解方程--去分母
- 格式:ppt
- 大小:493.50 KB
- 文档页数:16
去分母解方程引言在代数学中,方程是一种数学等式,它表示两个表达式相等。
方程的解是能够使等式成立的数值。
在解方程时,我们通常需要对方程进行变形和化简,以便找到解的方法。
其中,解分母的方程是一种特殊类型的方程,它需要我们根据方程中的分母进行处理,以便得到更简洁的形式。
一、消去分母解分母的方程首先需要进行的操作是消去分母。
我们可以利用最小公倍数(LCM)来消去分母。
具体步骤如下:1.找到方程中所有分母的最小公倍数(LCM)。
2.对方程中的每一项进行乘法,使其分母等于LCM。
3.化简方程,消去分母。
示例1:消去分母考虑以下方程:1/x + 1/(x+1) = 1/(x+2)我们可以首先找到最小公倍数,并对方程两边进行乘法,得到:(x+1)(x+2) + x(x+2) = x(x+1)进一步化简方程,消去分母:(x+1)(x+2) + x(x+2) - x(x+1) = 0这样,我们就成功消去了方程中的分母。
二、整理方程消去分母之后,我们需要对方程进行整理,以便得到更简单的形式。
在整理方程时,我们需要注意以下几点:1.将方程中的同类项合并。
2.将方程变形为标准形式,即形如ax^2 + bx + c = 0的形式。
示例2:整理方程考虑以下方程:(x+1)(x+2) + x(x+2) - x(x+1) = 0利用分配律,我们可以将方程中的同类项合并,得到:x^2 + 3x + 2 + x^2 + 2x - x^2 - x = 0化简后得到:x^2 + 4x + 2 = 0将方程变形为标准形式:x^2 + 4x + 2 = 0这样,我们就成功整理了方程。
三、解方程消去分母并整理方程之后,我们可以开始解方程。
解方程的方法因方程的类型而异,常见的解方程方法包括因式分解、配方法、公式法等。
示例3:解方程考虑以下方程:x^2 + 4x + 2 = 0我们可以使用求根公式来解这个方程。
求根公式给出了二次方程ax^2 + bx + c =0的解的表达式:x = (-b ± sqrt(b^2 - 4ac)) / 2a将方程中的系数代入求根公式,我们可以得到方程的解。
解一元一次方程——去分母(说课稿)一、说教材方程是应用非常广泛的数学工具,它在义务教育阶段的数学课程中占重要地位。
本节课的教学内容是《解一元一次方程》的第3课时。
解方程既是本章的重点也为今后学习其他方程、不等式及函数有重要基础作用。
为了使学生牢固掌握解方程体会方程是刻画现实世界的一个有效的数学模型,产生学习解方程的欲望,教材设置了新颖的问题情境,让学生从具体的情境中获取信息,列方程,然后尝试主动探究方程的解法。
并通过练习归纳掌握解方程的基本步骤和技能。
1、教学目标(1)、知识目标:1、掌握解一元一次方程中"去分母"的方法,并能解这种类型的方程。
2、了解一元一次方程解法的一般步骤。
(2)、能力目标:经历 "把实际问题抽象为方程"的过程,发展用方程方法分析问题、解决问题的能力,(3)、情感目标:1、通过具体情境引入新问题(如何去分母),激发学生的探究欲望。
2、通过埃及古题的情境感受数学文明.2、教学重点:通过"去分母"解一元一次方程3、教学难点:探究通过"去分母"的方法解一元一次方程二、说教法:在前面的学段中,学生已学习了合并同类项、去括号等整式运算内容。
解一元一次方程就成为承上启下的重要内容。
因此,它既是重点也是难点。
我根据学生认识规律和教学的启发性、直观性和面向全体因材施教等教学原则,积极创设新颖的问题情境,以“学生发展为本,以活动为主线,以创新为主旨”,采用多媒体教学等有效手段,以引导法为主,辅之以直观演示法、讨论法,向学生提供充分从事数学活动的机会,激发学生的学习积极性,使学生主动参与学习的全过程。
我的教学设计的指导思想是: 1、让学生自己去尝试发现问题,而不是被动的回答老师的问题、接受老师的答案。
3、精心设计问题,因为好的问题设计能不断激发学习动机,还能给学生提供学习的目标和思维的空间,使学生自主学习真正成为可能。
去分母解方程去分母解方程是一种常见的数学问题,主要针对含有分式的方程进行求解。
在解这类方程时,我们需要通过消去分母的方式将方程转化为一个整式方程,然后再进行求解。
下面将详细介绍去分母解方程的步骤和方法。
一、基本概念在去分母解方程之前,我们首先需要了解一些基本概念。
1. 分式:分式是由两个整式(即多项式)相除得到的表达式,通常形如a/b,其中a和b都是整式。
2. 分母:在一个分式中,除号后面的整式称为分母。
3. 分子:在一个分式中,除号前面的整式称为分子。
二、去分母解方程的步骤下面将介绍具体的去分母解方程步骤:1. 找到所有含有分数形式的方程,并确定其中每个方程所对应的最小公倍数(LCM)。
2. 将每个方程中的所有项乘以该最小公倍数,并同时将等号两侧都乘以该最小公倍数。
这样可以消去所有的分母。
3. 化简得到一个整系数多项式方程。
4. 将该多项式方程进行因式分解,并求出所有可能的根。
5. 检验求得的根是否满足原方程,若满足则为解,若不满足则舍去。
三、具体例子为了更好地理解去分母解方程的步骤和方法,下面将通过一个具体的例子来进行说明。
假设我们有以下方程需要解:1/x + 1/(x+1) = 2/3步骤1:找到含有分数形式的方程,并确定最小公倍数(LCM)。
根据上述方程,我们可以确定最小公倍数为3x(x+1)。
步骤2:将每个方程中的所有项乘以LCM,并同时将等号两侧都乘以LCM。
得到3(x+1) + 3x = 2x(x+1)步骤3:化简得到一个整系数多项式方程。
化简后得到6x + 3 = 2x^2 + 2x步骤4:将该多项式方程进行因式分解,并求出所有可能的根。
通过因式分解得到2x^2 - 4x - 3 = 0。
接下来可以使用配方法、求根公式或图像法等方法求解该二次方程。
假设我们使用因式分解法,可得(x-3)(2x+1)=0。
可能的根为x=3和x=-1/2。
步骤5:检验求得的根是否满足原方程。
将x=3代入原方程,得到1/3 + 1/(3+1) = 2/3,满足原方程。