单相全波和桥式整流电路
- 格式:doc
- 大小:501.00 KB
- 文档页数:4
一、单相半波整电路下图为单相半波电阻性负载整流电路。
由于半导体二极管D的单向导电特性,只有当变压器B次级电压U2为正半周时,才有电流I L流过负载R L,而负半周时I L则被截断,使负载两端的电压U L成为单向脉动直流电压,U=为其直流成分。
二、单相全波整流电路下图为单相全波容性负载整流电路。
电源变压器B的次级绕组具有中心抽头0;因此,可以得到电压值相等而相位相差180°的交流电压U21和U22,分别经二极管D1和D2整流。
在未加入电容C(即阻性负载)时,当变压器B次级绕组1的交流电压为正、2端为负时,D1导通,D2截止,流经负载的电流为I D1,另半个周期时,则2端为正,1端为负,此时D2导通,D1截止,流经负载的电流I D2。
I D1和I D2交替流经负载,使负载电流I L为单向的连续脉动直流,如下图所示。
在图中,B为电源变压器;I D1、I D2为整流器电流,U L为输出电压,U m为变压器次级电压U21或U22的峰值。
三、单相桥式整流电路下图是容性负载单相桥式整流电路。
它的四臂是由四只二极管构成,当变压器B次级的1端为正、2端为负时,二极管D2和D4因承受正向电压而导通,D1和D3因承受反向电压而截止。
此时,电流由变压器1端通过D4经R L,再经D2返回2端。
当1端为正时,二极管D1、D3导通,D2、D4截止,电流则由2端通过D3流经R L,再经D1返回1端。
因此,与全波整流一样,在一个周期内的正负半周都有电流流过负载,而且始终是同一方向。
四、三相半波整流电路如上图所示,整流变压器次级接成星形,各相出头与整流二极管(或硅整流器)相连,变压器的零点为“负”极,各整流管输出端连成一点为正极,其电压、电流关系示意图如下图。
五、三相全波整流电路三相全波整流电路如上图所示。
三相全波整流电路实际是由两套三相半波整流器相串联组成的。
第一套三相半波整流器是由变压器次级线圈L1、L2、L3和整流管D1、D2、D3组成的,第二套三相半波整流器是由L1、L2、L3和D4、D5、D6组成的。
单相全波桥式整流电路工作原理嘿,朋友们!今天咱来唠唠单相全波桥式整流电路的工作原理。
咱先打个比方哈,这单相全波桥式整流电路就好比是一个特别会整理东西的小能手。
交流电源就像是一堆杂乱无章的物品,有正有负,乱七八糟的。
那这个小能手是咋工作的呢?它里面有四个二极管,就像是四只小手,这四只小手可机灵着呢!当交流电源的电压是正的时候,其中两只小手就赶紧把正电压给抓住,让电流顺着它们设定的路走。
然后呢,当交流电源的电压变成负的时候,另外两只小手又迅速行动起来,把负电压也给抓住,同样让电流按照它们的安排走。
这么一来二去的,不管交流电源怎么变,经过这四只小手的整理,出来的可就都是一个方向的电流啦!就好像把那堆杂乱的物品整理得井井有条一样。
你说神奇不神奇?这可不就是变魔术嘛!把交流变成了直流。
那这有啥用呢?用处可大了去了!你想想,很多电子设备不都需要直流电才能好好工作嘛。
要是没有这个单相全波桥式整流电路,那这些设备不就没法正常运行啦?就好比人没了粮食,那还怎么有力气干活呀!
而且啊,这个电路还有个好处,就是它的效率比较高。
它能把交流电源充分利用起来,让直流电更稳定、更可靠。
所以说啊,这单相全波桥式整流电路可真是个宝啊!它默默地在各种电子设备里发挥着重要作用,让我们的生活变得更加丰富多彩。
咱可不能小瞧了它呀!
总之,单相全波桥式整流电路就是这么厉害,这么重要!它就像一个幕后英雄,虽然我们平时可能不太注意到它,但它却一直在为我们的科技生活贡献着自己的力量呢!。
目录第1章绪论 (1)1.1 什么是整流电路 (1)1.2 整流电路的发展与应用 (1)1.3 本设计的简介 (1)第二章总体设计方案介绍 (2)2.1总的设计方案 (2)2.2 单相桥式全控整流电路主电路设计 (3)2.3保护电路的设计 (5)2.4触发电路的设计 (9)第三章整流电路的参数计算与元件选取 (12)3.1 整流电路参数计算 (12)3.2 元件选取 (13)第四章设计总结 (15)4.1设计总结 (15)第五章心得体会 (16)参考文献 (17)第1章绪论1.1 什么是整流电路整流电路(rectifying circuit)把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离。
可以从各种角度对整流电路进行分类,主要的分类方法有:按组成的期间可分为不可控,半控,全控三种;按电路的结构可分为桥式电路和零式电路;按交流输入相数分为单相电路和多相电路;按变压器二次侧电流的方向是单向还是双向,又可分为单拍电路和双拍电路.1.2 整流电路的发展与应用电力电子器件的发展对电力电子的发展起着决定性的作用,因此不管是整流器还是电力电子技术的发展都是以电力电子器件的发展为纲的,1947年美国贝尔实验室发明了晶体管,引发了电子技术的一次革命;1957年美国通用公司研制了第一个晶闸管,标志着电力电子技术的诞生;70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(power-MOSFET)为代表的全控型器件迅速发展,把电力电子技术推上一个全新的阶段;80年代后期,以绝缘极双极型晶体管(IGBT)为代表的复合型器件异军突起,成为了现代电力电子技术的主导器件。
单相全波可控整流电路、单相桥式半控整流电路一.单相全波可控整流电路单相全波可控整流电路(Single Phase Full Wave Controlled Rectifier),又称单相双半波可控整流电路。
图1 单相全波可控整流电路及波形单相全波与单相全控桥从直流输出端或从交流输入端看均是基本一致的。
变压器不存在直流磁化的问题。
单相全波与单相全控桥的区别是:单相全波中变压器结构较复杂,材料的消耗多。
单相全波只用2个晶闸管,比单相全控桥少2个,相应的,门极驱动电路也少2个;但是晶闸管承受的最大电压是单相全控桥的2倍。
单相全波导电回路只含1个晶闸管,比单相桥少1个,因而管压降也少1个。
因此,单相全波电路有利于在低输出电压的场合应用1.电路结构图2.单相桥式半控整流电路,有续流二极管,阻感负载时的电路及波形单相全控桥中,每个导电回路中有2个晶闸管,1个晶闸管可以用二极管代替,从而简化整个电路。
如此即成为单相桥式半控整流电路(先不考虑VDR)。
单相全控桥式整流电路带电阻性负载的电路图如2所示,四个晶间管组成整流桥,其中vTl、vT4组成一对桥臂,vT 2、vT3组成另一对桥臂,vTl和vT3两只晶闸管接成共阴极,VT2和VT 4两只品间管接成共阳极,变压器二次电压比接在a、b两点,u2=1.414U2sin(wt)2.电阻负载半控电路与全控电路在电阻负载时的工作情况相同。
其工作过程如下:a)在u2正半周,u2经VT1和VD4向负载供电。
b) u2过零变负时,因电感作用电流不再流经变压器二次绕组,而是由VT1和VD2续流。
c)在u2负半周触发角a时刻触发VT3,VT3导通,u2经VT3和VD2向负载供电。
d)u2过零变正时,VD4导通,VD2关断。
VT3和VD4续流,u d又为零。
3.续流二极管的作用1)避免可能发生的失控现象。
2)若无续流二极管,则当a突然增大至180 或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使u d成为正弦半波,其平均值保持恒定,称为失控。
电力系统继电保护选择题300题01、交流电流i通过某电阻,在一定时间内产生的热量,与某直流电流I在相同时间内通过该电阻所产生的热量相等,那么就把此直流电流I定义为交流电流i的(A)。
(A)有效值;(B)最大值;(C)最小值;(D)瞬时值。
02、对称三相电源三角形连接时,线电流是(D)。
(A)相电流;(B)3倍的相电流;(C)2倍的相电流;(D)√3倍的相电流。
03、变压器供电的线路发生短路时,要使短路电流小些,下述措施哪个是对的(D)。
(A)增加变压器电动势;(B)变压器加大外电阻只;(C)变压器增加内电阻r;(D)选用短路比大的变压器。
04、调相机的主要用途是供给(B)、改善功率因数、调整网络电压,对改善电力系统运行的稳定性起一定的作用(A)有功功率;(B)无功功率;(C)有功功率和无功功率;(D)视在功率。
05、若一稳压管的电压温度系数为正值,当温度升高时,稳定电压U,将(A)。
(A)增大;(B)减小;(C)不变;(D)不能确定。
06、温度对三极管的参数有很大影响,温度上升,则(B)。
(A)放大倍数β下降;(B)放大倍数β增大;(C)不影响放大倍数;(D)不能确定。
07、射极输出器的特点之一是,具有(B)。
(A)很大的输出电阻;(B)很大的输入电阻;(C)与共射极电路相同;(D)输入、输出电阻均不发生变化。
08、三相桥式整流中,每个二极管导通的时间是(C)周期。
(A)1/4;(B)1/6;(C)1/3;(D)1/2。
09、单位时间内,电流所做的功称为(A)。
(A)电功率;(B)无功功率;(C)视在功率;(D)有功功率加无功功率。
10、导体对电流的阻力是(B)。
(A)电纳;(B)电阻;(C)西门子;(D)电抗。
11、在正弦交流纯电容电路中,下列各式,正确的是(A)。
(A)I=UωC;(B)I=U/ωC;(C)I=U/ωC;(D)I=U/C12、交流测量仪表所指示的读数是正弦量的(A)。
(A)有效值;(B)最大值;(C)平均值;(D)瞬时值。
单相全波整流电路中,若要求输出直流电压为18v,则整流电压器二次侧的输出电压时多少
1》要求整流输出直流电压为18v而没有电容器滤波时,变压器二次侧的输出电压:U交=U直/0.9=18/0.9=20(V)
2》整流输出直流设置了电容器滤波后电压为18v时,变压器二次侧的输出电压:U交=U直/0.9/1.41=18/0.9/1.41≈14(V)
在三相桥式全控整流电路中,对共阴极组和共阳极组是同时进行控制的,控制角都是α。
由于三相桥式整流电路是两组三相半波电路的串联,因此整流电压为三相半波时的两倍。
很显然在输出电压相同的情况下,三相桥式晶闸管要求的最大反向电压,可比三相半波线路中的晶闸管低一半。
为了分析方便,使三相全控桥的六个晶闸管触发的顺序是1-2-3-4-5-6,晶闸管是这样编号的:晶闸管KP1和KP4接a相,晶闸管KP3和KP6接b相,晶管KP5和KP2接c相。
晶闸管KP1、KP3、KP5组成共阴极组,而晶闸管KP2、KP4、KP6组成共阳极组。
为了搞清楚α变化时各晶闸管的导通规律,分析输出波形的
变化规则,下面研究几个特殊控制角,先分析α=0的情况,也就
是在自然换相点触发换相时的情况。
图1是电路接线图。
为了分析方便起见,把一个周期等分6段(见图2)。
在第(1)段期间,a相电压最高,而共阴极组的晶闸管KP1被
触发导通,b相电位最低,所以供阳极组的晶闸管KP6被触发导通。
这时电流由a相经KP1流向负载,再经KP6流入b相。
变压器a、b
两相工作,共阴极组的a相电流为正,共阳极组的b相电流为负。
加在负载上的整流电压为
ud=ua-ub=uab
经过60°后进入第(2)段时期。
这时a相电位仍然最高,晶闸管KPl继续导通,但是c相电位却变成最低,当经过自然换相点时触发c相晶闸管KP2,电流即从b相换到c相,KP6承受反向电压而关断。
这时电流由a相流出经KPl、负载、KP2流回电源c相。
变压器a、c两相工作。
这时a相电流为正,c相电流为负。
在负载上的电压为
ud=ua-uc=uac
再经过60°,进入第(3)段时期。
这时b相电位最高,共阴极组在经过自然换相点时,触发导通晶闸管KP3,电流即从a相换到b相,c相晶闸管KP2因电位仍然最低而继续导通。
此时变压器bc两相工作,在负载上的电压为
ud=ub-uc=ubc
余相依此类推。
由上述三相桥式全控整流电路的工作过程可以看出:
1.三相桥式全控整流电路在任何时刻都必须有两个晶闸管导通,而且这两个晶闸管一个是共阴极组,另一个是共阳极组的,只有它们能同时导通,才能形成导电回路。
2. 三相桥式全控整流电路就是两组三相半波整流电路的串联,所以与三相半波整流电路一样,对于共阴极组触发脉冲的要求是保证晶闸管KPl、KP3和KP5依次导通,因此它们的触发脉冲之间的相位差应为120°。
对于共阳极组触发脉冲的要求是保证晶闸管KP2、KP4和KP6依次导通,因此它们的触发脉冲之间的相位差也是120°。
3.由于共阴极的晶闸管是在正半周触发,共阳极组是在负半周触发,因此接在同一相的两个晶闸管的触发脉冲的相位应该相差180°。
4. 三相桥式全控整流电路每隔60°有一个晶闸管要换流,由上一号晶闸管换流到下一号晶闸管触发,触发脉冲的顺序是:1→2→3→4→5→6→1,依次下去。
相邻两脉冲的相位差是60°。
5.由于电流断续后,能够使晶闸管再次导通,必须对两组中应导通的一对晶闸管同时有触发脉冲。
为了达到这个目的,可以采取两种办法;一种是使每个脉冲的宽度大于60°(必须小于120°),一般取80°~100°,称为宽脉冲触发。
另一种是在触发某一号晶闸管时,同时给前一号晶闸管补发一个脉冲,使共阴极组和共阳极组的两个应导通的晶闸管上都有触发脉冲,相当于两个窄脉冲等效地代替大于60°的宽脉冲。
这种方法称双脉冲触发。
6.整流输出的电压,也就是负载上的电压。
整流输出的电压应该是两相电压相减后的波形,实际上都属于线电压,波头uab、uac、ubc、uba、uca、ucb均为线电压的一部分,是上述线电压的包络线。
相电压的交点与线电压的交点在同一角度位置上,故线电压的交点同样是自然换相点,同时亦可看出,三相桥式全控的整流电压在一个周期内脉动六次,脉动频率为6 × 50=300赫,比三相半波时大一倍。
7.晶闸管所承受的电压。
三相桥式整流电路在任何瞬间仅有二臂的元件导通,其余四臂的元件均承受变化着的反向电压。
例如在第(1)段时期,KP1和KP6导通,此时KP3和KP4,承受反向线电压uba=ub-ua。
KP2承受反向线电压
ubc=ub-uc。
KP5承受反向线电压uca=uc-ua。
晶闸管所受的反向最大电压即为线电压的峰值。
当α从零增大的过程中,同样可分析出晶闸管承受的最大正向电压也是线电压的峰值。