等腰三角形性质定理

  • 格式:doc
  • 大小:169.50 KB
  • 文档页数:9

下载文档原格式

  / 9
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形

等腰三角形的性质定理

知识点一:等腰三角形、腰、底边

在小学里我们就已经学过,有两边相等的三角形叫做等腰三角形,其中相等的两条边叫腰,第三条边叫底边,两腰的夹角叫顶角,底边和腰的夹角叫底角

如图所示,在△ABC中,AB=AC,则它叫等腰三角形,其中AB、AC为腰,BC为底边,∠A是顶角,∠B、∠C是底角.

知识点二:三角形按边分类

不等边三角形

三角形

底边与腰不相等的等腰三角形

等腰三角形

等边三角形(正三角形)

知识点三:等腰三角形的性质

1、性质1:等腰三角形的两个底角相等(简称“等边对等角”).

性质2:等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合(简称“三线合一”).

2、这两个性质证明如下:

在△ABC中,AB=AC,如图所示.

作底边BC的高AD,则有

∴Rt△ABD≌Rt△ACD.

∴∠B=∠C,∠1=∠2.BD=CD.

于是性质1、性质2均得证.

3、说明:

(1)①等腰三角形的性质1用符号表示为:∵AB=AC,∴∠B=∠C;

②性质1是等腰三角形的一条重要(主要)性质,也是今后我们证明角相等的又一个重要依据.

(2)①性质2实质包含三条性质,符号表示为:∵AB=AC,AD⊥BC,∠1=∠2,∴BD=CD;

或∵AB=AC,BD=CD,∠l=∠2,∴AD⊥BC.

②性质2的用途更为广泛,可以用来证明线段相等,角相等,垂直关系等.

(3)等腰三角形是轴对称图形,底边上高(顶角平分线或底边中线)所在直线是它的对称轴,通常情况只有一条对称轴.

一、规律方法指导

1.等腰(边)三角形是一个特殊的三角形,具有较多的特殊性质,有时几何图形中不存在等腰(边)三角形,可根据已知条件和图形特征,适当添加辅助线,使之构成等腰(边)三角形,然后利用其定义和有关性质,快捷地证出结论。

2.常用的辅助线有:(1)作顶角的平分线、底边上的高线、中线。(2)在三角形的中线问题上,我们常将中线延长一倍,这样添辅助线有助于我们解决有关中线的问题。

二、难点分析

1、对于“等腰三角形的三线合一”一定要注意是底边上的高线、中线和顶角平分线,其他

的高、中线、角平分线不满足三线合一。

2、分类讨论是等腰三角形问题中常用的思想方法,在已知等腰三角形的边和角的情况下求

其他三角形的边或角,要对已知的边和角进行讨论,分类的标准一般是根据边是腰还是底来分类。

类型一:与度数有关的计算

1.如图,在△ABC中,D在BC上,且AB=AC=BD,∠1=30°,求∠2的度数。思路点拨:解该题的关键是要找到∠2和∠1之间的关系,显然∠2=∠1+∠C,只要再找出∠C与∠2的关系问题就好解决了,而∠C=∠B,所以把问题转化为欲找出∠2与∠B之间有什么关系,变成△ABD的角之间的关系,问题就容易的多了。

解析:∵AB=AC

∴∠B =∠C

∵AB=BD

∴∠2=∠3

∵∠2=∠1+∠C

∴∠2=∠1+∠B

∵∠2+∠3+∠B=180°

∴∠B=180°-2∠2

∴∠2=∠1+180°-2∠2

∴3∠2=∠1+180°

∵∠1=30°

∴∠2=70°

总结升华:关于角度问题可以通过建立方程进行解决。

举一反三:

【变式1】如图,D、E在△ABC的边BC上,且BE=BA,CD=CA,若∠BAC=122°,求∠DAE的度数。

【变式2】在△ABC中,AB=AC,D在BC上,E在AC上,且AD=AE,∠BAD=30°,求∠EDC的度数。

类型二:等腰三角形中的分类讨论

2.当腰长或底边长不能确定时,必须进行分类讨论

(1)已知等腰三角形的两边长分别为8cm和10cm,求周长。

(2)等腰三角形的两边长分别为3cm和7cm,求周长。

思路点拨:由等腰三角形的性质可知我们在解此题前,必须明确所给的边的定义,在这里哪条边是“腰”,哪条边是“底”不明确,而且还要考虑到三条线段能够构成三角形的前提,因此必须进行分类讨论。

解析:(1)因为8+8>10,10+10>8,则在这两种情况下都能构成三角形;

当腰长为8时,周长为8+8+10=26;

当腰长为10时,周长为10+10+8=28;

故这个三角形的周长为26cm或28cm。

(2)当腰长为3时,因为3+3<7,所以此时不能构成三角形;

当腰长为7时,因为7+7>3,所以此时能构成三角形,因此三角形的周长为:7+7+3=17;故这个三角形的周长为17cm。

总结升华:对于此类题目在进行分类讨论时,必须运用三角形的三边关系来验证是否能构成三角形

举一反三:

【变式1】当顶角或底角不能确定时,必须进行分类讨论

等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数

【变式2】当高的位置关系不确定时,必须分类讨论

等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数。

【变式3】由腰的垂直平分线所引起的分类讨论

在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为45°,求∠B的度数。

【变式4】由腰上的中线引起的分类讨论

等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为3cm,求腰长。

类型三:等腰三角形的性质定理与全等三角形的应用

3.如图,五边形ABCDE中AB=AE,BC=DE,∠ABC=∠AED,点F是CD的中点.求证:AF⊥CD

思路点拨:要证明AF⊥CD,而点F是CD的中点,联想到这是等腰三角形特有的性质,于是连接AC、AD,证明AC=AD,利用等腰三角形“三线合一”的性质得到结论.解析:连接AC、AD

在△ABC和△AED中,

AB=AE(已知)

∠ABC=∠AED(已知)

BC=ED(已知)

∴△ABC≌△AED(SAS)

∴AC=AD(全等三角形的对应边相等)

又∵△ACD中AF是CD边的中线(已知)

∴AF⊥CD(等腰三角形底边上的高和底边上的中线互相重合)