个线性无关的特征向量131,001ξη-⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.可取1p ξ=.但不能简单地取2p η=,因为2p 的选取应保证非齐次线性方程组32()E A p p -=-有解.由于,ξη的线性组合仍是()0E A x -=的解,因此我们选取212p k k ξη=+,其中待定常数12,k k 只要保证1p 和2p 线性无关,且使得32()E A p p -=-有解即可.因为2121212(3,,)T p k k k k k k ξη=+=-+,所以选取12,k k 使得方程组11221322263113113x k k x k x k --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪-=- ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭有解,容易看出,当12k k =时方程组有解,且其解为12313x x x k =-+-,其中1k 是任意非零常数.取11k =,可得23221,011p p ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.于是122110011P -⎛⎫ ⎪= ⎪⎪⎝⎭使得1100011001P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,即P 为所求的变换矩阵.一般地,设n n A C ⨯∈,则存在n 阶可逆矩阵P ,使得121s J J PA P J J -⎛⎫ ⎪⎪== ⎪ ⎪⎝⎭, (5) 其中i J 为形如(3)式的Jordan 块,记12(,,,)s P P P P = (6)其中in n i P C⨯∈.由(5)式和(6)式得 121122(,,,)(,,,)s s s AP AP AP PJ P J P J = .比较上式两边得,1,2,,i i i AP PJ i s == (7) 记()()()12(,,,)i i i i i n P p p p = ,由(7)式可得()()11()()()221()()()1,,ii i i i i i i i i i i i n i n n Ap p Ap p p Ap p p λλλ-⎧=⎪=+⎪⎨⎪⎪=+⎩ 由上式可见,()1i p 是矩阵A 对应于特征值i λ的特征向量,且由()1i p 可依次求得()()2,,i i i n p p .由例2可知,特征向量()1i p 的选取应保证()2i p 可以求出,类似地()2i p 的选取(因为()2i p 的选取一般不惟一,只要适当选取一个即可)也应保证()3i p 可以求出,依次类推,并且使()()()12,,ii i i np p p 线性无关.§3.7 Hamilton-Cayley 定理与最小多项式设A 为任意n 阶矩阵,其特征多项式为12121()det()n n n n n f E A a a a a λλλλλλ---=-=+++++ .矩阵A 与其特征多项式之间的关系有代数学上著名的哈密顿-凯莱定理.定理18(Hamilton -Cayley 定理) 设A 是n 阶矩阵,()f λ是A 的特征多项式,则()0f A =.证 考虑特征矩阵E A λ-的伴随矩阵*()E A λ-,其元素至多是λ的1n -次多项式,则*()E A λ-可表示为*12121()n n n n E A C C C C λλλλ----=++++ ,其中,12,,,n C C C 都是n 阶数字矩阵.因为*()()()E A E A f E λλλ--=,即12121()()n n n n E A C C C C λλλλ----++++ 111n n n n E a E a E a E λλλ--=++++ ,比较两边λ的同次幂的系列矩阵,得1C E =, 211C AC a E -=, 322C AC a E -=,…11n n n C AC a E ---=, n n AC a E -=.用1,,,,n n A A A E - 分别左乘上面各式的两端,再累加,得12121321()()()n n n n n n A C A C AC A C AC A C AC AC ---+-+-++--111()n n n n A a A a A a E f A --=++++= .因为上式左边为零矩阵,所以()0f A =.定义11 设A 为n 阶矩阵,如果非零多项式()ϕλ使()0A ϕ=,则称()ϕλ为A 的一个化零多项式.对任意n 阶矩阵A ,()f λ是A 的特征多项式,由定理18知()f λ为A 的化零多项式.设()f λ为A 的化零多项式,()g λ是任意多项式,则()()g f λλ也是A 的化零多项式.因此,任意n 阶矩阵A 的化零多项式总存在,并且A 的化零多项式有无穷多个.定义12 n 阶矩阵A 的所有化零多项式中,次数最低且首项系数为1的多项式称为A 的最小多项式.由定理18知,任意n 阶矩阵A 的最小多项式存在且次数不超过n . 定理19 设A 是n 阶矩阵,则1)A 的最小多项式()m λ能整除A 的任一化零多项式()ϕλ,特别地,()m λ能整除A 的特征多项式()f λ;2)A 的最小多项式()m λ的零点是A 的特征值;反之,A 的特征值是()m λ的零点;3)A 的最小多项式是惟一的.证 1)设()m λ是A 的最小多项式,()ϕλ是A 的任一化零多项式,由多项式的带余除法,有()()()()q m r ϕλλλλ=+其中(),()q r λλ是多项式,()0r λ=或者()0r λ≠但(())(())r m λλ∂<∂.因此()0r λ=,否则与()m λ是A 的最小多项式矛盾,于是()|()m λϕλ.2)设()f λ是A 的特征多项式,由1)知()()()f q m λλλ=,其中()q λ是一个多项式,因此()0m λ=的根必为()0f λ=的根,即A 的特征值.反过来,设0λ是A 的任一特征值,相应的特征向量为0ξ≠,即0A ξλξ=则0()()m A m ξλξ=.因为()0,0m A ξ=≠,所以0()0m λ=,即0λ是()0m λ=的根.3)设A 有两个最小多项式12(),()m m λλ,则它们的次数相同,如果12()()m m λλ≠,则12()()()0m m m λλλ=-≠,且1(())(())m m λλ∂<∂. 设()m λ的首项系数为a ,则3()()m m aλλ=是首项系数1的多项式且31(())(())m m λλ∂<∂.由于31211()()(()())0m A m A m A m A a a==-=, 于是,3()m λ是A 的化零多项式,这与1()m λ是A 的最小多项式的假设矛盾.因此A 的最小多项式是惟一的.定理20 相似的矩阵具有相同的最小多项式. 证 设n 阶矩阵A 与B 相似,则存在可逆矩阵P ,使得1B P AP -=.对任意多项式()g λ恒有1()()g B P g A P -=.可见,A 与B 有相同的化零多项式,从而它们具有相同的最小多项式.例1 求Jordan 块1010i ii ii i n n J λλλ⨯⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭的最小多项式.解 因为i J 的特征多项式()()i n i f λλλ=-,则由定理19知i J 的最小多项式()m λ具有如下形式()()k i m λλλ=-,其中正整数i k n ≤.但当i k n <时0100()()0100kki i i m J J E λ⎛⎫ ⎪⎪⎪=-=≠ ⎪ ⎪ ⎪⎝⎭,而i k n =时()0i m J =,因此()()i n i m λλλ=-.定理21 分块对角矩阵12(,,,)s A diag A A A = 的最小多项式等于其诸对角块的最小多项式的最小公倍式.证 设i A 的最小多项式为()(1,2,,)i m i s λ= .由于对任意多项式()ϕλ1()((),,())s A diag A A ϕϕϕ= .如果()ϕλ为A 的化零多项式,则()ϕλ必为(1,,)i A i s = 的化零多项式,从而()|()(1,2,,)i m i s λϕλ= ,因此()ϕλ为1(),,()s m m λλ 的公倍式.反过来,如果()ϕλ为1(),,()s m m λλ 的任一公倍式,则()0(1,,)i A i s ϕ== , 从而()0A ϕ=.因此,A 的最小多项式为1(),,()s m m λλ 的公倍式中次数最低者,即它们的最小公倍式.定理22 设n n A C ⨯∈,则A 的最小多项式为A 的第n 个不变因子()n d λ. 证 由定理15知A 相似于Jordan 标准形1(,,)s J diag J J = ,其中i J 为形如§3.6中(3)式的Jordan 块.由定理13和定理20知A 与J 有相同的不变因子和最小多项式.又由定理21知J 的最小多项式为1,,s J J 的最小多项式的最小公倍式,而i J 的最小多项式为()(1,2,,)i n i i s λλ-= ,且1212(),(),,()s n n n s λλλλλλ---的最小公倍式是J 的第n 个不变因子()n d λ,因此,A 的最小多项式就是A 的第n 个不变因子()n d λ.由定理17和定理22可得如下定理.定理23 n 阶矩阵A 相似于对角矩阵的充分必要条件是A 的最小多项式()m λ没有重零点.例2如果n 阶矩阵A 满足2A A =,则称A 为幂等矩阵.证明幂等矩阵A 一定相似于对角矩阵.证 令2()ϕλλλ=-,则()ϕλ是A 的化零多项式,由定理19知A 的最小多项式()m λ整除,()ϕλ所以()()m λϕλ=.因为()0ϕλ=没有重根,据定理23知A 相似于对角矩阵.例3 设A 是n 阶幂等矩阵,证明 1)A H 与A E -也是幂等矩阵; 2)A 的特征根只能是0和1;3)有可逆矩阵P ,使1(1,...,1,0,...,0)P AP diag -=; 4)秩A =迹A .证 1)依定义直接验证即知.2)设λ为A 的任一特征根,α是A 相应于λ的特征向量.则有 λαα=A .又有()αλαλλαααλα22=====A A A A .于是 ()02=-αλλ. 因0≠α,故0=λ或1=λ.3)设A 的若当标准形为J ,则必有可逆矩阵P ,使121111000s J J P AP J J -*⎛⎫ ⎪* ⎪⎪⎛⎫⎪⎪*⎪⎪=== ⎪ ⎪*⎪ ⎪ ⎪⎝⎭ ⎪* ⎪ ⎪⎝⎭. (1) 上式中每个i J 都是特征根1或0相应的若当小块,且与特征根1相应的小块垒排在前头.由2A =A ,可推出J J =2,进而知i i J J =2,1,2,...,i s = .由于⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----k k k k k k k kk k k k kkC C C C C λλλλλλλλλλλ1122112211111.对于2k =,λ为0或1时,欲使上式成立只有若当块的阶数为1.于是(1)式中所有*全为零.便有1(1,...,1,0,...,0)P AP J diag -==.4)若设秩A r =,则J 的主对角元中应有r 个1,其余为0.由相似矩阵迹数相等,可知迹A =迹J =r =秩A .习 题 三1、用初等变换把下列λ-矩阵化为Smith 标准形.1)⎪⎪⎭⎫⎝⎛+-λλλλλλ352223 2)⎪⎪⎪⎭⎫ ⎝⎛++2)1()1(λλλλ 2、求出下列矩阵的不变因子和行列式因子.1)⎪⎪⎪⎭⎫⎝⎛++2)1()1(λλλλ 2)⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----a b b a b a n λλλ121 ,其中11,-n b b 都是不为0的常数.3、求下列矩阵的若当标准形.1)⎪⎪⎪⎭⎫ ⎝⎛---502613803; 2)⎪⎪⎪⎭⎫ ⎝⎛--212044010; 3)⎪⎪⎪⎭⎫ ⎝⎛---544446235; 4)⎪⎪⎪⎭⎫⎝⎛-----8411362331; 5)⎪⎪⎪⎭⎫ ⎝⎛---568236013 ; 6)⎪⎪⎪⎭⎫ ⎝⎛--011231221 ; 7)⎪⎪⎪⎭⎫ ⎝⎛---496375254 ; 8)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---01121413;9)⎪⎪⎪⎪⎪⎭⎫⎝⎛1000210032104321. 4、求矩阵⎪⎪⎪⎭⎫⎝⎛--=130901025017A 的Jordan 标准形,并求变换矩阵P .5、已知3阶矩阵A 具有3重特征根1,是否可以说A 的若当标准形一定为⎪⎪⎪⎭⎫ ⎝⎛=11111J ,如果不一定,请说出此时A 的若当形有几种可能?都是什么样子?6、求下列矩阵1)⎪⎪⎪⎭⎫ ⎝⎛----=221041040A ;2)⎪⎪⎪⎭⎫ ⎝⎛-311111002;3)⎪⎪⎪⎭⎫⎝⎛-----211212112;4)⎪⎪⎪⎭⎫ ⎝⎛--011212213;5)⎪⎪⎪⎭⎫ ⎝⎛----444174147的最小多项式. 7、方阵A 满足0=kA (k 为正整数),试说明A 的最小多项式取何种形式? 8、设方阵A 满足E A =2,能否说)1)(1()(-+=λλλϕ一定是A 的最小多项式?如果已知1和-1都是A 的特征根,情况又怎样呢?9、已知方阵A 的特征多项式为)1()1()(2-+=λλλϕ,A 的最小多项式为1)(23+--=λλλλϕ.请给出A 的一个若当形,并简要说明原因.。
相似标准型和相似对角化
相似标准型和相似对角化是线性代数中与矩阵相似性相关的两个概念。
相似标准型是指对于一个给定的矩阵A,存在一个可逆矩阵P,使得P^{-1}AP为一个特定的形式,这个形式被称为相似标准型。
相似标准型的形式取决于矩阵A的特征值和特征向量。
对于一个n阶矩阵A,其相似标准型可以表示为:
P^{-1}AP = \begin{bmatrix} D_1 & 0 & \cdots & 0 \\ 0 & D_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & D_k \end{bmatrix}
其中D_1, D_2, ..., D_k是A的不同特征值所对应的特征子空间的维度。
相似对角化是指对于一个给定的矩阵A,存在一个可逆矩阵P,使得P^{-1}AP为一个对角矩阵。
相似对角化的形式更为简洁,但是不是所有的矩阵都可以相似对角化。
一个矩阵可以相似对角化的充要条件是它有n个线性无关的特征向量,其中n是矩阵的阶数。
总结起来,相似标准型是一种特殊的相似形式,它可以适用于所有的
矩阵,而相似对角化是一种更为特殊的相似形式,只适用于具有n个线性无关特征向量的矩阵。
第三章 矩阵的对角化、若当标准型§ 矩阵对角化线性变换在基下的矩阵若为对角阵,则向量在基下的表示将非常简单,而线性变换在两个基下的矩阵相似,故线性变换在基下矩阵为对角阵问题即为矩阵对角化问题。
一、特征值、特征向量性质定义1 设n n A ⨯∈C ,称A 的全体特征值为A 的谱。
下面定理1是显然的。
定理1 相似矩阵有相同的特征多项式,从而有相同的谱。
由于矩阵A 的不同特征值对应的特征子空间的和是直和,故有下面定理2。
定理2 设n n A ⨯∈C ,则A 的不同特征值对应的特征向量线性无关。
定义2设n n A ⨯∈C ,i λ为A 的特征值,称A 的特征多项式中i λ的重根数i m 为iλ的代数重复度,称特征子空间i V λ的维数i α为i λ的几何重复度。
由定义2即知A 的特征值i λ的几何重复度i α为A 对应于特征值i λ的线性无关特征向量的个数。
定理3 设n n A ⨯∈C ,i λ为A 的特征值,i α为i λ的几何重复度,则rank()i i n n I A αλ=--证明 特征子空间{|,}i n i V x Ax x x λλ==∈C ,所以dim dim ()ii i n V N I A λαλ==-dim ()i n n R I A λ=-- rank()i n n I A λ=--例1 求123323001A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的谱,及相异特征值的代数重复度和几何重复度。
解 123det()32301I A λλλλ----=---+ 2(1)(4)λλ=+-所以A 的谱为11,1λ=--,24λ=,12,λλ的代数重复度分别为122,1m m ==。
1λ的几何重复度113rank()I A αλ=--2233rank 3331000---⎡⎤⎢⎥=----=⎢⎥⎢⎥⎣⎦2λ的几何重复度223rank()I A αλ=--3233rank 3231005--⎡⎤⎢⎥=---=⎢⎥⎢⎥⎣⎦定理4 设n n A ⨯∈C ,i λ为A 的特征值,i m 为i λ的代数重复度,i α为i λ的几何重复度,则i i m α≤。