stata面板数据操作示例
- 格式:pdf
- 大小:365.71 KB
- 文档页数:33
STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
STATA 面板数据模型估计命令一览表 一、静态面板数据的STATA 处理命令εαβit ++=x y it i it 固定效应模型μβit +=x y it itεαμit +=it it 随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=xy itiit固定效应模型μβit +=xy ititεαμit+=itit随机效应模型(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式 ●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless)可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
STATA 面板数据模型估计命令一览表一、静态面板数据的STATA 处理命令εαβit ++=x y it iit 固定效应模型 εαμit +=it it 随机效应模型一数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计统计分析 ●gen lag_y=αi αi αi εit ~e it ~1-t e i ,8858.0~=θ5.0-~=θ验:是否存在门槛效应混合面板:reg is lfr lfr2 hc open psra tp gr,vcecluster sf固定效应、随机效应模型xtreg is lfr lfr2 hc open psra tp gr,feest store fextreg is lfr lfr2 hc open psra tp gr,reest store rehausman fe两步系统GMM 模型xtdpdsys rlt plf1 nai efd op ew ig ,lags1 maxldep2 twostep artests2 注:rlt 为被解释变量,“plf1 nai efd op ew ig ”为解释变量和控制变量; maxldep2表示使用被解释变量的两个滞后值为工具变量;pre 表示以某一个变量为前定解释变量;endogenous 表示以某一个变量为内生解释变量; 自相关检验:estat abond萨甘检验:estat sargan差分GMM模型Xtabond rlt plf1 nai efd op ew ig ,lags1 twostep artests2内生:该解释变量的取值是一定程度上由模型决定的;内生变量将违背解释变量与误差项不相关的经典假设,因而内生性问题是计量模型的大敌,可能造成系数估计值的非一致性和偏误;外生:该解释变量的取值是完全由模型以外的因素决定的;外生解释变量与误差项完全无关,不论是当期,还是滞后期;前定:该解释变量的取值与当期误差项无关,但可能与滞后期误差项相关;。
STATA 面板数据模型估计命令一览表一、静态面板数据的STATA处理命令(一)数据处理输入数据●tsset code year 该命令是将数据定义为“面板”形式●xtdes 该命令是了解面板数据结构●summarize sq cpi unem g se5 ln 各变量的描述性统计(统计分析)●gen lag_y=L.y /////// 产生一个滞后一期的新变量gen F_y=F.y /////// 产生一个超前项的新变量gen D_y=D.y /////// 产生一个一阶差分的新变量gen D2_y=D2.y /////// 产生一个二阶差分的新变量(二)模型的筛选和检验●1、检验个体效应(混合效应还是固定效应)(原假设:使用OLS混合模型)●xtreg sq cpi unem g se5 ln,fe对于固定效应模型而言,回归结果中最后一行汇报的F统计量便在于检验所有的个体效应整体上显著。
在我们这个例子中发现F统计量的概率为0.0000,检验结果表明固定效应模型优于混合OLS模型。
●2、检验时间效应(混合效应还是随机效应)(检验方法:LM统计量)(原假设:使用OLS混合模型)●qui xtreg sq cpi unem g se5 ln,re (加上“qui”之后第一幅图将不会呈现) xttest0可以看出,LM检验得到的P值为0.0000,表明随机效应非常显著。
可见,随机效应模型也优于混合OLS模型。
●3、检验固定效应模型or随机效应模型(检验方法:Hausman检验)原假设:使用随机效应模型(个体效应与解释变量无关)通过上面分析,可以发现当模型加入了个体效应的时候,将显著优于截距项为常数假设条件下的混合OLS模型。
但是无法明确区分FE or RE的优劣,这需要进行接下来的检验,如下:Step1:估计固定效应模型,存储估计结果Step2:估计随机效应模型,存储估计结果Step3:进行Hausman检验●qui xtreg sq cpi unem g se5 ln,feest store fequi xtreg sq cpi unem g se5 ln,reest store rehausman fe (或者更优的是hausman fe,sigmamore/ sigmaless) 可以看出,hausman检验的P值为0.0000,拒绝了原假设,认为随机效应模型的基本假设得不到满足。
STATA 面板数据模型估计命令一览表一、静态面板数据的 STATA 处理命令固定效应模型随机效应模型(一)数据处理输入数据• tsset code year 该命令是将数据定义为“面板”形式 • xtdes该命令是了解面板数据结构・ xtdescode: 1i 2, ■■■( 20n 工 20 year : 3004, 2005, ■…,2014T =11Delta(year) =1 unit span(year) =11 periods(code*year uniquely identifies eachobservation)Distribution of:min 8%2璃50^ 75% 95%max1111 11111111 11Freq. Percent Cum. Pattern20 100.00 100.00 1111111111120100.00XXXXXXXXXXX・ summarize sc I cpi unem gse5 InvariableObs Mean Std ・ Dev.Mi nMax sq 220 .Q142798 2.9303464.75e-0626.22301cpi2201*10655 *032496 1.045 1. 25 unem22Q .0349455 .0071556 .012 ,046 g220,10907 .0427523 0246 .2357220 .0268541 011671? .0053.0693220.1219364.0240077,074,203• summarize sq cpi unem g se5 In各变量的描述性统计(统计分析)• gen lag_y=L.y ///////产生一个滞后一期的新变量*= Xitit• ;itto U 一 if对于固定效应模型而言,回归结果中最后一行汇报的F 统计量便在于检验所 有的个体效应整体上显著。
【原创】5分钟搞定Stata面板数据分析简易教程ver2.0作者:张达5分钟搞定Stata面板数据分析简易教程步骤一:导入数据原始表如下,数据请以时间(1998 ,1999,2000, 2001 ??)为横轴,样本名(北京,天津,河北??) 为纵轴1 裁*■■別1A I11 ■u 9K ILEXxl-V,j si aoLL B-iic190 ..1( HJ曲1 1g力«r4 々■l* Mfl 1KM J| JgRi MM3icm*w II7QQ-HQ Siq<XM3 7>D tuff 1'C4 3 4 IftJV-mi KH>loogi liW(0M 3M9WH jaii I MOKai W w ■齐itmxm fill OTI MiltaiK ■5W»U|JTXE HH sia心«9 f Id 叼m in a*ft I*■JtaC如M~4 気HiA|$A rm inoo IM? livra.wvtatr1IJMj X#*4>t1|筑・BF7 ■«|!N I9*V1IRV gw1W1VJ I-J H itW Ml «稠申审砂y li>M l>R Mdw VIM e> mu IM HM 內)944w 命■ n I L BII i mi 靜Ml hw w3K:1ST? *7^ FJE inm ifini uni4 5w 心HtJ TW JTfl 9MI*HAS■ilJto KO >4*461/M31 <141*11诃却4LJt 4ktt VM匸F<MO 4dN,■M I!Wi・】•\ 4 ■R- 呵鬥1皑用MA■J广*»i g Ml* <KM11*K=« 1 31 1MM I“tlM韓!1fi >w g ivt E4M laM■ii T PD w im W i.JV 1P w L*l 1tiZF MM7 <1 H1! liyi将中文地名替换为数字。
STATA面板数据模型操作命令讲解面板数据模型主要用于分析在一段时间内,多个个体上观察到的数据。
在面板数据模型中,个体可以是个人、家庭、公司等。
面板数据模型的分析主要包括汇总统计、描述性统计、回归分析等。
下面是一些STATA中常用的面板数据分析命令的介绍和使用说明:1. xtset命令:该命令用于设置数据集的面板数据特征。
在使用面板数据模型之前,需要先将数据集设置为面板数据。
使用xtset命令可以指定面板数据集的个体维度和时间维度。
示例:xtset id year该命令将数据集按照id(个体)和year(时间)进行分类。
2. xtsummary命令:该命令用于生成面板数据的汇总统计信息,包括平均值、标准差、最小值、最大值等。
示例:xtsummary var1 var2该命令将变量var1和var2的汇总统计信息显示出来。
3. xtreg命令:该命令用于进行固定效应模型(Fixed Effects Model)的估计,其中个体效应被视为固定参数,时间效应被视为随机参数。
示例:xtreg y x1 x2, fe该命令将变量y对x1和x2进行固定效应模型估计。
4. xtfe命令:该命令用于进行固定效应模型的估计,并提供了更多的选项和功能。
示例:xtfe y x1 x2, vce(robust)该命令将变量y对x1和x2进行固定效应模型估计,并使用鲁棒标准误。
5. xtlogit命令:该命令用于进行面板Logistic回归分析,适用于因变量为二分类变量的情况。
示例:xtlogit y x1 x2, re该命令将变量y对x1和x2进行面板Logistic回归分析,并进行随机效应的估计。
6. areg命令:该命令用于进行差别法(Difference-in-Differences)模型的估计,适用于时间和个体差异的面板数据分析。
上述命令只是STATA中一部分常用的面板数据模型操作命令。
在实际应用中,根据具体的研究需求和数据特征,还可以使用其他面板数据模型命令进行分析,如xtlogit、xtprobit等。
面板模型的Stata命令及实例面板数据的设定xtset panelvar timevar设定面板数据的Stata 命令为:告诉Stata 你的数据为面板数据面板(个体)变量取值须为整数且不重复时间变量假如“panelvar ”是字符串,可用encode country, gen(cntry)转换为数字型变量面板数据的设定xtset panelvar timevar设定面板数据的Stata 命令为:面板数据的设定面板数据统计特性的Stata 命令:xtdes 显示面板数据的结构,是否为平衡面板。
xtsum xtline varname显示组内、组间与整体的统计指标。
对每位个体分别显示该变量的时间序列图;如希望将所有个体的时间序列图叠放在一起,可加上选择项overlay。
“种植业产值对数”(ltvfo,1980 年不变价格)案例以数据集lin_1992.dta为例,取自Lin(1992) 发表在美国经济评论上,对家庭联产承包责任制与中国农业增长的经典研究。
该省际面板包含中国28个省1970-1987年有关种植业的数据。
被解释变量解释变量耕地面积对数(ltlan,千亩),种植业劳动力(ltwlab),机械动力与畜力对数(ltpow,千马力),化肥使用量对数(ltfer,千吨),截止年底采用家庭联产承包制的生产队比重(hrs),农村消费者价格与农村工业投入品价格之比的一阶滞后(mipric1,1950 年=100),超额收购价格与农村工业投入品价格之比(giprice,1950 年=100),复种指数(mci,播种面积除以耕地面积),非粮食作物占播种面积比重(ngca),时间趋势(t),province(省),year(年)。
案例设定province与year为面板(个体)变量及时间变量:1use lin_1992.dta,clearxtset province year面板数据的设定案例显示数据集中以上变量的统计特征,进行描述性统计xtsum ltvfo ltlan ltwlab ltpow ltfer hrs mipric1 giprice mci ngca不同省的种植业产值均随时间而增长,但变化趋势与时机不尽相同。