山东建筑大学高等数学试题A卷
- 格式:pdf
- 大小:98.02 KB
- 文档页数:2
···········································································································装订线山 东 建 筑 大 学 试 卷 共 4 页 第 1 页2019 至 2020学年第 1 学期 线性代数 (本科)试卷 A 卷 专业: 全校修线性代数的各专业试卷类别:考试 考试形式:闭卷 考试时间 120 分钟 题号 一 二 三 四 五六七总分 分数说明:在本卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 表示单位矩阵,A 表示方阵A 的行列式,()R A 表示矩阵A 的秩。
一、选择题(4分×6=24分)CDACCB二、填空题(4分×4=16分)1.2. 03.__1_ 42π三、计算题(6分×8=48分)1. 计算解: =----------------------------------------------------------------------------------2分22ii keπππ⎛⎫⎛⎫+⎪⎪⎝⎭⎭⎝⎭==-----------------------------------------------------4分cos sin22iππππ⎛⎛⎫=+++⎪⎪ ⎪⎝⎭⎝⎭---------------------------6分2. 利用高阶导数公式计算积分()341zzdzz=-⎰ ,积分曲线取正向.解:()()()213222!1zzz iI dz zzπ====-⎰ --------------------------------------------4分=---------------------------------------------------------------------------------6分3. 利用柯西积分公式计算32sin241zze zdzz z=⎛⎫+⎪++⎝⎭⎰ ,积分曲线取正向.解: 两个奇点-1,-4 其中-4在曲线外边,所以---------------------------------------------2分3322sin22411zz ze zdz dzz z z==⎛⎫⎛⎫+=⎪ ⎪+++⎝⎭⎝⎭⎰⎰-----------------------------------------4分4iπ=----------------------------------------------------------6分4. 已知调和函数22u x xy=-,求()f z u iv=+解: 222u vf i y i xx x∂∂'=+=-+∂∂-------------------------------------------------------2分()2222i x iy iz=++=+---------------------------------------------------------4分所以2222iz dz iz z C+=++⎰,则()22f z iz z C=++-----------------------------6分5. 将函数()()112z z--在环域2z<<+∞内展开为洛朗级数解: 在2z<<+∞环域上, ()()()1111212f zz z z z==---------------------------2分21111111111z z z z z z ⎛⎫=-=-+++ ⎪-⎝⎭- 221111221221z z z z z z ⎛⎫=-=-+++ ⎪-⎝⎭- ----------------------------------------------4分 所以()234137f z z z z=+++ -----------------------------------------------------------6分 6. 留用留数定理计算()220sin 0x x dx a x a +∞>+⎰解: 函数()22z f z z a =+在上半平面有一级极点ai ,故 ()222R e ,ix iz x e dx i s R z e ai x a π+∞-∞⎡⎤=⎣⎦+⎰22aae i i e ππ--==----------------------------------------------------------2分 ()22sin x xf x x a =+为偶函数,所以22220sin 1R e 2ix x x x dx e dx x a x a +∞+∞-∞⎡⎤=⎢⎥++⎣⎦⎰⎰----------4分 而原积分12a I e π-==---------------------------------------------------------------------------6分 7.()() 0 0,0, 0t t f t et ββ-<⎧=>⎨≥⎩求傅氏变换 解:()F ω()j t f t edt ω+∞--∞=⎰ ---------------------------------------------------------------------2分0t j t e e dt βω+∞--=⎰()0j t e dt ωβ+∞-+=⎰()()0j t e j ωβωβ+∞-+⎡⎤=⎢⎥-+⎣⎦--------------------------4分 ()01j ωβ-=-+22j βωβω-=+----------------------------------------------------------6分8.()()sin f t kt k =求正弦函数的拉氏变换为实数解:[sin ]L kt 0sin st kte dt +∞-=⎰------------------------------------------------------------------2分()220sin cos st e s kt k kt s k +∞-=-⋅-⋅+------------------------------------------4分 22ks k =+(Re()0)s >----------------------------------------------------------6分四、证明题(6分×2=12分)1证明拉普拉斯变换得微分性质.()()()0L f t sF s f '=-⎡⎤⎣⎦证明:()()0st L f t f t e dt +∞-''=⎡⎤⎣⎦⎰---------------------------------------------------------------------2分()()00st st f t e s f t e dt +∞+∞--=+⎰-------------------------------------------------------------------------4分()()0(Re())sL f t f s c =->⎡⎤⎣⎦()()0sF s f =-------------------------------------------------6分2、若在1z <内,()f z 解析,并且1()1f z z ≤-, 则()(0)(1)!n f e n <+证: 因 ()1||1!()(0)d 2πi n n n z n n f z f z z +=+=⎰-----------------------------------------------------------------2分故11||1||1!|(0)||d |2π||z (n)n n z n n f z z -+=+≤⎰11111!n 2π2π()n+1n n n nn n +-++≤------------------------------------------------------------------4分1(1)!1e(1)!n n n n ⎛⎫=++<+ ⎪⎝⎭ ----------------6分。
2010-2011-2 概率与数理统计试卷A 参考答案及评分标准一、填空题(每小题2分,共20分) 1、0.7; 2、)16,1(N ; 3、10; 4、1,1==B A; 5、44; 6、2720;7、 8、32,9、75,10、111-∑=n i i X n 。
二、选择题(每题2分,共20分)11、(B ); 12、(D ); 13、(D ); 14、(B ); 15、(C );16、(B );17、(A );18、(B ); 19、(A ); 20、(B ).三、计算题(共60分)21、(8分) 解 设A 表示事件“从剩下的产品中任取一件是正品”,i B 表示事件“已经出售的2件中有i 件次品”)2,1,0(=i ,则CC B P 210270)(=;85)/(0=B A P ---------------------------------------------------------2分CC C B P 21013171)(=;86)/(1=B A P -------------------------------------------------------4分CC B P 210232)(=;87)/(2=B A P -----------------------------------------------------------6分所以7.0878685)/()()(210232101317210272=⋅+⋅+⋅==∑=C C C C C C C i ii B A P B P A P ------------8分22、(10分)解 (1)X 的可能取值为1-,1,2,----------------------------------------------2分 且3162}1{==-=X P ,2163}1{===X P ,61}2{==X P ,------------------6分所以其概率分布为(2)()1123123≠⎪⎭⎫⎝⎛≠<=⎪⎪⎭⎫ ⎝⎛≠<X P X X P X X P 且-------------------------------------8分 322131==---------------------------------------------------------------------------------10分 23、(12分) 解 (1)由12)()(1=+=+=⎰⎰∞+∞-b adx b ax dx x f ,--------------------------2分 又85283)()(21121 21=+=+==⎭⎬⎫⎩⎨⎧>⎰⎰∞+b a dx b ax dx x f XP ,--------------------------4分所以21,1==b a ------------------------------------5分 (2)327)21()(214121412141=+==⎭⎬⎫⎩⎨⎧≤<⎰⎰dx x dx x f X P -------------------------7分(3)⎰∞-=x dt t f x F )()(当0≤x 时,00)(==⎰∞-xdt x F ;-----------------------------------------------------8分当10≤<x 时,)1(212121)21(0)(200+=+=++=⎰⎰∞-x x x x dt t dt x F x;----------10分当1>x 时,10)21(0)(1010=+++=⎰⎰⎰∞-x dt dt t dt x F ;-----------------------------11分综上, ⎪⎩⎪⎨⎧>≤<+≤=1,110,)1(210,0)(x x x x x x F ---------------------------------12分24、(10分)解 先求X e Y =的分布函数}{}{)(y e P y Y P y F X Y ≤=≤=-------------------------2分当0≤y 时,0)(=y F Y ;--------------------------------------------------------------4分当10<<y 时,00}ln {)(ln ==≤=⎰∞-yY dx y X P y F ;--------------------------------6分当1≥y 时,⎰-=≤=yx Y dx e y X P y F ln 0}ln {)(;--------------------------------------8分所以⎪⎩⎪⎨⎧≥=⋅<='=-1,111,0)()(2ln y y y e y y F y f y Y Y .----------------------------------------10分25、(10分)解),(Y X 的概率分布表为分所以Y X +的分布列为整理得Y X +的分布列为分26、(10分) 解:121122()x xE X edx θθθθθθ--+∞==+⎰---------------------------2分121222211222()2x xE X edx θθθθθθθθ--+∞==++⎰---------------------------4分令 122221122112n ii x x n θθθθθθ=⎧+=⎪⎨++=⎪⎩∑ 解得12,θθ的矩法估计为^2^1n n s x s θθ⎧==⎪⎪⎨⎪=-⎪⎩---------------------------6分似然函数12111221(,)n i i x n nL eθθθθθ=⎡⎤--⎢⎥⎢⎥⎣⎦∑=两边取对数1221121ln (,)ln n i i L n x n θθθθθ=⎡⎤=---⎢⎥⎣⎦∑ 对1θ求偏导,1212ln (,)0L nθθθθ∂=>∂,知L ln 是1θ的递增函数,1θ取到其最大的可能值使L ln 达到最大,故1θ的极大似然估计为^112min{,,}n x x x θ= 。
山东建筑大学试卷共3页第1页2019至2020学年第1学期考试时间:120分钟课程名称:概率论与数理统计C (A )卷考试形式:闭卷年级:2018级专业:全校开设本课程专业层次:本科一二三总分(说明:本考试不需要使用计算器)一、填空题(每题3分,共21分)1、设()( )P AB P A B =,且()0.2P A =,则()P B =.2、设袋中有2个黑球、3个白球,有放回地连续取2次球,每次取一个,则至少取到一个黑球的概率是.3、设随机变量Y X ,的期望方差为,5.0)(=X E ,5.0)(-=Y E )()(Y D X D =,75.0=,0)(=XY E 则Y X ,的相关系数=),(Y X R .4、设随机变量X 服从参数为0.5的指数分布,用切比雪夫不等式估计≤≥-)3|2(|X P .5、设随机变量),10(~2σN X ,已知,3.0)2010(=<<X P 则=<<)100(X P .6、设1X ,2X ,3X ,4X 相互独立且服从相同分布2()n χ,则1234~3X X X X ++.7、由来自正态总体)4,(~μN X 容量为400的简单随机样本,计算得样本均值为45,则未知参数μ的置信度为95%的置信区间二、选择题(每题3分,共21分)1、假设事件,A B 满足(|)1P B A =,则().(A)B 是必然事件;(B)()1P B =;(C)()0P A B -=;(D)A B ⊂.2、设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有().(A)()()() 1.P C P A P B ≤+-(B)()().P C P A B ≤ (C)()()() 1.P C P A P B ≥+-(D)()().P C P A B ≥ 3、设每次试验成功的概率为(01)p p <<,现进行独立重复试验,则直到第10次试验才取得第4次成功的概率为().(A)44610(1)C p p -;(B)3469(1)C p p -;(C)4459(1)C p p -;(D)3369(1).C p p -4、设两个独立的随机变量Y X ,分别服从正态分布)1,0(N 和)1,1(N ,则().(A)5.0}0{=≤+Y X P ;(B)5.0}1{=≤+Y X P ;(C)5.0}0{=≤-Y X P ;(D)5.0}1{=≤-Y X P .5、设随机变量Y X ,相互独立,且都服从)1,0(N ,则~12+-Y X ().(A))1,0(N ;(B))1,1(N ;(C))5,0(N ;(D))5,1(N .6、设二维随机向量),(Y X 服从二维正态分布,则随机变量Y X +=ξ与Y X -=η不相关的充要条件为().(A))()(Y E X E =;(B)2222)]([)()]([)(Y E Y E X E X E -=-;(C)2222)]([)()]([)(Y E Y E X E X E +=+;(D))()(22Y E X E =.7、设随机变量X 的分布函数为()X F x ,则35Y X =-的分布函数()Y F y 为().(A)(53)X F y -.(B)5()3X F y -.(C)3()y F +.(D)31()yF --.考场班级姓名学号座号线装订线装订线山东建筑大学试卷共3页第2页三、计算应用题(共58分)1、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都是一等品,求丢失的也是一等品的概率.2、(12分)设随机变量X 的概率密度为)()(||+∞<<-∞=-x Aex f x ,求:(1)系数A ;(2)X 的分布函数;(3))(X D .3、(8分)设),1,0(~N X 求||X Y =的概率密度.姓名学号线装订线装订线山东建筑大学试卷共3页第3页4、(10分)设二维随机变量),Y X (的联合概率密度为:⎩⎨⎧=0),(2Axy y x f 其他10 ,20<<<<y x 求:(1)参数A ;(2)X 和Y 的边缘概率密度并判断X 和Y 是否独立;(3))5.0,1(≤≥Y X P .5、(12分)设随机变量X 和Y 的联合分布在点(0,1),(1,0)及(1,1)为顶点的三角形区域G 上服从均匀分布,试求),(Y X Cov .6、(8分)设总体X 的概率密度为101,,(;).0,x x f x θθθ-<<⎧=⎨⎩其它(0).θ>12,,,n x x x 是X 的简单样本观测值,试求(1)参数θ的矩估计值;(2)参数θ的极大似然估计值.姓名学号线装订线装订线。
2009至2010学年第2学期 课程名称 高等数学A2 (本科)试卷A一、填空题(每小题3分,共15分)1.曲面22y x z +=上与平面042=-+z y x 平行的切平面方程是_______________.2.交换积分次序⎰⎰yydx y x f dy ),(10=_______________________.3.设曲线L 为圆周122=+y x ,则=⎰+L y x ds e22_________.4.设)10()(2≤≤=x x x f ,则函数)(x f 的正弦级数在21-=x 处收敛于_________. 二、选择题(每小题3分,共15分)6. 设函数),y x f z (=的全微分为,ydy xdx dz +=则点(0,0)(A )不是),y x f (的连续点. (B )不是),y x f (的极值点. (C )是),y x f (的极大值点. (D )是),y x f (的极小值点. 7.设区域,1:D 22≤+y x 则=++⎰⎰Ddxdy y x )2(( )0).A ( 2).B ( π).C ( π2D ).(8. 曲线L 的方程为]),1,1[(12-∈-=x x y 起点是,0,1)(- 终点是(1,0), 则dy xxydx L⎰+22=( )0).A ( 1).B ( 2).C ( 1).D (-9.下列级数中,收敛的是( )(A )22111n n n ∞=-+∑ (B )1131n n ∞=+∑ ( C )13(21)!n n n ∞=+∑ (D )11ln(1)n n ∞=+∑三、计算题(每小题7分,共70分)11.求由方程()z y x z y x 3232sin 2-+=-+确定的隐函数)y x z z ,(=的全微分.12. 设(),,xy x f z =其中f 具有二阶连续偏导数,求.2yx z∂∂∂ 13.计算,cos 2⎰⎰Ddxdy y 其中D 由直线121-===x y ,y ,x 所围成的闭区域.14.计算以xOy 面上的圆周ax y x =+22所围成的闭区域为底,以曲面22y x z += 为顶面的曲顶柱体的体积.15.计算⎰-+-=Lx x dy y e dx y y e I )2cos ()2sin (,其中L 为上半圆周),0(,222≥=+y x y x沿逆时针方向.16. 计算曲面积分⎰⎰∑++=dxdy z dzdx y dydz x I 222,∑为锥面222z x y =+与平面2=z 所围成锥体的外侧表面.17. 将函数 231)(2++=x x x f 展开成 )1(-x 的幂级数.18. 求幂级数∑∞=----1121121n n n x n )(的收敛域,并求其和函数.20.已知某曲线经过点(1,1),它的切线在纵轴上的截距等于切点的横坐标,求该曲线方程.2009至2010学年第2学期 课程名称 高等数学A2 (本科)试卷A 答案一、填空题(每小题3分,共15分) 1.0542=--+z y x 2.⎰⎰xxdy y x f dx2),(1. 3.e π2 4.41- 5.xy 1=.二、选择题(每小题3分,共15分)6.D 7.D 8.A 9.C 10.C 三、计算题(每小题7分,共70分)11. ()z y x z y x z y x F 3232sin 2),,(+---+=313)32cos(61)32cos(2=+-+---+-=-=∂∂z y x z y x F F x z z x 323)32cos(62)32cos(4=+-+---+-=-=∂∂z y x z y x F F y z z y 所以 dy dx dy y z dx x z dz 3231+=∂∂+∂∂=12解 令 xy u =,则().,u x f z ='2'1yf f x u u f x f x z +=∂∂⋅∂∂+∂∂=∂∂ ()yf yf y f yf f yx z y y x z ∂∂++∂∂=+∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂=∂∂∂'2'2'1'2'12 x yf f x f yu u f y f y u u f ⋅++⋅=∂∂⋅∂∂++∂∂⋅∂∂="22'2"12'2'2'1⋅++="22'2"12xyf f xf …………………5分 13.解 积分区域D: ⎩⎨⎧<<+<<2011y y x ,4212120222112022sin y sin dy y cos y dx dy y cos dxdy y cos y D====⎰⎰⎰⎰⎰+ 14.解 曲顶柱体在xOy 面上的投影区域为D ={(x , y )|x 2+y 2≤ax }. 在极坐标下}cos 0 ,22|),{(θρπθπθρa D ≤≤≤≤-=, 所以dxdy y x V axy x )(2222+=≤+⎰⎰πθθρρρθππθππ422cos 022442323cos 4a d a d d a ==⋅=⎰⎰⎰-- 15解.添加辅助线x y OA ,0:=从0到2,由格林公式πσ===-+-⎰⎰⎰+DDOAL x xSd dy ye dx y y e22)2cos ()2sin (而00)2cos ()2sin (2==-+-⎰⎰dx dy y e dx y y e OAx x所以,.π=-=⎰⎰+OAOAL I16解 由高斯公式,I dv z y x dv zR y Q x P )222()(++=∂∂+∂∂+∂∂=ΩΩ⎰⎰⎰⎰⎰⎰ππ8222222=⋅===⎰⎰⎰⎰⎰⎰⎰Ωdz z z dxdy zdzzdv zD17.解 )1(31)1(212111231)(2-+--+=+-+=++=x x x x x x x f∑∑∞=∞=-----=-+--+=00 )31()1(31 )21()1(21311131211121n n n n nn x x x x ∑∞=++-⎪⎭⎫ ⎝⎛--=11 )1(3121)1(n n n n n x由1211<-<-x 及1311<-<-x 知,31<<-x . 18.解.nn n u u 1lim +∞→ ,1|1212|lim 21212<=-⋅+=-+∞→x x n n x n n n ,11<<-x 当1-=x 时,级数∑∑∞=∞=----=---11121121)1(121n nn n n n n )()(收敛, 当1=x 时,级数∑∞=---11121n n n )(收敛,所以,收敛域为]1,1[-.设)11(121)(1121≤≤---=∑∞=--x x n x S n n n )(21)1(21122111211111121)(x x x x n x S n n n n n n n n n +=-=-='⎥⎦⎤⎢⎣⎡--='∑∑∑∞=--∞=--∞=--)()()( 两边积分,x dt t dt t SS x S xxarctan 11))0()(020=+='=-⎰⎰(因0)0(=S ,所以,x x S arctan )(=,]1,1[-∈x 20. 解:切线方程为),(x X y y Y -'=-由题意知x Y X ==0代入得,y x y x '-=-即11-=-'y x y 且11==x y ⎪⎪⎭⎫ ⎝⎛+-=⎰⎰⎰-c dx e e y dx x dx x 11⎪⎭⎫ ⎝⎛+-=⎰c dx xx 1()c x x +-=ln由11==x y 得1=c所求曲线方程为:()x x y ln 1-=。
2006-2007学年第二学期线性代数试题A 卷一.填空题(本题满分12分,每小题3分)1、设0是矩阵⎪⎪⎪⎭⎫ ⎝⎛=a A 01020101的特征值,则=a _____________2、已知矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k k k k 111111111111A ,且A 的秩()3=A r ,则=k ___________. 3、设5200210000120011A ⎛⎫ ⎪ ⎪= ⎪- ⎪ ⎪⎝⎭,则1_______A -=. 4、设矩阵2112A ⎛⎫= ⎪-⎝⎭,E 为2阶单位矩阵,矩阵B 满足2BA B E =+,则 =B .二、选择题(本题满分12分,每小题3分,.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内)1.设A 是4阶矩阵,且A 的行列式0=A ,则A 中【 】.()A . 必有一列元素全为0;()B . 必有两列元素成比例;()C . 必有一列向量是其余列向量的线性组合;()D . 任意列向量是其余列向量的线性组合.2.设⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A , ⎪⎪⎪⎭⎫ ⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P , ⎪⎪⎪⎭⎫ ⎝⎛=1010100012P ,则必有【 】.()A . B P AP =21 ; ()B . B P AP =12 ; ()C . B A P P =21 ; ()D . B A P P =12.3.设12,,,s ααα均为n 维列向量,A 为m n ⨯矩阵,下列选项正确的是【 】(A) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性相关. (B) 若12,,,s ααα线性相关,则12,,,s A A A ααα线性无关. (C) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性相关. (D) 若12,,,s ααα线性无关,则12,,,s A A A ααα线性无关. 4.设21,λλ是矩阵A 的两个不同的特征值,对应的特征向量分别为21,αα,则1α,)(21αα+A 线性无关的充分必要条件是【 】(A) 01≠λ. (B) 02≠λ. (C) 01=λ. (D) 02=λ.三.计算行列式(本题满分6分)11111110000011000011---=n D四.(本题满分12分)设n 阶矩阵A 和B 满足条件:AB B A =+.⑴ 证明:E A -是可逆矩阵,其中E 是n 阶单位.⑵ 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛-=200012031B ,求矩阵A .五.(本题满分14分)当a 、b 为何值时,线性方程组()⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++12323122043214324324321ax x x x b x x a x x x x x x x x 有唯一解,无解,有无穷多组解,并求出有无穷多组解时的通解.六.(本题满分12分)求矩阵 ⎪⎪⎪⎭⎫ ⎝⎛-=300121103A 的特征值和特征向量,并回答A 是否能对角化?为什么? 七.(本题满分12分)问λ取何值时,二次型32312123222142244x x x x x x x x x f +-+++=λ为正定二次型?八.(本题满分8分)已知三维向量空间的一组基为()0111,,=α,()1012,,=α,()1103,,=α求向量()002,,=β在上述基下的坐标.九.(本题满分12分)设n 维向量组12,,,m ααα线性无关,12,,,,m αααβ线性相关,试用两种..不同的方法证明β可由12,,,m ααα线性表示,且表示法唯一.。