等腰三角形的性质定理和判定定理
- 格式:doc
- 大小:95.52 KB
- 文档页数:8
推导等腰三角形的性质与相关定理等腰三角形是指有两条边长度相等的三角形。
在几何学中,等腰三角形具有许多特点和性质,也有一些相关的定理与推导。
本文将探讨等腰三角形的各种性质以及相关的定理,并通过推导来进一步理解这些性质。
一、等腰三角形的性质1. 两底角相等:等腰三角形的两个底角是相等的,即两条底边所对的内角相等。
2. 两腰边相等:等腰三角形的两条腰边长度相等,即两边边长相等。
3. 顶角角平分线:等腰三角形的顶角的角平分线也是底边所在的直线。
4. 表面积:等腰三角形的面积可以通过底边长度和高的关系来求解,即面积等于底边乘以高再除以2。
二、等腰三角形的定理1. 定理一:等腰三角形的底角相等。
即对于等腰三角形ABC,若AB=AC,则∠B=∠C。
证明:我们可以通过反证法来证明此定理。
假设∠B≠∠C,那么不妨设∠B>∠C。
由于∠B+∠C=180°,所以∠B-∠C>0.由三角形内角和定理可知,在三角形ABC中,∠B-∠C<∠B+∠C=180°,所以∠B-∠C<∠B-∠C,这与假设∠B-∠C>0矛盾。
因此,等腰三角形的底角相等。
2. 定理二:等腰三角形的底边中线与高相等。
即对于等腰三角形ABC,若AB=AC,则AM=AH,其中M为BC的中点,H为顶角A所在边的垂足。
证明:根据定义可知,AM为BC的中线,AH为三角形ABC中顶角A所在边的高。
由于等腰三角形的两条腰边相等,所以AM=1/2(AB+AC)=AB=AC,同理可得AH=AM,即等腰三角形的底边中线与高相等。
三、推导等腰三角形的性质与定理现在,我们通过推导来进一步理解等腰三角形的性质与相关的定理。
假设有一个等腰三角形ABC,其中AB=AC,我们还可以假设三角形ABC中的底边为BC。
根据性质1,我们知道∠B=∠C,假设∠B=x,那么∠C也为x。
根据性质2,我们知道AB=AC,所以假设AB=AC=a。
由于三角形ABC中三个内角和为180°,根据角度的性质,我们可以得到∠A=180°-2x。
等腰三角形的性质与判定知识梳理:1.等腰三角形的概念:有相等的三角形,叫做等腰三角形,叫做腰,另一条边叫做.两腰所夹的角叫做,底边与腰所夹的角叫做.2.等腰三角形性质定理:(1)等腰三角形的两个相等,也可以说成.这一性质是今后论证两角相等的常用依据之一。
(2) 三线合一: 即.这一性质是今后论证两条线段相等,两角相等及两直线垂直的重要依据。
(3)等腰三角形是图形.除此外,根据等腰三角形的对称性还应有如下重要的性质,虽在证明中不能直接引用,但对于填空、选择则可直接运用,并且这些性质对今后的推理证明都有非常重要的作用。
①等腰三角形两腰上的中线相等②等腰三角形两腰上的高相等③等腰三角形两底角的平分线相等3.等腰三角形的判定:(1)有相等的三角形是等腰三角形.(2)如果一个三角形有两个角相等,那么这两个角也相等.简写成.4、有关等腰三角形周长的计算给出三角形中两边的数据求周长时,一定要考虑对某一边有两种可能情况:一它可能是腰,二它可能是底。
最后确定具体是腰还是底,就要看得出的三边关系是否符合:任两边之和大于第三边,两边之差小于第三边。
如:已知等腰三角形的两边分别是3cm,5cm,则周长此时有两种情况:11cm或13cm。
当腰长为3cm时,周长为:3cm+3cm+5cm=11cm;当腰长为5cm时,周长为:3cm+5cm+5cm=13cm。
若两边分别是4cm,8cm,则周长只有一种结果,长为20cm(8cm做腰,4cm做底)。
另一种可能是以4cm做腰,8cm做底,此时,4cm+4cm=8cm,不符合任两边之和大于第三边的三角形三边关系,故不能考虑在内。
【例题讲解】例1:已知:如图,∠A=∠B,CE∥DA,CE交AB于E,求证:CE=CB。
例2:如图,已知点D,E在BC上,AB=AC,AD=AE,求证:BD=CE。
例3:如图,点D ,E 在AC 上,∠ABD =∠CBE ,∠A =∠C ,求证:BD =BE 。
等腰三角形的性质定理和判定定理及其证明平行四边形的性质定理和判定定理及其证明一、一周知识概述1、等腰三角形的性质定理等腰三角形的两个底角相等(简写为“等边对等角”).2、等腰三角形性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).推论2:等边三角形的各角都相等,并且每一个角都等于60°.3、等腰三角形的判定定理两个角相等的三角形是等腰三角形.4、等腰三角形判定定理的推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.5、直角三角形的性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.6、平行四边形的性质定理定理1:平行四边形的对边相等.定理2、平行四边形的对角相等.定理3、平行四边形的对角线互相平分.7、平行四边形的判定定理定理1:一组对边平行且相等的四边形是平行四边形.定理2:两组对边分别相等的四边形是平行四边形.定理3:对角线互相平分的四边形是平行四边形.定理4:两组对角分别相等的四边形是平行四边形.8、三角形中位线的性质定理三角形的中位线平行于第三边,并且等于它的一半.二、重难点知识1、要说明一个命题的正确性,需用已学过的公理或定理进行证明,命题证明的步骤:先画图,写出已知、求证,给出严格的证明.2、等腰三角形的性质定理和判定定理及其应用、平行四边形的性质定理和判定定理及其应用是重点也是难点.三、典型例题讲解例1、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点F,过点F作DE∥BC交AB于D,交AC于E.求证:BD+EC=DE.分析:因为DE=DF+FE,即结论为BD+EC=DF+FE,分别证明BD=DF,CE=FE即可,于是运用“在同一个三角形中,等角对等边”,易证结论成立.证明:∵DE∥BC(已知),∴∠3=∠2(两直线平行,内错角相等).又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴DB=DF(等角对等边).同理可证EF=CE.∴BD+EC=DF+EF,即BD+EC=DE.小结:过一个角的平分线上的一点作一边的平行线与另一边相交,所构成的三角形是一个等腰三角形,这是一个常见的构图,应熟练掌握.例2、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF⊥BC.解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.小结:本题证法中运用了等腰三角形的性质定理及其推论、三角形内角和定理、三角形外角的性质等知识,要注意灵活运用与牢固掌握相结合.例3、如图,在△ABC 中,AB=AC=CB ,AE=CD ,AD 、BE 相交于P ,BQ ⊥AD 于Q .求证:BP=2PQ 。
等腰三角形的相关定理和推论
等腰三角形是指两条边长度相等的三角形。
在几何学中,等腰三角形有一些重要的定理和推论,下面将介绍其中的几个。
等腰三角形的定理
1. 等腰三角形的两底角相等。
即如果一个三角形的两边长度相等,则该三角形的两底角也相等。
2. 等腰三角形的顶角平分底角。
即如果一个三角形的两边长度相等,则该三角形的顶角等于其底角的一半。
3. 等腰三角形的底角平分顶角。
即如果一个三角形的顶角等于其底角的一半,则该三角形的两边长度相等。
等腰三角形的推论
1. 等腰三角形的底边上的高线也是中线。
即等腰三角形从顶点到底边上某点的线段既是高线又是中线。
2. 等腰三角形的高线平分底边长度。
即等腰三角形的高线将底边分成两段长度相等的线段。
3. 等腰三角形的底边上的垂直平分线也是高线。
即等腰三角形的底边上垂直平分线是高线。
以上是关于等腰三角形的一些重要定理和推论。
通过这些定理和推论,我们可以更好地理解和研究等腰三角形的性质和特点。
在解决相关几何问题时,可以应用这些定理和推论来简化计算和推导过程。
等腰三角形的性质定理和判定定理及其证明最新版1.等腰三角形的底角和顶角相等。
即当一个三角形的两边相等时,它们所夹的角也必相等。
证明:设有一个等腰三角形ABC,其中AB=AC。
取点D在边BC上,使得AD是三角形的高。
由于BD=CD(等腰三角形的性质),且AD=AD(公共边),因此根据SSS(边-边-边)三角形相似判定,可知三角形ABD与三角形ACD全等。
所以,∠ABD=∠ACD。
由于AD是高,所以∠BAD=∠CAD。
因此,等腰三角形的底角和顶角相等。
2.等腰三角形的底角的平分线也是等腰三角形的高。
即当一个三角形的两边相等时,以底边的中点为顶点,将底角平分得到的线段为高。
证明:设有一个等腰三角形ABC,其中AB=AC。
取BD为底边AC的中点,连接AD。
由于BD=AD(边上的中线),且AB=AC(等腰三角形的性质),根据SAS(边-角-边)相似判定,可知三角形ABD与三角形ACD全等。
因此,∠ABD=∠ACD。
而BD是底角∠BAC的平分线,故由平分角的性质可知∠BAD=∠CAD。
所以,等腰三角形的底角的平分线也是等腰三角形的高。
3.等腰三角形的高线也是等腰三角形的角平分线。
即当一个三角形的两边相等时,以顶点为顶点,高线所产生的角也将其底边平分。
证明:设有一个等腰三角形ABC,其中AB=AC。
取AD为高线,连接BD和CD。
由于BD=CD(等腰三角形的性质),且∠ABD=∠ACD(等腰三角形的性质),根据AAS(角-边-角)相似判断,可知三角形ABD与三角形ACD全等。
所以,∠BAD=∠CAV。
而AD是底边∠BAC的平分线,因此等腰三角形的高线也是等腰三角形的角平分线。
判定定理是在已知等腰三角形的基础上,通过给定的条件判定一个三角形是否为等腰三角形。
以下是一个判定定理的例子:判定定理:若一个三角形的两个角相等,则该三角形为等腰三角形。
证明:设有一个三角形ABC,已知∠B=∠C。
由于三角形内角和为180度,所以∠A=180°-∠B-∠C=180°-2∠B=180°-2∠C。
等腰三角形的性质和判定一、知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。
知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:证明同一个三角形中的边相等。
二、【典型例题分析】基础知识应用题:例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC的度数。
例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。
求证:△DEF是等腰三角形。
综合应用题:例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC的位置关系,并证明你的结论。
例5. 求证:等腰三角形两腰上的中线相等解:已知:如图所示,在△ABC中,AB=AC,BD,CE是△ABC的中线求证:BD=CE例6. 如图,点C为线段AB上的一点,△ACM,△BCN是等边三角形,AN,MC相交于点E,CN与BM相交于点F。
专题:等腰三角形的性质与判定※题型讲练考点一等腰三角形的性质定理1:“等边对等角”1.等腰三角形的性质定理:(1)性质定理1:等腰三角形的两个相等(该定理可以简写成“”).注意:等腰三角形是轴对称图形,对称轴是底边上的中线(顶角平分线、底边上的高) .【例1】(1)已知等腰三角形的一个外角是100°,则其底角的度数是50°或80°.(2)如图,在等腰△ABC中,AB=AC,∠A=36°,BD⊥AC于点D,则∠CBD=___18°_____.(3)如图,在△ABC中,D在BC上,若AD=BD,AB=AC=CD,则∠BAC的度数是108°.(4)如图,AD是△ABC的角平分线,EF是AD的垂直平分线,交BC的延长线于点F,连接AF.求证:∠BAF=∠ACF.变式训练1:1.已知等腰三角形一腰上的高与另一腰的夹角为30°,则其顶角为60°或120°.2.如图,等腰△ABC中,AB=AC,∠DBC=15°,AB的垂直平分线MN交AC于点D,则∠A的度数度数是50°.3.如图,在△ABC中,AB=AC,D是AB上一点,延长CA到点E,使AE=AD,求证:ED⊥BC.考点二等腰三角形的性质定理2:“三线合一”(2)性质定理2:等腰三角形的的角平分线、底边上的、底边上的互相重合,简写成“”.【例2】(1)如图,在△ABC中,AB=AC,D为BC中点,∠BAD =35°,则∠C的度数为___55°_____.(2)如图,△ABC的周长为32,且AB=AC,AD⊥BC于点D,△ACD的周长为24,则AD的长为____8___.(3)如图,△ABC中,AB=AC=10cm,S△ABC=48cm2,AD平分∠BAC,DE⊥AC于点E,则DE等于___4.8____.变式训练2:1.如图,在△ABC中,AB=AC,AD,CE分别是△ABC的中线和角平分线.若∠CAD=20°,则∠ACE的度数是___35°___.2.如图,△ABC中,AB=AC,点D是BC边的中点,作∠EAB =∠BAD,AE边交CB的延长线于点E,延长AD到点F,使AF=AE,连接CF.试证明:BE=CF.考点三等腰三角形的判定定理:“等角对等边”1.等腰三角形的判定定理:如果一个三角形有相等,那么这两个角所对的边也相等(简写成“”).【例2】(1)如图,∠B=∠C=36°,∠ADE=∠AED=72°,则图中的等腰三角形的个数为( D )A.3个B.4个C.5个D.6个(2)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.(3)如图,AD是△ABC的角平分线,BE⊥AD交AD的延长线于点E,EF∥AC交AB于点F.求证:AF=FB.变式训练3:1.如图,在△ABC中,BP平分∠CBA,AP平分∠CAB,且DE∥AB,若CB=12,AC=18,则△CDE的周长是____30____.2.如图,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AC=AB+BD.考点四等腰三角形的综合问题【例4】如图,在△ABC中,AB=AC,点D、E、F分别在AB 、BC 、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.※课后练习1.等腰三角形是轴对称图形,它的对称轴是( D )A.过顶点的直线B.腰上的高所在的直线C.顶角的角平分线D.底边的垂直平分线2.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC 的长为半径画弧,交AC于点D,连接BD,则∠ABD=(B) A.30°B.45°C.60°D.90°3.如图所示,已知AB=AC=BD,那么∠1和∠2之间的关系是(D)A.∠1=2∠2 B.2∠1-∠2=180°C.∠1+3∠2=180°D.3∠1-∠2=180°4.已知等腰三角形中有一个内角为70°,则该等腰三角形的顶角度数为70°或40°.5.如图,已知OC平分∠AOB,CD∥OB,若OD=4 cm,则CD等于____4 cm ___.6.如图,在△ABC中,∠B=∠C,点E在CA延长线上,EP⊥BC于点P,交AB于点F.若AF=3,BF=5,则CE的长度为11.7.在平面直角坐标系中,O为坐标原点,已知点A(2,4),在坐标轴上确定一点P,使△AOP为等腰三角形,则所有符合条件的点P有8 个.8.如图,在△ABC中,AB=AC,D,E分别在AC,AB边上,且BC=BD,AD=DE=EB.则∠A的度数为45°.9.如图所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE 交AD于F,交AC于E.(1)若BE平分∠ABC,试判断△AEF的形状,并说明理由;(2)若AE=AF,请证明BE平分∠ABC.10.如图,AD是∠BAC的平分线,AB=AC+DC.求证:∠C=2∠B.证明:在AB上截取AE=AC,连接DE.∵AB=AC+DC,AE=AC,∴BE=DC.∵AD是∠BAC的平分线,∴∠EAD=∠CAD,∴△AED≌△ACD( SAS ).∴DE=DC=BE,∠AED=∠C,∴∠B=∠EDB.∵∠AED=∠B+∠EDB,∴∠AED=2∠B,∴∠C=2∠B.11.如图,在△ABC中,AB=AC,D是BC上任意一点,过点D 分别向AB,AC引垂线,垂足分别为E,F.(1)当点D在BC的什么位置时,DE=DF?请给出证明.(2)过点C作AB边上的高CG,请问DE,DF,CG的长度之间存在怎样的数量关系?并加以证明.解:(1)当D为BC的中点时,DE=DF.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠C.∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°,∴△BED≌△CFD( AAS ),∴DE=DF.(2)CG=DE+DF.连接AD,∵S△ABC=S△ADB+S△ADC,AB×CG=AB×DE+AC×DF,又∵AB=AC,∴CG=DE+DF.12.在△ABC中,∠C=90°,AC=BC=2,将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC,CB于点D,E,图1,图2,图3是旋转得到的三种图形.(1)以图2为例证明:PD=PE;(2)△PBE能否构成等腰三角形?若能,求出∠PEB的度数;若不能,请说明理由.。
等腰三角形的性质定理和判定定理及其证明等腰三角形是指有两条边相等的三角形。
在几何学中,等腰三角形具有独特的性质和判定定理。
本文将介绍等腰三角形的性质定理和判定定理,并给出其详细证明。
一、等腰三角形的性质定理性质定理1:等腰三角形的底角相等。
证明:设△ABC为等腰三角形,其中AB=AC。
假设∠ABC和∠ACB不相等,即∠ABC>∠ACB或∠ABC<∠ACB。
不妨设∠ABC >∠ACB。
由于∠ABC>∠ACB,所以∠ABD>∠ACD,其中D为∠ABC外一点沿边AC的延长线上的点。
又因为∠ABC=∠ACB,所以∠ADB=∠ACD。
根据角度相等的性质,∠ABD=∠ADB-∠ABD=∠ACD-∠ABD=∠ADC。
而∠ABD>∠ADC,与三角形内角和定理矛盾。
所以,假设不成立,即∠ABC=∠ACB,即等腰三角形的底角相等。
性质定理2:等腰三角形的等腰边上的角相等。
证明:设△ABC为等腰三角形,其中AB=AC。
假设∠BAC和∠BCA不相等,即∠BAC>∠BCA或∠BAC<∠BCA。
不妨设∠BAC >∠BCA。
由于∠BAC>∠BCA,所以∠BAC>∠BDC,其中D为∠BAC外一点沿边AB的延长线上的点。
又因为∠BAC=∠BCA,所以∠BCD=∠BDC。
根据角度相等的性质,∠BCA=∠BAC-∠BCA=∠BDC-∠BCA=∠CDB。
而∠BCA>∠CDB,与三角形内角和定理矛盾。
所以,假设不成立,即∠BAC=∠BCA,即等腰三角形的等腰边上的角相等。
性质定理3:等腰三角形的高、中线、中位线、角平分线重合。
证明:设△ABC为等腰三角形,其中AB=AC。
过顶点A作边BC的垂线,交边BC于点D。
连接AD,BD与CD。
首先证明AD是三角形ABC的高。
根据性质定理1可知∠BAD=∠CAD,又因为AD是AB和AC的垂线,所以∠BAD=90°,∠CAD=90°,因此AD与BC垂直,即AD是三角形ABC的高。
接下来证明BD与CD分别是△ABC的中线。
初二等腰三角形的性质和判定定理
等腰三角形,又称等边三角形,是由三条相等的边、三个相等的角组成的三角形。
由于它的内角相等,所以也叫做等角三角形。
它就像一个平行四边形中心对称分割一样,左右两侧都有两条等边,并把他们的相交点连接起来,此时便得到一个等腰三角形。
等腰三角形有着许多的性质:首先,等腰三角形的三条边必须相等,任何一条边都不能超过其他两边,或者两边和大于第三条边;其次,等边三角形的内角也是相等的,每个内角是60°;第三,等腰三角形的外角也是相等的,每个外角都是60°。
最后,等腰三角形的高也是相等的,每个高都是直角三角形的边除以2,也就是等腰三角形的三边除以2。
进一步地,等腰三角形有一个重要的判定定理,叫做“三角平分线定理”,这个定理可以帮助我们快速判断一个三角形是否是等腰三角形,它的具体内容是:如果一个三角形的一个顶点是在它的边的中点,那么这个三角形就是等腰三角形。
因此,等腰三角形有着独特的性质,它们的边、内角、外角、高都是相等的,另外又有三角平分线定理可以帮助我们快速判断一个三角形是否为等腰三角形,是数学学科中重要的内容之一。
等腰三角形的性质与计算等腰三角形是指具有两条边长度相等的三角形。
在几何学中,等腰三角形有着独特的性质和计算方法。
本文将介绍等腰三角形的性质,并提供相关计算方法。
一、等腰三角形的性质等腰三角形有以下性质:1. 两边相等:等腰三角形的两条腰(即较短的两边)长度相等。
2. 两底角相等:等腰三角形的两个底角(即底边两侧的角)的度数相等。
3. 顶角平分底角:等腰三角形的顶角(即顶点处的角)将两个底角平分。
4. 底角平分顶角:等腰三角形的底角将顶角平分。
二、等腰三角形的计算在解决等腰三角形问题时,我们可以利用以下公式和定理进行计算:1. 底角的计算:等腰三角形的底角等于顶角的补角。
例如,如果顶角的度数为60°,则底角的度数为120°。
2. 顶角的计算:等腰三角形的顶角等于底角的补角。
例如,如果底角的度数为40°,则顶角的度数为140°。
3. 腰长的计算:在已知等腰三角形的底边长度和顶角度数的情况下,可以使用正弦、余弦或正切等三角函数计算腰长。
例如,已知等腰三角形的底边长度为5,顶角的度数为30°,可以使用正弦函数计算腰长:sin(30°) = 腰长/5,进而计算出腰长的值。
三、等腰三角形的应用等腰三角形在几何学、物理学、建筑学等领域有广泛的应用。
以下是一些实际应用的例子:1. 圆锥的侧面:在几何学中,圆锥的侧面通常是由等腰三角形组成的。
2. 建筑物的屋顶:在建筑学中,一些传统的建筑物屋顶的形状往往是等腰三角形,这是为了保持结构的稳定性和美观度。
3. 钢琴弦的调音:调音师在调音钢琴时会利用等腰三角形原理,即只调一个弦,而后一个弦的音高会自动与之相等。
四、总结等腰三角形具有两边相等、两底角相等、顶角平分底角和底角平分顶角的性质。
计算等腰三角形可以利用底角和顶角的度数关系,以及三角函数来计算腰长。
在实际应用中,等腰三角形广泛用于几何学、物理学和建筑学等领域。
等腰三角形的性质定理和判定定理及其证明一、性质定理:1.等腰三角形的顶角定理:等腰三角形的两个底角(与底边相对的两个角)是相等的。
证明如下:设等腰三角形ABC中,AB=AC,要证明∠B=∠C。
由等腰三角形的定义,可得AB=AC,又∠ABC=∠ACB。
再由三角形的内角和定理可知,∠A+∠B+∠C=180°。
将已知条件代入,得到∠A+∠ABC+∠A=180°。
化简可得2∠A+∠B=180°,即2∠A=180°-∠B,再化简可得∠A=90°-∠B/2同样地,我们有2∠A+∠C=180°,即2∠A=180°-∠C,再化简可得∠A=90°-∠C/2将∠A的两个表示式相等,得到90°-∠B/2=90°-∠C/2,即∠B/2=∠C/2、由此可得∠B=∠C,即等腰三角形的顶角定理成立。
2.等腰三角形的底边中线定理:等腰三角形的底边的中线与顶角的角平分线重合。
证明如下:设等腰三角形ABC中,AB=AC,CD为底边AB的中线,要证明CD是∠B和∠C的平分线。
由等腰三角形的定义,可得AB=AC,又CD是AB的中线,所以CD=AD。
再由三角形的两边和定理可知,∠B>∠C,即∠B与∠C不等。
假设CD不是∠B和∠C的平分线,即∠BCD≠∠BCD。
根据∠BCD和∠BCD的不等性,可知∠BCD+∠BCD>180°。
而∠BCD+∠BCD=2∠BCD,且∠BCD<∠B+∠C。
代入已知条件,得到2∠BCD<∠B+∠C<∠B+∠BC,再结合∠B+∠C=180°可知,2∠BCD<180°。
由此推出,∠BCD+∠BCD=2∠BCD<180°,与假设不符。
所以假设不成立,即CD是∠B和∠C的平分线。
从上述证明中可以看出,等腰三角形的底边中线是顶角的角平分线。
二、判定定理:1.等腰三角形的判定定理:如果一个三角形的两个角度相等,那么这个三角形是等腰三角形。
等腰三角形及平行四边形的性质定理和判定定理及其证明一、一周知识概述1、等腰三角形的性质定理等腰三角形的两个底角相等(简写为“等边对等角”).2、等腰三角形性质定理的推论推论1:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(简称“三线合一”).推论2:等边三角形的各角都相等,并且每一个角都等于60°.3、等腰三角形的判定定理两个角相等的三角形是等腰三角形.4、等腰三角形判定定理的推论推论1:三个角都相等的三角形是等边三角形.推论2:有一个角等于60°的等腰三角形是等边三角形.5、直角三角形的性质定理在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.6、平行四边形的性质定理定理1:平行四边形的对边相等.定理2、平行四边形的对角相等.定理3、平行四边形的对角线互相平分.7、平行四边形的判定定理定理1:一组对边平行且相等的四边形是平行四边形.定理2:两组对边分别相等的四边形是平行四边形.定理3:对角线互相平分的四边形是平行四边形.定理4:两组对角分别相等的四边形是平行四边形.8、三角形中位线的性质定理三角形的中位线平行于第三边,并且等于它的一半.二、重难点知识1、要说明一个命题的正确性,需用已学过的公理或定理进行证明,命题证明的步骤:先画图,写出已知、求证,给出严格的证明.2、等腰三角形的性质定理和判定定理及其应用、平行四边形的性质定理和判定定理及其应用是重点也是难点.三、典型例题讲解例1、如图所示,在△ABC中,∠ABC,∠ACB的平分线交于点F,过点F作DE∥BC 交AB于D,交AC于E.求证:BD+EC=DE.分析:因为DE=DF+FE,即结论为BD+EC=DF+FE,分别证明BD=DF,CE=FE即可,于是运用“在同一个三角形中,等角对等边”,易证结论成立.证明:∵DE∥BC(已知),∴∠3=∠2(两直线平行,内错角相等).又∵BF平分∠ABC,∴∠1=∠2.∴∠1=∠3.∴DB=DF(等角对等边).同理可证EF=CE.∴BD+EC=DF+EF,即BD+EC=DE.小结:过一个角的平分线上的一点作一边的平行线与另一边相交,所构成的三角形是一个等腰三角形,这是一个常见的构图,应熟练掌握.例2、数学课堂上,老师布置了一道几何证明题,让大家讨论它的证明方法,通过大家的激烈讨论,有几位同学说出了他们的思路,并添加了辅助线,你能根据他们的辅助线的作法写出证明过程吗?如图,已知△ABC中AB=AC,F在AC上,在BA延长线上取AE=AF.求证:EF ⊥BC.解:首先,小明根据等腰三角形这一已知条件,结合等腰三角形的性质,想到了过A作AG⊥BC于G这一条辅助线,如图.证明1:过A作AG⊥BC于G.∵AB=AC,∴∠3=∠4.又∵AE=AF,∴∠1=∠E.又∵∠3+∠4=∠1+∠E,∴∠3=∠E,∴AG//EF,∴EF⊥BC.接着小亮根据题设AE=AF,结合等腰三角形的性质作出过A作AH⊥EF于H这条辅助线,如图.证明2:过A作AH⊥EF于H.∵AE=AF,∴∠EAH=∠FAH.又∵∠AB=AC,∴∠B=∠C.又∵∠EAH+∠FAH=∠B+∠C,∴∠EAH=∠B,∴AH//BC,∴EF⊥BC.小彬也作出了一条辅助线,过C作MC⊥BC交BA的延长线于M,如图.证明3:过C作MC⊥BC交BA的延长线于M,则∠1+∠2=90°.∵AE=AF,∴∠AEF=∠AFE,∴∠EAF=180°-2∠AFE.又∵AB=AC,∴∠B=∠1.又∵∠EAF=∠B+∠1,∴∠EAF=2∠1,∴2∠1=180°-2∠AFE,∴∠1+∠AFE=90°,∴∠2=∠AFE,∴DE//MC,∴EF⊥BC.小颖的作法是:过E作EN⊥EF交CA的延长线于N,如图.证明4:过E作EN⊥EF交CA的延长线于N,则∠1+∠2=90°.∵AE=AF,∴∠2=∠AFE,∴∠EAF=180°-2∠2.又∵AB=AC,∴∠B=∠C,∴∠EAF=∠B+∠C=2∠B,∴2∠B=180°-2∠2,∴∠B+∠2=90°,∴∠1=∠B,∴EN//BC,∴EF⊥BC.小虎的作法是:过E点作EP//AC交BC的延长线于P,如图.证明5:过E作EP//AC交BC的延长线于P,则∠AFE=∠2,∠3=∠P.又∵AE=AF,∴∠1=∠AFE,∴∠1=∠2.又∵AB=AC,∴∠B=∠3,∴∠B=∠P,∴EB=EP,∴EF⊥BC.大家都在激烈地讨论着如何作出辅助线时,小红突然站起来说,不作辅助线也可以证明,你说是吗?(如图).证明6:∵AE=AF,∴∠1=∠E.又∵∠2=∠1+∠E,∴∠2=2∠E.又∵AB=AC,∴∠B=∠C,∴∠2=180°-2∠B,∴2∠E=180°-2∠B,即∠E+∠B=90°,∴∠3=180°-90°=90°,∴EF⊥BC.小结:本题证法中运用了等腰三角形的性质定理及其推论、三角形内角和定理、三角形外角的性质等知识,要注意灵活运用与牢固掌握相结合.例3、如图,在△ABC中,AB=AC=CB,AE=CD,AD、BE相交于P,BQ⊥AD于Q.求证:BP=2PQ。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*一. 本周教学内容:等腰三角形的性质和判定二. 教学目标:(一)知识与技能:(1)掌握等腰三角形的性质定理和判定定理,并会灵活运用。
(2)能用上述结论进行分析与说理,进行初步的逻辑思维训练,形成一定的推理能力。
(二)情感态度与价值观:通过等腰三角形性质定理和判定定理的证明体现数学的应用价值。
三. 重点、难点:重点是等腰三角形的性质定理和判定定理难点是利用定理解决实际问题四. 教学过程:(一)知识梳理知识点1:等腰三角形的性质定理1(1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”)(2)符号语言:如图,在△ABC中,因为AB=AC,所以∠B=∠C(3)证明:取BC的中点D,连接AD在△ABD和△ACD中∴△ABD≌△ACD(SSS)∴∠B=∠C(全等三角形对应角相等)(4)定理的作用:证明同一个三角形中的两个角相等。
知识点2:等腰三角形性质定理2(1)文字语言:等腰三角形的顶角平分线,底边上的中线,底边上的高,互相重合(简称“三线合一”)(2)符号语言:∵AB=AC ∵AB=AC ∵AB=AC∠1=∠2 AD⊥BC BD=DC∴AD⊥BC,BD=DC ∴∠1=∠2 ∴∠1=∠2BD=DC AD⊥BC(3)定理的作用:可证明角相等,线段相等或垂直。
说明:在等腰三角形中经常添加辅助线,虽然“顶角的平分线,底边上的高、底边上的中线互相重合,如何添加要根据具体情况来定,作时只作一条,再根据性质得出另两条”。
知识3:等腰三角形的判定定理(1)文字语言:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简写为“等角对等边”)(2)符号语言:在△ABC中∵∠B=∠C ∴AB=AC(3)证明:过A作AD⊥BC于D,则∠ADB=∠ADC=90°。
在△ABD和△ACD中∴△ABD≌△ACD (AAS)∴AB=AC(4)定理的作用:证明同一个三角形中的边相等。
说明:①本定理的证明还有其他证明方法(如作顶角的平分线)。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义2、利用定理。
【典型例题分析】基础知识应用题:例1. 如图,已知P、Q是△ABC边BC上两点,且BP=PQ=AP=AQ=QC,求∠BAC 的度数。
解:∵AP=PQ=AQ(已知)∴△APQ是等边三角形(等边三角形的定义)创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*∴∠APQ=∠AQP=∠PAQ=60°(等边三角形的性质)∵AP=BP(已知)∴∠PBA=∠PAB(等边对等角)又∠APQ=∠PAB+∠PBA=60°∴∠PBA=∠PAB=30°同理∠QAC=30°∴∠BAC=∠PAB+∠PAQ+∠QAC=30°+60°+30°=120°解答此类题的步骤如下:(1)利用等边对等角根据已知角的度数求另一个角的度数。
(2)利用三角形内角和定理,确定等量关系,借助等式或方程求解。
例2. 已知:如图,在△ABC中,∠B=∠C,D、E、F分别为AB,BC,AC上的点,且BD=CE,∠DEF=∠B。
求证:△DEF是等腰三角形。
证明:∵∠B+∠BDE+∠BED=180°(三角形内角和定理)∠BED+∠DEF+∠FEC=180°(平角性质)∠B=∠DEF(已知)∴∠BDE=∠FEC(等角的补角相等)在△BED和△CFE中∠BDE=∠FEC中(已证)BD=CE (已知)∠B=∠C (已知)∴△BED≌△CFE (ASA)∴DE=EF (全等三角形对应边相等)∴△DEF是等腰三角形(等腰三角形定义)综合应用题:例3. 已知:如图,AC和BD相交于点O,AB∥CD,OA=OB,求证:OC=OD证明:∵AB∥CD (已知)∴∠A=∠C,∠B=∠D (两直线平行,内错角相等)∵OA=OB (已知)∴∠A=∠B (等边对等角)∴∠C=∠D (等量代换)∴OC=OD (等角对等边)例4. 如图,在四边形ABDC中,AB=2AC,∠1=∠2,DA=DB,试判断DC与AC 的位置关系,并证明你的结论。
证法一:证明:作DE⊥AB于E∵DA=DBDE⊥AB∴AE=BE=∵AB=2AC∴AE=AC在△AED和△ACD中∴△AED≌△ACD∴∠C=∠AED=90°∴DC与AC的位置关系为:DC⊥AC证法二:证明:延长AC到F,使CF=AC,连结DF∵AB=2AC,AF=2AC∴AB=AF在△ABD和△AFD中∴△ABD≌△AFD∴DF=DB∵DA=DB∴DA=DF又∵AC=CF∴DC⊥AF说明:法一是利用了“截长法”即在长线段AB上截取AE=AB法二是利用了“补短法”即在短线段AC上补足AF=AB,从而达到解决问题的目的。
例5. 求证:等腰三角形两腰上的中线相等创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*解:已知:如图所示,在△ABC中,AB=AC,BD,CE是△ABC的中线求证:BD=CE证明:∵BD,CE是△ABC的中线∴AE=AB,AD=AC∵AB=AC∴AE=AD在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴BD=CE(全等三角形的对应边相等)说明:这是一个证明文字叙述的几何命题的题目,做这类题时首先要分清题设,结论,画出草图,结合图形写出:已知、求证、然后再证明。
例6. 如图,点C为线段AB上的一点,△ACM,△BCN是等边三角形,AN,MC 相交于点E,CN与BM相交于点F。
(1)求证AN=BM(2)求证△CEF为等边三角形证明:(1)∵△ACM,△CBN是等边三角形∴AC=MC,CN=CB,∠ACM=∠NCB=60°∴∠ACN=∠BCM=120°在△ACN和△MCB中∴△ACN≌MCB(SAS)∴AN=BM(2)由(1)中△ACN≌△MCB∴∠ANC=∠MBC在△CEN和△CFB中∴△CEN≌△CFB(ASA)∴CE=CF又∵∠ECF=60°∴△CEF为等边三角形例7. 下面是数学课堂的一个学习片断,阅读后,请回答下面的问题:学习等腰三角形有关内容后,苏老师请同学们交流讨论这样一个问题:“已知,等腰三角形ABC的角A等于30°,请你求出其余两角。
”同学们经片刻的思考与交流后,李明举手讲:“其余两角30°和120°,”卫华同学说:“其余两角是75°和75°”还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何?为什么?(2)通过上面数学问题的讨论,你有什么感受?(用一句话表示)解略【模拟试题】(答题时间:25分钟)1. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A. 60°B. 120°C. 60°或150°D. 60°或120°2. 如图,△ABC中AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为()A. 30°B. 36°C. 95°D. 70°3. 如图,△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于F,若BF=AC,那么∠ABC的大小是()A. 40°B. 45°C. 50°D. 60°4. 聪明的小明用含有30°角的两个完全相同的三角板拼成如图所示的图案,并发现图中有等腰三角形,请你帮他找出两个等腰三角形:。
5. 如图,一个顶角为40°的等腰三角形纸片,剪去顶角后,得到一个四边形,则∠1+∠2= 度。
6. 在△ABC中,AB=AC,AB边的垂直平分线与AC所在直线相交所得的锐角为40°,则底角∠B的大小为。
7. 如图,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF是等边三角形(1)除已知相等的边以外,请你猜想还有哪些相等的线段,并证明你的猜想是正确的。
(2)你所证明相等的线段可以通过怎么样的变化相互得到?写出变化过程。
【试题答案】1. D2. B3. B4. △ABE,△BEC或△CED5. 220°6. 65°或25°7. 解:(1)图中还有相等的线段AE=BF=CD,AF=BD=CE(2)线段AE、BF、CD绕△ABC的中心按顺时针方向旋转120°互相得到线段。
AF、BD、CE绕△ABC的中心按顺时针方向旋转120°互相得到。
创作编号:GB8878185555334563BT9125XW创作者:凤呜大王*。