人教A版必修3 3.2 古典概型 作业
- 格式:doc
- 大小:161.96 KB
- 文档页数:6
教育教学案例——《古典概型》一、教学内容分析《古典概型》是高中数学人教A版必修3第三章概率3.2的内容,教学安排是2课时,本节是第一课时。
是在随机事情的概率以后,几何概型之前,还没有学习排列组合的情况下教学的。
古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它的引入避免了大量的反复实验,而且得到的是概率的精确值,同时古典概型也是后面学习条件概率的基础,它有益于理解概率的概念,有益于计算一些事情的概率,有益于解释生活中的一些成绩,起到承前启后的作用,所以在概率论中占有相当重要的地位。
二、教学设计分析学情分析:先生基础普通,但师生之间,先生之间情感融洽,上课互动氛围良好。
他们具备必然的观察,类比,分析,归纳能力等,但在对知识的理解和方法的掌握方面存在细节上的不齐备,反映在解题中思想不周密,书写过程不残缺,有时钻牛角尖。
教学内容组织和安排:根据上面的学情分析,先生思想不周密,意志力薄弱,从而在全部教学环节上必须创设恰当的成绩情境,引导先生积极考虑,培养他们的逻辑思想能力。
经过对成绩情境的分析,引出基本事情的概念,古典概型中基本事情的特点,和古典概型的计算公式。
对典型例题进行分析,以巩固概念,掌握解题方法。
三、教学目标分析知识与技能目标:(1)正确理解古典概型的两大特点:1)无量性;2)等可能性;(2)理解古典概型的概率计算公式 :P (A )=总的基本事件个数包含的基本事件个数A (3)会用列举法计算一些随机事情所含的基本事情数及事情发生的概率。
过程与方法目标:经过模拟实验让先生理解古典概型的特点,观察类比各个实验,归纳总结出古典概型的概率计算公式,表现了化归思想,掌握列举法,学会用分类讨论的思想解决概率的成绩。
情感态度与价值观目标:经过各种风趣的贴近生活的素材,激发先生学习的热情和兴味,培养先生勇于探求、擅长发现的创新思想;经过探求活动,领会理论与理论对立一致的辨证思想;结合成绩的理想意义,培养先生的合作精神.四、教学重点与难点重点:理解古典概型的概念及利用古典概型求解随机事情的概率。
专题:古典概型的概念及概率※知识要点1.基本事件有如下特点:(1)任何两个基本事件是________的.(2)任何事件(除不可能事件)都可以表示成______________.2.一般地,一次试验有下面两个特征:(1) 性:试验中所有可能出现的基本事件只有有限个;(2) 性:每个基本事件出现的可能性相同;具备上述特征的事件概率模型为古典概型.注意:判断一个试验是否是古典概型,在于该试验是否具有古典概型的两个特征:和.3.古典概型的概率公式:P(A)=;.注意:如果一次试验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是_____;若某事件A包括的结果有m个,则事件A的概率P(A)=.4.求古典概型的步骤:(1)判断是否为古典概型;(2)列举的基本事件的总数n;(3)列举事件A所包含的基本事件数m;(4)计算概率:P(A)=________.※题型讲练【例1】判断下面结论是否正确:(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于古典概型.()(4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为13.()(5)从1,2,3,4,5中任取两个不同的数和为5的概率是0.2.() (6)在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为nm.()变式训练1:1.下列试验中,是古典概型有________.①向上抛一枚质地不均匀的硬币,观察正面向上的概率;②向正方形ABCD内,任意抛掷一点P,点P恰与点C重合;③从1,2,3,4四个数中任取两个数,其中一个数是2的概率;④在线段[0,5]上任取一点,求此点小于2的概率.2.袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?【例2】在一个盒中装有6枝圆珠笔,其中3枝一等品,2枝二等品和1枝三等品,从中任取3枝,求下列事件的概率:(1)恰有一枝一等品;(2)恰有两枝一等品;(3)没有三等品.变式训练2:1.一个盒子里装有标号为1,2,3,4的4张标签,随机地取出两张,根据下列条件求两张标签上的数字为相邻整数的概率::(1)标签的选取是无放回的;(2)标签的选取是有放回的.2.从装有3双不同的鞋柜子里随机取出2只,求下列概率:(1)取出的鞋子都是左脚的;(2)取出的鞋子恰是一双的.【例3】某小组共有A,B,C,D,E五位同学,他们的身高(单位:米)及体重指标(单位:千克/米2)如下表所示:(1)人身高都在1.78以下的概率;(2)从该小组同学中任选2人,求选到的2人的身高都在1.70以上且体重指标都在[18.5,23.9)中的概率.变式训练3:1.甲、乙二人用4张扑克牌(分别是红桃2、红桃3、红桃4、方片4)玩游戏,他们将扑克牌洗匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张.(1)设(i,j)分别表示甲、乙抽到的牌的牌面数字,写出甲、乙二人抽到的牌的所有情况;(2)若甲抽到红桃3,求乙抽到的牌面数字比3大的概率;(3)甲、乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,反之,则乙胜.你认为此游戏是否公平,说明你的理由.2.已知向量a=(x,-1),b=(3,y),其中x随机选自集合{}-1,1,3,y随机选自集合{}1,3,9.(1)求a∥b的概率;(2)求a⊥b的概率.※课后练习1.4张卡上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为()A.12B.13C.23D.342.若某公司从五位毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.23B.25C.35D.9103.从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为()A.13B.512C.12D.7124.若以连续掷两次骰子分别得到的点数m、n作为点P的横、纵坐标,则点P在直线x+y=5下方的概率为()A.16B.14C.112D.195.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则()A.p1<p2<p3B.p2<p1<p3C.p1<p3<p2D.p3<p1<p26.三张卡片上分别写上字母E,E,B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为________.7.在平面直角坐标系中,从五个点:A(0,0),B(2,0),C(1,1),D(0,2),E(2,2)中任取三个,恰好构成三角形的概率是________.8.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有________人.9.连掷两次骰子分别得到点数m 、n ,则向量(m ,n )与向量(-1,1)的夹角θ>90°的概率是________.10.在集合{x |x =n π6,n =1,2,3,…,10}中任取一个元素,所取元素恰好满足方程cos x =12的概率是________.11.袋子中装有编号为a ,b 的2个黑球和编号为c ,d ,e 的3个红球,从中任意摸出2个球. (1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率; (3)求至少摸出1个黑球的概率.12.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.13.一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.14.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):中有A 类轿车10辆. (1)求z 的值;(2)按型号用分层抽样的方法在C类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.。
最新人教版数学精品教学资料[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 125~P 130,回答下列问题.教材中的两个试验:(1)掷一枚质地均匀的硬币的试验;(2)掷一枚质地均匀的骰子的试验.(1)试验(1)中的基本事件是什么?试验(2)中的基本事件又是什么?提示:试验(1)的基本事件有:“正面朝上”、“反面朝上”;试验(2)的基本事件有:“1点”、“2点”、“3点”、“4点”、“5点”、“6点”.(2)基本事件有什么特点?提示:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.(3)古典概型的概率计算公式是什么?提示:P (A )=A 包含的基本事件的个数基本事件的总数. 2.归纳总结,核心必记(1)基本事件①定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件. ②特点:一是任何两个基本事件是互斥的;二是任何事件(除不可能事件)都可以表示成基本事件的和.(2)古典概型①定义:如果一个概率模型满足:(ⅰ)试验中所有可能出现的基本事件只有有限个;(ⅱ)每个基本事件出现的可能性相等.那么这样的概率模型称为古典概率模型,简称古典概型.②计算公式:对于古典概型,任何事件的概率为P (A )=A 包含的基本事件的个数基本事件的总数. [问题思考](1)若一次试验的结果所包含的基本事件的个数是有限个,则该试验是古典概型吗? 提示:不一定是,还要看每个事件发生的可能性是否相同,若相同才是,否则不是.(2)掷一枚不均匀的骰子,求出现点数为偶数点的概率,这个概率模型还是古典概型吗? 提示:不是.因为骰子不均匀,所以每个基本事件出现的可能性不相等,不满足特点(ⅱ).(3)“在区间[0, 10]上任取一个数,这个数恰为2的概率是多少?”这个概率模型属于古典概型吗?提示:不是,因为在区间[0,_10]上任取一个数,其试验结果有无限个,故其基本事件有无限个,所以不是古典概型.[课前反思]通过以上预习,必须掌握的几个知识点:(1)基本事件的定义: ;(2)基本事件的特点: ;(3)古典概型的定义: ;(4)古典概型的计算公式: .掷一枚质地均匀的硬币两次,观察哪一面朝上.[思考1] 这个试验共有哪几种结果?基本事件总数有多少? 事件A ={恰有一次正面朝上}包含哪些试验结果?名师指津:共有正正、正反、反正、反反四种结果.基本事件有4个.事件A 包含的结果有:正反、反正.[思考2] 基本事件有什么特点?名师指津:基本事件具有以下特点:(1)不可能再分为更小的随机事件;(2)两个基本事件不可能同时发生.讲一讲1.先后抛掷3枚均匀的壹分,贰分,伍分硬币.(1)求试验的基本事件数;(2)求出现“2枚正面,1枚反面”的基本事件数.[尝试解答](1)因为抛掷壹分,贰分,伍分硬币时,各自都会出现正面和反面2种情况,所以一共可能出现的结果有8种.可列表为:(2)从(1)中表格知,出现“2枚正面,1枚反面”的结果有3种,即(正,正,反),(正,反,正),(反,正,正).所以“2枚正面,1枚反面”的基本事件数为3.基本事件的两个探求方法(1)列表法:将基本事件用表格的形式表示出来,通过表格可以清楚地弄清基本事件的总数,以及要求的事件所包含的基本事件数,列表法适合于较简单的试验的题目,基本事件较多的试验不适合用列表法.(2)树状图法:树状图法是用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段.树状图法适合于较复杂的试验的题目.练一练1.从字母a,b,c,d中任意取出两个不同字母的试验中,有哪些基本事件?解:所求的基本事件共有6个:即A={a,b},B={a,c},C={a,d},D={b,c},E={b,d},F={c,d}.观察图形,思考下列问题[思考1]某射击运动员随机地向一靶心进行射击,试验的结果有:命中10环,命中9环,…,命中1环和命中0环(即不命中),你认为这是古典概型吗?名师指津:试验的所有结果只有11个,但是命中10环,命中9环,…,命中1环和命中0环(即不命中)的出现不是等可能的,这个试验不是古典概型.[思考2] 若一个试验是古典概型,它需要具备什么条件?名师指津:若一个试验是古典概型,需具备以下两点:(1)有限性:首先判断试验的基本事件是否是有限个,若基本事件无限个,即不可数,则试验不是古典概型.(2)等可能性:其次考查基本事件的发生是不是等可能的,若基本事件发生的可能性不一样,则试验不是古典概型.讲一讲2.某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.[尝试解答] (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.(1)古典概型求法步骤①确定等可能基本事件总数n ;②确定所求事件包含基本事件数m ;③P (A )=m n. (2)使用古典概型概率公式应注意①首先确定是否为古典概型;②所求事件是什么,包含的基本事件有哪些.练一练2.一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.求:(1)基本事件总数;(2)事件“摸出2个黑球”包含多少个基本事件?(3)摸出2个黑球的概率是多少?解:由于4个球的大小相等,摸出每个球的可能性是均等的,所以是古典概型.(1)将黑球编号为黑1,黑2,黑3,从装有4个球的口袋内摸出2个球,所有基本事件构成集合Ω={(黑1,黑2),(黑1,黑3),(黑1,白),(黑2,黑3),(黑2,白),(黑3,白)},其中共有6个基本事件.(2)事件“摸出2个黑球”={(黑1,黑2),(黑2,黑3),(黑1,黑3)},共3个基本事件.(3)基本事件总数n=6,事件“摸出两个黑球”包含的基本事件数m=3,故P=1 2.讲一讲3.袋子中装有除颜色外其他均相同的编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.(1)写出所有不同的结果;(2)求恰好摸出1个黑球和1个红球的概率;(3)求至少摸出1个黑球的概率.[思路点拨](1)可以利用初中学过的树状图写出;(2)找出恰好摸出1个黑球和1个红球的基本事件,利用古典概型的概率计算公式求出;(3)找出至少摸出1个黑球的基本事件,利用古典概型的概率计算公式求出.[尝试解答](1)用树状图表示所有的结果为所以所有不同的结果是ab,ac,ad,ae,bc,bd,be,cd,ce,de.(2)记“恰好摸出1个黑球和1个红球”为事件A,则事件A包含的基本事件为ac,ad,ae,bc,bd,be,共6个基本事件,所以P(A)=610=0.6,即恰好摸出1个黑球和1个红球的概率为0.6.(3)记“至少摸出1个黑球”为事件B,则事件B包含的基本事件为ab,ac,ad,ae,bc,bd,be,共7个基本事件,所以P (B )=710=0.7, 即至少摸出1个黑球的概率为0.7.利用事件间的关系求概率在求解较复杂事件的概率时,可将其分解为几个互斥的简单事件的和事件,由公式P (A 1∪A 2∪A 3∪…∪A n )=P (A 1)+P (A 2)+…+P (A n )求得,或采用正难则反的原则,转化为求其对立事件,再用公式P (A )=1-P (A )(A 为A 的对立事件)求得.练一练3.先后掷两枚大小相同的骰子.(1)求点数之和出现7点的概率;(2)求出现两个4点的概率;(3)求点数之和能被3整除的概率.解:如图所示,从图中容易看出基本事件与所描点一一对应,共36个.(1)记“点数之和出现7点”为事件A ,从图中可以看出,事件A 包含的基本事件共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P (A )=636=16. (2)记“出现两个4点”为事件B ,从图中可以看出,事件B 包含的基本事件只有1个,即(4,4).故P (B )=136. (3)记“点数之和能被3整除”为事件C ,则事件C 包含的基本事件共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P (C )=1236=13. ——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是了解基本事件的特点,能写出一次试验所出现的基本事件,会用列举法求古典概型的概率.难点是理解古典概型及其概率计算公式,会判断古典概型.2.本节课要掌握以下几类问题:(1)基本事件的两种探求方法,见讲1.(2)求古典概型的步骤及使用古典概型概率公式的注意点,见讲2.(3)利用事件的关系结合古典概型求概率,见讲3.3.本节课的易错点有两个:(1)列举基本事件时易漏掉或重复,如讲1;(2)判断一个事件是否是古典概型易出错.课下能力提升(十八)[学业水平达标练]题组1基本事件的列举问题1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是()A.3 B.4 C.5 D.6解析:选D事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.①写出这个试验的基本事件;②求出这个试验的基本事件的总数;③写出“第1次取出的数字是2”这一事件包含的基本事件.解:①这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).②基本事件的总数为6.③“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).题组2简单古典概型的计算3.下列关于古典概型的说法中正确的是()①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,则P(A)=kn.A.②④B.①③④C.①④D.③④解析:选B根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.4.下列试验中,属于古典概型的是( )A .种下一粒种子,观察它是否发芽B .从规格直径为250 mm±0.6 mm 的一批合格产品中任意抽一根,测量其直径dC .抛掷一枚硬币,观察其出现正面或反面D .某人射击中靶或不中靶解析:选C 依据古典概型的特点判断,只有C 项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.5.设a 是掷一枚骰子得到的点数,则方程x 2+ax +2=0有两个不相等的实根的概率为( )A.23B.13C.12D.512解析:选A 基本事件总数为6,若方程有两个不相等的实根则a 2-8>0,满足上述条件的a 为3,4,5,6,故P =46=23. 6.一枚硬币连掷3次,有且仅有2次出现正面向上的概率为( )A.38B.23C.13D.14解析:选A 所有的基本事件是(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反),共有8个,仅有2次出现正面向上的有:(正,正,反),(正,反,正),(反,正,正),共3个.则所求概率为38. 7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A :取出的两球都是白球;(2)B :取出的两球1个是白球,另1个是红球.解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).∴取出的两个球全是白球的概率为P (A )=615=25. (2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.∴取出的两个球一个是白球,一个是红球的概率为P (B )=815. 题组3 较复杂的古典概型的计算8.某停车场临时停车按时段收费,收费标准如下:每辆汽车一次停车不超过1小时收费6元,超过1小时的部分每小时收费8元(不足1小时按1小时计算).现有甲、乙两人在该地停车,两人停车都不超过4小时.(1)若甲停车1小时以上且不超过2小时的概率为13,停车费多于14元的概率为512,求甲的停车费为6元的概率;(2)若甲、乙两人每人停车的时长在每个时段的可能性相同,求甲、乙两人停车费之和为28元的概率.解:(1)记“一次停车不超过1小时”为事件A ,“一次停车1到2小时”为事件B ,“一次停车2到3小时”为事件C ,“一次停车3到4小时”为事件D .由已知得P (B )=13,P (C +D )=512. 又事件A ,B ,C ,D 互斥,所以P (A )=1-13-512=14. 所以甲的停车费为6元的概率为14. (2)易知甲、乙停车时间的基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个;而“停车费之和为28元”的事件有(1,3),(2,2),(3,1),共3个,所以所求概率为316. [能力提升综合练]1.下列是古典概型的是( )A .任意掷两枚骰子,所得点数之和作为基本事件时B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率D .抛掷一枚均匀硬币首次出现正面为止解析:选C A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件可能会是无限个,故D 不是.2.(2015·广东高考)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1解析:选B 5件产品中有2件次品,记为a ,b ,有3件合格品,记为c ,d ,e ,从这5件产品中任取2件,有10种结果,分别是(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),恰有一件次品,有6种结果,分别是(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),设事件A ={恰有一件次品},则P (A )=610=0.6,故选B. 3.(2015·新课标全国卷Ⅰ)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310B.15C.110D.120解析:选C 从1,2,3,4,5中任取3个不同的数共有如下10个不同的结果:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中勾股数只有(3,4,5),所以概率为110.故选C. 4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49 B.13 C.29 D.19解析:选D 分类讨论法求解.个位数与十位数之和为奇数,则个位数与十位数中必一个奇数一个偶数,所以可以分两类.(1)当个位为奇数时,有5×4=20个符合条件的两位数.(2)当个位为偶数时,有5×5=25个符合条件的两位数.因此共有20+25=45个符合条件的两位数,其中个位数为0的两位数有5个,所以所求概率为P =545=19. 5.(2016·石家庄高一检测)一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为________.解析:该树枝的树梢有6处,有2处能找到食物,所以获得食物的概率为26=13. 答案:136.从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率等于________.解析:用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc,2名都是女同学的选法为:ab ,ac ,bc ,故所求的概率为315=15. 答案:157.(2015·天津高考)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数.(2)将抽取的6名运动员进行编号,编号分别为A 1,A 2,A 3,A 4,A 5,A 6.现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.解:(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A 1,A 2},{A 1,A 3},{A 1,A 4},{A 1,A 5},{A 1,A 6},{A 2,A 3},{A 2,A 4},{A 2,A 5},{A 2,A 6},{A 3,A 4},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共15种.②编号为A 5和A 6的两名运动员中至少有1人被抽到的所有可能结果为{A 1,A 5},{A 1,A 6},{A 2,A 5},{A 2,A 6},{A 3,A 5},{A 3,A 6},{A 4,A 5},{A 4,A 6},{A 5,A 6},共9种.因此,事件A 发生的概率P (A )=915=35. 8.(2014·山东高考)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解:(1)因为样本容量与总体中的个体数的比是650+150+100=150, 所以样本中包含三个地区的个体数量分别是:50×150=1,150×150=3,100×150=2. 所以A ,B ,C 三个地区的商品被选取的件数分别为1,3,2.(2)设6件来自A ,B ,C 三个地区的样品分别为:A ;B 1,B 2,B 3;C 1,C 2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B3},{B2,B3},{C1,C2},共4个.所以P(D)=415,即这2件商品来自相同地区的概率为415.。
3.2.1 古典概型【基础练习】1.下列不是古典概型的是( )A .从6名同学中,选出4名参加数学竞赛,每个人被选中的可能性大小B .同时掷两枚骰子,点数和为7的概率C .近三天中有一天降雪的概率D .10个人站成一排,其中甲,乙相邻的概率 【答案】C【解析】对于A,从6名同学中,选出4名参加数学竞赛,每个人被选中的可能性相等,满足有限性和等可能性,是古典概型;在B 中,同时掷两枚骰子,点数和为7的事件是随机事件,满足有限性和等可能性,是古典概型;在C 中,不等可能性,不是古典概型;在D 中,10个人站成一排,其中甲,乙相邻的概率,满足有限性和等可能性,是古典概型. 故选C .2.将一枚质地均匀的骰子抛掷一次,出现“正面向上的点数为6”的概率是( ) A .13 B .14 C .15 D .16【答案】D【解析】抛掷一枚质地均匀的骰子,有6种结果,每种结果等可能出现,出现“正面向上的点数为6”的情况只有一种,故所求概率为16,故选D .3.某袋中有9个大小相同的球,其中有5个红球,4个白球,现从中任意取出1个,则取出的球恰好是白球的概率为( )A .16 B .14 C .49 D .59【答案】C【解析】袋中有9个大小相同的球,从中任意取出1个,共有9种取法,4个白球,现从中任意取出1个,取出的球恰好是白球,共有4种取法,故取出的球恰好是白球的概率为49.故选C .4.从集合⎩⎨⎧ 2,3,4,12,⎭⎬⎫23中取两个不同的数a ,b ,则log a b >0的概率为( ) A .12 B .15 C .25 D .35【答案】C【解析】从集合⎩⎨⎧⎭⎬⎫2,3,4,12,23中取两个不同的数a ,b ,共有20种不同情况,其中满足log a b >0有2+6=8种情况,故log a b >0的概率p =820=25,故选C .5.袋子中有大小相同的四个小球,分别涂以红、白、黑、黄颜色. (1)从中任取一球,取出白球的概率为________.(2)从中任取两球,取出的是红球、白球的概率为________. 【答案】(1)14 (2)16【解析】(1)任取一球有4种等可能结果,而取出的是白球只有一个结果,∴p =14.(2)取出2球有6种等可能结果,而取出的是红球、白球的结果只有一种,∴概率p =16.6.(2019年山东烟台校级月考)现有7名数理化成绩优秀者,分别用A 1,A 2,A 3,B 1,B 2,C 1,C 2表示,其中A 1,A 2,A 3的数学成绩优秀,B 1,B 2的物理成绩优秀,C 1,C 2的化学成绩优秀.从中选出数学、物理、化学成绩优秀者各1名,组成一个小组代表学校参加竞赛,则A 1和B 1不全被选中的概率为________.【答案】56【解析】从这7人中选出数学、物理、化学成绩优秀者各1名,所以可能的结果组成的12个基本事件为:(A 1,B 1,C 1),(A 1,B 1,C 2),(A 1,B 2,C 1),(A 1,B 2,C 2),(A 2,B 1,C 1),(A 2,B 1,C 2),(A 2,B 2,C 1),(A 2,B 2,C 2),(A 3,B 1,C 1),(A 3,B 1,C 2),(A 3,B 2,C 1),(A 3,B 2,C 2).设“A 1和B 1不全被选中”为事件N ,则其对立事件N -表示“A 1和B 1全被选中”.由于N -={(A 1,B 1,C 1),(A 1,B 1,C 2)},所以P (N -)=212=16,由对立事件概率计算公式得P (N )=1-P (N -)=1-16=56.7.抛掷一枚骰子,当它每次落地时,向上一面的点数称为该次抛掷的点数,可随机出现1到6点中的任一个结果.连续抛掷两次,第一次抛掷的点数记为a ,第二次抛掷的点数记为b .(1)求直线ax +by =0与直线x +2y +1=0平行的概率;(2)求长度依次为a ,b,2的三条线段能构成三角形的概率.【答案】解:(1)由题意知本题是一个等可能事件的概率,试验发生包含的事件是连续掷两次骰子有6×6=36种结果,满足条件的事件是1,2;2,4;3,6三种结果,∴所求的概率是p =336=112. (2)由题意知本题是一个等可能事件的概率,试验发生包含的事件数是36,根据题意可以知道a +b >2且|a -b |<2,符合要求的a ,b 共有1,2;2,1;2,2;2,3;3,2;3,3;3,4;4,3;4,4;4,5;5,4;5,5;5,6;6,5;6,6共有15种结果,∴所求的概率是1536=512.【能力提升】8.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A .13 B .19 C .112 D .118【答案】C【解析】由题意知(m ,n )的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P (m ,n )在直线x +y =4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112,故选C .9.(2019年河南洛阳模拟)已知函数y =2mx n+|x |-1,其中2≤m <5,2≤n <5,m ,n ∈N *且m ≠n ,则该函数为偶函数的概率为( )A .13 B .23 C .25 D .35【答案】B【解析】(m ,n )所取的值有6种等可能的结果:(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),使函数为偶函数的(m ,n )所取的值有(2,4),(3,2),(3,4),(4,2)所以所求概率为46=23.10.从集合M ={(x,y)|(|x|-1)2+(|y|-1)2<4,x,y ∈Z }中随机取一个点P (x ,y ),若xy ≥k (k >0)的概率为625,则k 的最大值是________.【答案】2【解析】因为M ={(x ,y )|(|x |-1)2+(|y |-1)2<4,x ,y ∈Z }={(x ,y )||x |≤2,|y |≤2,x ,y∈Z },所以集合M 中元素的个数为5×5=25.因为xy =1的情况有2种,xy =2的情况有4种,xy =4的情况有2种,所以要使xy ≥k (k >0)的概率为625,需1<k ≤2,所以k 的最大值为2.11.(2019年山西太原模拟)某工厂对一批共50件的机器零件进行分类检测,其重量(克)统计如下:2件.(1)从该批零件中任选1件,若选出的零件重量在[95,100]内的概率为0.26,求m 的值; (2)从重量在[80,85)的5件零件中,任选2件,求其中恰有1件为甲型的概率. 解:(1)由题意可得n =0.26×50=13,则m =50-5-12-13=20.(2)设“从重量在[80,85)的5件零件中,任选2件,其中恰有1件为甲型”为事件A ,记这5件零件分别为a ,b ,c ,d ,e ,其中甲型为a ,b .从这5件零件中任选2件,所有可能的情况为ab ,ac ,ad ,ae ,bc ,bd ,be ,cd ,ce ,de ,共10种, 其中恰有1件为甲型的情况有ac ,ad ,ae ,bc ,bd ,be ,共6种. 所以P (A )=610=35.。
《(整数值)随机数的产生》教课方案一、教课内容分析本节是人教A版数学必修3第三章第二节古典概型的第二课时的内容。
在第二章统计中,学生学习了几种随机抽样方法,这些人工或借助于随机数表的抽样方法的不足是工作量大、成本高。
本节课的主要内容是介绍用计算机或计算器产生取整数值的随机数,并用随机模拟的方法预计事件的概率。
它是在学生学习了随机事件、频次、概率的意义和性质以及古典概型后,为了让学生进一步领会用频次预计概率的思想,同时也是为了让学生深故意识到在面对实质问题且不可以利用概型公式求解时,能够用随机模拟的方法计算事件发生的频次而学习的内容。
当随机模拟试验次数特别多的时候,频次的稳固值就是概率,这也是一种求概率的有效方法。
所以这节课既是随机抽样的延长,也是古典概型的重要增补,仍是信息技术与数学的有效交汇,能有效的培育学生数学建模能力。
据此,本节课的教课重点是:经过模拟试验的设计与实行,认识利用计算机和计算器产生随机数的方法;经过模拟实验的设计和实行,领会如何运用模拟试验的方法获得事件发生的频次,并以此来预计概率。
二、教课目的设置1、经过介绍让学生认识产生(整数值)随机数的两种方法及其意义,并初步学会利用计算机或计算器产生随机数;2、经过教师演示及学生实践操作,让学生进一步理解随机模拟的基本思想是用频次近似预计概率;3、经过例题教课让学生学会设计一种随机模拟方法,初步掌握成立概率模型解决简单的实质问题的方法。
三、学生学情剖析:本班学生素质整体水平较高,他们拥有扎实的数学基础,思想敏锐,拥有一定的剖析问题、解决问题的能力。
但要较好地达成本节所设教课目的、达成预设的教课内容,学生还存在以下差距:一是利用计算器和计算机产生随机数还存在一些困难,主假如学生的计算器和计算机的应用水平较低,需要提早适合的培训。
二是面对实质问题,学生应用数学建模的意识仍是比较单薄,不可以有效的把学到的知识方法迁徙到详细的问题中去,需要教师在教课中适合指引。
2019-2020学年人教A版必修3 3.2 古典概型作业
一、题组对点训练
对点练一基本事件的列举问题
1.同时投掷两颗大小完全相同的骰子,用(x,y)表示结果,记A为“所得点数之和小于5”,则事件A包含的基本事件数是( )
A.3 B.4
C.5 D.6
解析:选D 事件A包含的基本事件有6个:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).故选D.
2.做试验“从0,1,2这3个数字中,不放回地取两次,每次取一个,构成有序数对(x,y),x为第1次取到的数字,y为第2次取到的数字”.
(1)写出这个试验的基本事件;
(2)求出这个试验的基本事件的总数;
(3)写出“第1次取出的数字是2”这一事件包含的基本事件.
解:(1)这个试验的基本事件为(0,1),(0,2),(1,0),(1,2),(2,0),(2,1).
(2)基本事件的总数为6.
(3)“第1次取出的数字是2”包含以下2个基本事件:(2,0),(2,1).
对点练二简单古典概型的计算
3.下列关于古典概型的说法中正确的是( )
①试验中所有可能出现的基本事件只有有限个;②每个事件出现的可能性相等;③每个基本事件出现的可能性相等;④基本事件的总数为n,随机事件A若包含k个基本事件,
则P(A)=k n .
A.②④B.①③④
C.①④D.③④
解析:选B 根据古典概型的特征与公式进行判断,①③④正确,②不正确,故选B.
4.下列试验中,属于古典概型的是( )
A.种下一粒种子,观察它是否发芽
B.从规格直径为250 mm±0.6 mm的一批合格产品中任意抽一根,测量其直径d
C.抛掷一枚硬币,观察其出现正面或反面
D.某人射击中靶或不中靶
解析:选C 依据古典概型的特点判断,只有C项满足:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相同.
5.四条线段的长度分别是1,3,5,7,从这四条线段中任取三条,则所取出的三条线段
能构成一个三角形的概率是( )
A.14 B .13 C.12
D.25
解析:选A 从四条长度各异的线段中任取一条,每条被取出的可能性均相等,所以该问题属于古典概型.又因为所有基本事件包括(1,3,5),(1,3,7),(1,5,7),(3,5,7)四种,而能构成三角形的基本事件只有(3,5,7)一种,所以所取出的三条线段能构成一个三角形的概率P =1
4
.
6.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为( )
A.3
10
B .25 C.12
D.35
解析:选C 从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土),共10种等可能发生的结果.其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为1
2
.
7.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:
(1)A :取出的两球都是白球;
(2)B :取出的两球1个是白球,另1个是红球.
解:设4个白球的编号为1,2,3,4;2个红球的编号为5,6.从袋中的6个小球中任取2个球的取法有(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15种.
(1)从袋中的6个球中任取两个,所取的两球全是白球的取法共有6种,为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4).
∴取出的两个球全是白球的概率为P (A )=
615=2
5
. (2)从袋中的6个球中任取两个,其中一个是红球,而另一个是白球,其取法包括(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)共8种.
∴取出的两个球一个是白球,一个是红球的概率为P(B)=8 15 .
对点练三较复杂的古典概型的计算
8.(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
(1)应从老、中、青员工中分别抽取多少人?
(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
①试用所给字母列举出所有可能的抽取结果;
②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
解:(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.
(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.
所以,事件M发生的概率P(M)=11
15
.
二、综合过关训练
1.下列是古典概型的是( )
A .任意掷两枚骰子,所得点数之和作为基本事件时
B .求任意的一个正整数平方的个位数字是1的概率,将取出的正整数作为基本事件时
C .从甲地到乙地共n 条路线,求某人正好选中最短路线的概率
D .抛掷一枚均匀硬币首次出现正面为止
解析:选C A 项中由于点数的和出现的可能性不相等,故A 不是;B 项中的基本事件是无限的,故B 不是;C 项满足古典概型的有限性和等可能性,故C 是;D 项中基本事件可能会是无限个,故D 不是.
2.(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
A.1
6 B.14 C.13
D.12
解析:选D 法一:设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.
由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=1
2
.
法二:两位男同学与两位女同学随机排成一列,因为男同学人数与女同学人数相等,所以两女同学相邻与不相邻的排法种数相同,所以两女同学相邻与不相邻的概率均为1
2
.
3.洛书,古称龟书,是阴阳五行术数之源.在古代传说中有神龟出于洛水,其甲壳上有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四隅黑点为阴数,其各行各列及对角线点数之和皆为15.如图,若从四个阴数中随机抽取2数,则能使这两数与居中阳数之和等于15的概率是( )
A.12 B .23 C.14
D.13。