高考物理第一轮复习磁场教案
- 格式:doc
- 大小:292.00 KB
- 文档页数:7
第八章 磁 场课标导航第1课时 磁场、磁场对电流的作用1、高考解读真题品析知识:安培力的大小与方向例1. (09年全国卷Ⅰ)17.如图,一段导线abcd 位于磁感应强度大小为B 的匀强磁场中,且与磁场方向(垂直于纸面向里)垂直。
线段ab 、bc 和cd 的长度均为L ,且0135abc bcd ∠=∠=。
流经导线的电流为I ,方向如图中箭头所示。
导线段abcd 所受到的磁场的作用力的合力A. 方向沿纸面向上,大小为(21)ILB +B. 方向沿纸面向上,大小为(21)ILB -C. 方向沿纸面向下,大小为(21)ILB +D. 方向沿纸面向下,大小为(21)ILB -解析:该导线可以用a 和d 之间的直导线长为L )12(+来等效代替,根据BIl F =,可知大小为BIL )12(+,方向根据左手定则.A 正确。
答案:A点评:熟练掌握安培力公式中各个物理量的含义,此题中BIL F =安,L 就利用了等效长度。
热点关注知识:通电导体在安培力作用下的转动和平动例2. 如图所示,把一重力不计的通电直导线水平放在蹄形磁铁磁极的正上方,导线可以自由转动,当导线通入图示方向电流I 时,导线的运动情况是(从上往下看)( )A .顺时针方向转动,同时下降B .顺时针方向转动,同时上升C .逆时针方向转动,同时下降D .逆时针方向转动,同时上升答案:A点评:1.电流元法:即把整段电流等效为多段直线电流元。
进而判断受力、运动2、等效法:环行电流或通电螺线管都可以等效成条形磁铁,条形磁铁也可以等效成环行电流或通电螺线管3、推论法(1)两电流相互平行时无转动趋势,有靠近或远离的趋势,同向电流相互吸引,反向电流相互排斥;(2)两电流不平行时,有转动到相互平行且电流方向相同的趋势,然后相互靠近。
2、知识网络考点1.磁场的基本概念1.磁体的周围存在磁场。
2.电流的周围也存在磁场3.变化的电场在周围空间产生磁场(麦克斯韦)。
4.磁场和电场一样,也是一种特殊物质5.磁场不仅对磁极产生力的作用,对电流也产生力的作用.6.磁场的方向——在磁场中的任一点,小磁针北极受力的方向,亦即小磁针静止时北极所指的方向,就是那一点的磁场方向.7.磁现象的电本质:磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的.考点2.磁场的基本性质磁场对放入其中的磁极或电流有磁场力的作用.(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
课题:磁场类型:复习课目的要求:重点难点:教具:过程及内容:磁场基本性质一、磁场1、磁场:磁场是存在于磁体、运动电荷周围的一种物质.它的基本特性是:对处于其中的磁体、电流、运动电荷有力的作用.2、磁现象的电本质:所有的磁现象都可归结为运动电荷之间通过磁场而发生的相互作用.二、磁感线为了描述磁场的强弱与方向,人们想象在磁场中画出的一组有方向的曲线.1.疏密表示磁场的强弱.2.每一点切线方向表示该点磁场的方向,也就是磁感应强度的方向.3.是闭合的曲线,在磁体外部由N极至S极,在磁体的内部由S极至N极.磁线不相切不相交。
4.匀强磁场的磁感线平行且距离相等.没有画出磁感线的地方不一定没有磁场.5.安培定则:姆指指向电流方向,四指指向磁场的方向.注意这里的磁感线是一个个同心圆,每点磁场方向是在该点切线方向·*熟记常用的几种磁场的磁感线:【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A)A.带负电;B.带正电;C.不带电;D.不能确定解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A. 三、磁感应强度1.磁场的最基本的性质是对放入其中的电流或磁极有力的作用,电流垂直于磁场时受磁场力最大,电流与磁场方向平行时,磁场力为零。
2.在磁场中垂直于磁场方向的通电导线受到的磁场力F跟电流强度I和导线长度l的乘积Il的比值,叫做通电导线所在处的磁感应强度.①表示磁场强弱的物理量.是矢量.②大小:B=F/Il(电流方向与磁感线垂直时的公式).③方向:左手定则:是磁感线的切线方向;是小磁针N极受力方向;是小磁针静止时N极的指向.不是导线受力方向;不是正电荷受力方向;也不是电流方向.④单位:牛/安米,也叫特斯拉,国际单位制单位符号T.第1课⑤点定B 定:就是说磁场中某一点定了,则该处磁感应强度的大小与方向都是定值.⑥匀强磁场的磁感应强度处处相等.⑦磁场的叠加:空间某点如果同时存在两个以上电流或磁体激发的磁场,则该点的磁感应强度是各电流或磁体在该点激发的磁场的磁感应强度的矢量和,满足矢量运算法则.【例2】如图所示,正四棱柱abed 一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC )A.同一条侧棱上各点的磁感应强度都相等B.四条侧棱上的磁感应强度都相同C.在直线ab 上,从a 到b ,磁感应强度是先增大后减小D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大解析:因通电直导线的磁场分布规律是B ∝1/r ,故A,C 正确,D 错误.四条侧棱上的磁感应强度大小相等,但不同侧棱上的点的磁感应强度方向不同,故B 错误.【例3】如图所示,两根导线a 、b 中电流强度相同.方向如图所示,则离两导线等距离的P 点,磁场方向如何?解析:由P 点分别向a 、b 作连线Pa 、Pb .然后过P 点分别做Pa 、Pb 垂线,根据安培定则知这两条垂线用PM 、PN 就是两导线中电流在P 点产生磁感应强度的方向,两导线中的电流在P 处产生的磁感应强度大小相同,然后按照矢量的合成法则就可知道合磁感应强度的方向竖直向上,如图所示,这也就是该处磁场的方向. 答案:竖直向上【例4】六根导线互相绝缘,所通电流都是I ,排成如图10一5所示的形状,区域A 、B 、C 、D 均为相等的正方形,则平均磁感应强度最大的区域是哪些区域?该区域的磁场方向如何?解析:由于电流相同,方格对称,从每方格中心处的磁场来定性比较即可,如I 1在任方格中产生的磁感应强度均为B ,方向由安培定则可知是向里,在A 、D 方格内产生的磁感应强度均为B /,方向仍向里,把各自导线产生的磁感应强度及方向均画在四个方格中,可以看出在B 、D 区域内方向向里的磁场与方向向外的磁场等同,叠加后磁场削弱.答案:在A 、C 区域平均磁感应强度最大,在A 区磁场方向向里.C 区磁场方向向外.【例5】一小段通电直导线长1cm ,电流强度为5A ,把它放入磁场中某点时所受磁场力大小为0.1N ,则该点的磁感强度为( )A .B =2T ; B .B ≥2T ;C 、B ≤2T ;D .以上三种情况均有可能解析:由B =F/IL 可知F/IL =2(T )当小段直导线垂直于磁场B 时,受力最大,因而此时可能导线与B 不垂直, 即Bsin θ=2T ,因而B ≥2T 。
第九章 电磁感应电磁感应 楞次定律一、电磁感应现象感应电流产生的条件是:穿过闭合电路的磁通量发生变更。
以上表述是充分必要条件。
不管什么状况,只要满意电路闭合和磁通量发生变更这两个条件,就必定产生感应电流;反之,只要产生了感应电流,那么电路肯定是闭合的,穿过该电路的磁通量也肯定发生了变更。
当闭合电路的一局部导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。
这个表述是充分条件,不是必要的。
在导体做切割磁感线运动时用它判定比拟便利。
2.感应电动势产生的条件。
感应电动势产生的条件是:穿过电路的磁通量发生变更。
这里不要求闭合。
无论电路闭合与否,只要磁通量变更了,就肯定有感应电动势产生。
这好比一个电源:不管外电路是否闭合,电动势总是存在的。
但只有当外电路闭合时,电路中才会有电流。
二、右手定那么伸开右手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿过手心,使大拇指指向导体的运动方向,这时四指所指的方向就是感应电流的方向。
三、楞次定律1.楞次定律——感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变更。
( 阻碍⇔原磁场增加时,对抗, 原磁场减小时,补充 )2.对“阻碍〞意义的理解:〔1〕阻碍原磁场的变更。
“阻碍〞不是阻挡,而是“延缓〞〔2〕阻碍的是原磁场的变更,而不是原磁场本身,假如原磁场不变更,即使它再强,也不会产生感应电流.〔3〕阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.〔4〕由于“阻碍〞,为了维持原磁场变更,必需有外力克制这一“阻碍〞而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的表达.3.楞次定律的详细应用从“阻碍相对运动〞的角度来看,楞次定律的这个结论可以用能量守恒来说明:既然有感应电流产生,就有其它能转化为电能。
又由于是由相对运动引起的,所以只能是机械能削减转化为电能,表现出的现象就是“阻碍〞相对运动。
第25讲 磁场的描述 磁场对电流的作用教学目标1. 知道磁场、磁感应强度、磁感线2. 能判断通电直导线和通电线圈周围磁场的方向3. 了解安培力、安培力的方向 ,会计算匀强磁场中的安培力 重点:匀强磁场中安培力的受力分析、方向判断以及计算 难点:匀强磁场中安培力的受力分析、方向判断以及计算知识梳理一、磁场1.磁场的方向:(1)磁感线在该点的切线方向;(2)规定在磁场中任意一点小磁针北极的受力方向(小磁针静止时N 极的指向)为该点处磁场方向。
(3)对磁体:外部(N →S),内部(S →N)组成闭合曲线;这点与静电场电场线(不成闭合曲线)不同。
(4)电流产生的磁场方向用安培左手定则判断 2.地磁场的磁感线分布特点:要明确三个问题:(磁极位置? 赤道处磁场特点?南北半球磁场方向?)(1)地球是一个巨大的磁体、地磁的N 极在地理的南极附近,地磁的S 极在地理的北极附近; (2)地磁场的分布和条形磁体磁场分布近似;(3)在地球赤道平面上,地磁场方向都是由北向南且方向水平(平行于地面); 3.磁感应强度(1)定义:在磁场中垂直于磁场方向的通电直导线,所受的安培力F 跟电流I 和导线长度L 之乘积IL 的比值叫做磁感应强度,定义式为ILFB=。
(条件是匀强磁场,或非匀强磁场中L 很小,并且L ⊥B ) 磁感应强度是矢量,其方向就是磁场方向。
单位是特斯拉,符号为T ,1T=1N/(A ∙m)=1kg/(A ∙s 2) (2)对定义式的理解:①定义式中反映的F 、B 、I 方向关系为:B ⊥I ,F ⊥B ,F ⊥I ,则F 垂直于B 和I 所构成的平面。
②定义式可以用来量度磁场中某处磁感应强度,不决定该处磁场的强弱,磁场中某处磁感应强度的大小由磁场自身性质来决定。
③磁感应强度是矢量,其矢量方向是小磁针在该处的北极受力方向,与安培力方向是垂直的。
④如果空间某处磁场是由几个磁场共同激发的,则该点处合磁场(实际磁场)是几个分磁场的矢量和;某处合磁场可以依据问题求解的需要分解为两个分磁场;磁场的分解与合成必须遵循矢量运算法则。
2024届高考物理一轮复习磁场的描述及磁场对电流的作用导学案12024届高考物理一轮复习磁场的描述及磁场对电流的作用导学案1磁场的描述及磁场对电流的作用导学案一、课前导学1.磁场的概念:磁场是物质形成的,它是物质空间范围内一些特定性质对其他物质或作用体具有的磁力作用范围。
2.磁场的描述方法:(1)磁力线:磁力线是用于描述磁场空间分布情况的抽象概念。
磁力线是指在磁场中,沿着磁力方向画出的一连串连续的曲线,它的方向表示磁场的方向,线的密度表示磁场强度的大小。
(2)磁场强度:磁场强度是在磁场中单位正电荷所受的磁场力。
磁场强度的单位是特斯拉。
3.磁场对电流的作用:磁场对通过其内部的电流有力的作用。
4.磁场力的定义:磁场力是指磁场对带电粒子所产生的力。
5.磁场力的方向规律:(1)磁场力与电流方向和磁场方向垂直;(2)对直导线产生的磁场力,根据右手定则,磁场力的方向与右手四指指向的磁感线方向相同,右手大拇指指向的方向即为磁场力的方向;(3)对弯曲导线产生的磁场力,根据斯劳顿定则,握拳,大拇指所指方向即为磁场力的方向。
二、课堂学习1.磁场对电流的作用导致磁场力。
根据右手定则和斯劳顿定则原理,可以判断磁场力的大小和方向。
2.磁场力的计算公式:(1)在磁场中的直导线所受的磁场力大小为:F = BILsinθ其中,F为磁场力的大小,B为磁场强度,I为电流大小,L为导线长度,θ为磁场线与导线的夹角。
(2)在磁场中的弯曲导线所受的磁场力大小为:F=BIL其中,F为磁场力的大小,B为磁场强度,I为电流大小,L为弯曲导线长度。
三、课堂练习1. 当直导线的电流大小为5A,导线长度为10cm,磁场强度为0.2T,直导线与磁场平面的夹角为30°,求直导线所受的磁场力大小。
解:F = BILsinθ= 0.2T * 5A * 0.1m * sin30°=0.01N2. 当弯曲导线的电流大小为3A,弯曲导线长度为20cm,磁场强度为0.1T,求弯曲导线所受的磁场力大小。
第46讲 磁场及其对电流的作用[研读考纲明方向][重读教材定方法]1.P 81图3.1-2,思考:若通电导线东西方向放置,小磁针还会水平偏转吗?提示:可能不偏转,当通电导线产生的磁场方向与地磁场方向相同或方向相反,且通电导线产生的磁场比地磁场弱时,小磁针不偏转;当通电导线产生的磁场方向与地磁场方向相反且比地磁场强时,小磁针偏转。
2.P 85阅读[科学漫步]。
3.P 85~86[问题与练习]T 1:这种说法有什么问题?T 3:哪个图象正确?提示:T 1:B 只由磁场本身决定,与F 、IL 无关,B =FIL是一个比值定义式。
T 3:同一位置B 相同,F I=BL 是定值,F -I 图象是一过原点的直线,乙、丙正确。
4.P 86图3.3-2,P 87图3.3-3、3.3-4,体会安培定则的几种常用情景,阅读“安培分子电流假说”。
5.P 88图3.3-10,除了用有效面积S ′求磁通量外,还可以用什么方法? 提示:把B 分解为垂直于S 的B ⊥和平行于S 的B ∥,用Φ=B ⊥S 求。
6.P 92图3.4-3,当两电流方向相同时,两者有怎样的相互作用力?若电流方向相反呢? 提示:若电流方向相同,两者互相吸引;若电流方向相反,两者互相排斥。
7.P 93图3.4-8,从上往下看,液体是顺时针转动还是逆时针转动? 提示:逆时针。
8.P 94[问题与练习]T 2,导线ab 怎样运动? 提示:俯视逆时针转动的同时向下运动。
9.P 94[问题与练习]T 4,通电后会出现什么现象? 提示:弹簧上下振动。
10.P 95阅读教材,当带电粒子(不计重力)沿通电螺线管中心轴线射入后做什么运动? 提示:匀速直线运动。
11.P 96[思考与讨论]请你尝试由安培力的表达式导出洛伦兹力的表达式。
提示:由F =ILB 及电流的微观表达式I =nqSv 得F =nqSvLB 。
又长为L 的通电导体中带电粒子的总数为N =nSL ,所以F 洛=F N =nqSvLBnSL=qvB 。
峙对市爱惜阳光实验学校第三高三物理一轮复习< 磁现象和磁场>一、教材分析磁现象和磁场是教材中磁场的第一节课,从整个的知识安排来看,本节是此章的知识预备阶段,是本章后期学习的根底,是让学生建立学习磁知识兴趣的第一课,也是让学生建立电磁相互联系这一观点很重要的一节课,为以后学习电磁感知识提供铺垫。
整节课主要侧重要学生对生活中的一些磁现象的了解如我国古代在磁方面所取得的成就、生活中熟悉的地磁场和其他天体的磁场〔太阳、月亮〕,故本节课首先通过学生自己总结生活中与磁有关的现象。
电流磁效现象和磁场对通电导线作用的是学生树立起事物之间存在普遍联系观点的重要教学点,是学生在以后学习物理、研究物理问题中有的一种思想和观点。
二、教学目标1、知识与技能〔1〕让学生自己总结生活中与磁有关的现象,了解现实生活中的各种磁现象和用,培养学生的总结、归纳能力。
〔2〕通过了解磁与磁、磁与电的相互作用,掌握电流磁效现象。
使学生具有普遍联系事物的能力,培养观察能力和分析、推理思维能力。
(3)通过直观的多媒体手段让学生熟悉了解地磁场和其他天体的磁场及与之有关的自然现象2、过程与方法〔1〕、让学生参与课前的准备工作,收集课外的各种磁有关的现象和用。
〔2〕、在电流磁效现象的中,本节课采用类似研究的方式,复原物理规律的发现过程,强调学生自主参与。
〔3〕、学生对物理现象进行分析、比拟、归纳,采用老师与学生双向交流感知现象下的物理规律的普遍联系。
3、情感态度价值观〔1〕、对奥斯特的电流磁效现象的中,要让学生知道奥斯特的伟大在于揭示电和磁的联系,翻开了中一个黑暗领域的大门。
也让学生懂得看似简单的物理现象在它发现的最初过程中是如何的艰难。
〔2〕、通过趣味的演示与参与激发学生的欲与创欲。
〔3〕、让学生在实际生活的用中体会知识的价值。
三、教学难点教学:1、让学生搜索日常生活中有关此现象的用品,及简单的用原理2、通过让学生进一步体会电流的磁效及磁场概念教学难点:磁场的概念〔磁场概念比拟抽象〕四、学情分析磁场的根本知识在初习中已经有所接触,学生在生活中对磁现象的了解也有一的根底。
高三一轮复习教案(全套68个)第三部分电磁学§3.磁场一、基本概念二、安培力(磁场对电流的作用力)三、洛伦兹力四、带电粒子在混合场中的运动§3.磁场一、基本概念目的要求复习磁场的概念、磁场的基本性质、磁感应强度、安培定则等。
知识要点1.磁场的产生⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
(不等于说所有磁场都是由运动电荷产生的。
)⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
ΔL很小,并且L⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T,1T=1N/(A∙m)=1kg/(A∙s2)4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁通量如果在磁感应强度为B的匀强磁场中有一个与磁场方向垂直的平面,其面积为S,则定义B与S的乘积为穿过这个面的磁通量,用Φ表示。
Φ是标量,但是有方向(进该面或出该面)。
单位为韦伯,符号为W b。
1W b=1T∙m2=1V∙s=1kg∙m2/(A∙s2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,B=Φ/S,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。
6.常见几种磁场的分布例题分析例1: 下面关于磁感线的说法中正确的是: A .磁感线从磁体的N 极出发,终止于磁体的S 极B .小磁针静止时,南极所指的方向,就是那一点的磁场方向C .不论在什么情况下,磁感线都不会相交D .沿着磁感线的方向磁场逐渐减弱例2:当电子由A 不断运动到B 的过程中,如图所示,小磁针如何运动:A .不动B .N 极向纸里,S 极向纸外旋转C .向上运动D .N 极向纸外,S 极向纸里旋转例3:两根非常靠近且相互垂直的长直导线分别通以相同强度的电流,方向如图所示,那么两电流所产生的磁场垂直 导线平面向内且最强的在哪个区域: A .区域11234i i i i >>= 例4:图中四根长直导线置于同一平面内,通电电流大,方向如图,如果切断其中一根导线使正方形ABCD 的中心O 点的磁感应强度最大,则应切断:A . 1iB .2iC .3iD . 4i例5:如图所示,电子沿Y 轴方向向正Y 方向流动,在图中Z 轴上 一点P 的磁场方向是: A .+X 方向 B .-X 方向 C .+Z 方向 D .-Z 方向地球磁场 通电直导线周围磁场 通电环行导线周围磁场A B二、安培力(磁场对电流的作用力)目的要求复习安培力的计算及左手定则。
富县高级中学集体备课教案年级:高三理科目:物理授课人:课题磁场安培力3 第课时三维目1、磁场、磁感应强度、磁感线2、安培力重点1、磁场、磁感应强度、磁感线2、安培力中心发言人陈熠难点磁感应强度、安培力教具课型课时安排课时教法学法个人主页教学过程思想方法系列之九安培力作用下导体运动情况的判断方法1.判定通电导体在安培力作用下的运动或运动趋势的思路(1)首先必须弄清楚导体所在位置的磁场分布情况(2)然后利用左手定则准确判定导体的受力情况(3)进而确定导体的运动方向或运动趋势的方向.2.常用判断方法教学过程(2013·江苏徐州模拟)如图所示,把轻质导线圈用绝缘细线悬挂在磁铁N极附近,磁铁的轴线穿过线圈的圆心且垂直线圈平面.当线圈内通以图中方向的电流后,线圈的运动情况是()A.线圈向左运动B.线圈向右运动C.从上往下看顺时针转动D.从上往下看逆时针转动1-1:如图所示,在光滑水平面上一轻质弹簧将挡板和一条形磁铁连接起来,此时磁铁对水平面的压力为F N1,现在磁铁左上方位置固定一导体棒,当导体棒中通以垂直纸面向里的电流后,磁铁对水平面的压力为F N2,则以下说法正确的是()A.弹簧长度将变长B.弹簧长度将变短C.F N1>F N2D.F N1<F N2答案:BC1-2:如图所示,把一根通电直导线AB放在蹄形磁铁磁极的正上方,导线可以自由移动.当导线通过电流I时,如果只考虑安培力的作用,则从上往下看,导线的运动情况是()A.顺时针方向转动,同时下降B.顺时针方向转动,同时上升C.逆时针方向转动,同时下降D.逆时针方向转动,同时上升合作学习:高考题组小结作业:随堂演练教后反思审核人签字:年月日。
第2讲磁场对运动电荷(带电体)的作用目标要求 1.能判断洛伦兹力的方向,会计算洛伦兹力的大小.2.会分析带电粒子在匀强磁场中的圆周运动.3.能够分析带电体在匀强磁场中的运动.考点一对洛伦兹力的理解和应用1.洛伦兹力的定义磁场对运动电荷的作用力.2.洛伦兹力的大小(1)v∥B时,f=0;(2)v⊥B时,f=q v B;(3)v与B的夹角为θ时,f=q v B sin θ.3.洛伦兹力的方向(1)判定方法:左手定则,注意四指应指向正电荷运动的方向或负电荷运动的反方向;(2)方向特点:f⊥B,f⊥v,即f垂直于B、v决定的平面.(注意B和v不一定垂直)1.带电粒子在磁场中运动时,一定受到洛伦兹力的作用.(×)2.若带电粒子经过磁场中某点时所受洛伦兹力为零,则该点的磁感应强度一定为零.(×) 3.洛伦兹力对运动电荷一定不做功.(√)4.带电粒子在A点受到的洛伦兹力比在B点大,则A点的磁感应强度比B点的大.(×)洛伦兹力与电场力的比较洛伦兹力电场力产生条件v≠0且v不与B平行(说明:运动电荷在磁场中不一定受洛伦兹力作用)电荷处在电场中大小f=q v B(v⊥B)F=qE 力方向与场方向的关系f⊥B(且f⊥v)F∥E做功情况任何情况下都不做功可能做功,也可能不做功例1图中a、b、c、d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相等的电流,方向如图所示.一带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是()A.向上B.向下C.向左D.向右答案 B解析根据题意,由安培定则可知,b、d两通电直导线在O点产生的磁场相抵消,a、c两通电直导线在O点产生的磁场方向均向左,所以四根通电直导线在O点产生的合磁场方向向左,由左手定则可判断带正电粒子所受洛伦兹力的方向向下,B正确.例2(2023·福建厦门市模拟)如图所示,真空中竖直放置一根通电长直金属导线MN,电流方向向上.ab是一根水平放置的内壁光滑的绝缘管,端点a、b分别在以MN为轴心、半径为R的圆柱面上.现使一个小球自a端以速度v0射入ab管,小球半径略小于绝缘管内径且带正电,小球重力忽略不计,小球向b运动过程中,下列说法正确的是()A.小球的速率始终不变B.洛伦兹力对小球先做正功后做负功C.小球受到的洛伦兹力始终为零D.管壁对小球的弹力方向先竖直向下后竖直向上答案 A解析如图为俯视图,根据右手螺旋定则,磁感线如图所示,小球在磁场中受到洛伦兹力和弹力作用,洛伦兹力和弹力不做功,小球速率不变,B错误,A正确;当小球运动到ab 中点时,磁感线的方向与小球速度方向平行,小球所受洛伦兹力为零;小球自a 点到ab 中点,所受洛伦兹力竖直向下,管壁对小球的弹力竖直向上;小球从ab 中点至b 点,所受洛伦兹力竖直向上,管壁对小球的弹力竖直向下,C 、D 错误.考点二 洛伦兹力作用下带电体的运动带电体做变速直线运动时,随着速度大小的变化,洛伦兹力的大小也会发生变化,与接触面间的弹力随着变化(若接触面粗糙,摩擦力也跟着变化,从而加速度发生变化),最后若弹力减小到0,带电体离开接触面.例3 (多选)如图所示,粗糙木板MN 竖直固定在方向垂直纸面向里的匀强磁场中.t =0时,一个质量为m 、电荷量为q 的带正电物块沿MN 以某一初速度竖直向下滑动,则物块运动的v -t 图像可能是( )答案 ACD解析 设初速度为v 0,则N =Bq v 0,若满足mg =f =μN ,即mg =μBq v 0,物块向下做匀速运动,选项A 正确;若mg >μBq v 0,则物块开始有向下的加速度,由a =mg -μBq v m 可知,随着速度增大,加速度减小,即物块先做加速度减小的加速运动,最后达到匀速状态,选项D 正确,B 错误;若mg <μBq v 0,则物块开始有向上的加速度,物块做减速运动,由a =μBq v -mgm 可知,随着速度减小,加速度减小,即物块先做加速度减小的减速运动,最后达到匀速状态,选项C 正确.例4 如图所示,质量为m 、带电荷量为q 的小球,在倾角为θ的光滑绝缘斜面上由静止开始下滑.图中虚线是左、右两侧匀强磁场(图中未画出)的分界线,左侧磁场的磁感应强度大小为B2,右侧磁场的磁感应强度大小为B ,两磁场的方向均垂直于纸面向外.当小球刚下滑至分界线时,对斜面的压力恰好为0.已知重力加速度为g ,斜面足够长,小球可视为质点.(1)判断小球带何种电荷; (2)求小球沿斜面下滑的最大速度;(3)求小球速度达到最大之前,在左侧磁场中下滑的距离L . 答案 (1)正电荷 (2)2mg cos θqB (3)3m 2g cos 2θ2q 2B 2sin θ解析 (1)根据题意,小球下滑过程中受到的洛伦兹力方向垂直斜面向上,根据左手定则可知小球带正电荷.(2)当小球刚下滑至分界线时,对斜面的压力恰好为0,然后小球继续向下运动,在左侧区域当压力再次为零时,速度达到最大值,则有q v m B 2=mg cos θ,解得v m =2mg cos θqB.(3)当小球刚下滑至分界线时,对斜面的压力恰好为0,设此时速度为v ,则有q v B =mg cos θ,解得v =mg cos θqB ,小球下滑的加速度满足mg sin θ=ma ,解得a =g sin θ,根据2aL =v m 2-v 2,可得L =3m 2g cos 2θ2q 2B 2sin θ.考点三 带电粒子在匀强磁场中的运动1.在匀强磁场中,当带电粒子平行于磁场方向运动时,粒子做匀速直线运动.2.带电粒子以速度v 垂直磁场方向射入磁感应强度为B 的匀强磁场中,若只受洛伦兹力,则带电粒子在与磁场垂直的平面内做匀速圆周运动. (1)洛伦兹力提供向心力:q v B =m v 2r .(2)轨迹半径:r =m vqB.(3)周期:T =2πr v =2πmqB ,可知T 与运动速度和轨迹半径无关,只和粒子的比荷和磁场的磁感应强度有关.(4)运动时间:当带电粒子转过的圆心角为θ(弧度)时,所用时间t =θ2πT .(5)动能:E k =12m v 2=p 22m =(Bqr )22m.3.当带电粒子的速度v 与B 的夹角为锐角时,带电粒子的运动轨迹为螺旋线.例5 (2023·福建省仙游一中月考)质量为m 的带电微粒a 仅在洛伦兹力作用下做半径为r 的匀速圆周运动.现在a 经过的轨迹上放置不带电的微粒b ,则a 与b 发生完全非弹性碰撞融为一个整体.不计重力和电荷量的损失,则该整体在磁场中做圆周运动的半径将( )A .变大B .变小C .不变D .条件不足,无法判断答案 C解析 碰撞后,由洛伦兹力提供向心力,有q v 0B =m v 02r ,可得r =m v 0qB ,又p =m v 0,碰撞过程中动量守恒,p 不变,电荷量不变,则半径不变,故C 正确,A 、B 、D 错误.例6 (多选)(2023·福建省莆田第二中学模拟)α粒子(42He)和质子(11H)在同一匀强磁场中做匀速圆周运动,若它们的动量大小相等,则α粒子和质子( ) A .运动半径之比是1∶2 B .运动周期之比是2∶1 C .运动速度大小之比是4∶1 D .受到的洛伦兹力大小之比是1∶2 答案 ABD解析 动量大小相等,根据p =m v 可得运动速度大小之比是1∶4,故C 错误;在磁场中,由洛伦兹力提供向心力可得f =q v B =m v 2r ,解得r =m vqB ,可得运动半径之比是1∶2,受到的洛伦兹力大小之比是1∶2,又T =2πmqB ,可得运动周期之比是2∶1,故A 、B 、D 正确.例7 (2019·全国卷Ⅲ·18)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB 答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R 、T =2πRv ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm6qB,选项B 正确,A 、C 、D 错误.课时精练1.(2023·浙江省高三模拟)一根通电直导线水平放置,通过直导线的恒定电流方向如图所示,现有一电子从直导线下方以水平向右的初速度v 开始运动,不考虑电子重力,关于接下来电子的运动轨迹,下列说法正确的是( )A .电子将向下偏转,运动的半径逐渐变大B .电子将向上偏转,运动的半径逐渐变小C .电子将向上偏转,运动的半径逐渐变大D .电子将向下偏转,运动的半径逐渐变小答案 B解析水平导线中通有恒定电流I,根据安培定则判断可知,导线上方的磁场方向垂直纸面向里,导线下方的磁场方向垂直纸面向外,由左手定则判断可知,导线下方的电子所受的洛伦兹力方向向上,则电子将向上偏转,其速率v不变,而离导线越近,磁场越强,磁感应强度B越大,由公式r=m v可知,电子的轨迹半径逐渐变小,故选B.qB2.(2023·安徽合肥市模拟)如图,长直导线水平固定放置,通有向右的恒定电流,绝缘细线一端系于导线上的O点,另一端系一个带电小球,细线拉直,第一次让小球在A点由静止释放,让小球绕O点沿圆1在竖直面内做圆周运动;第二次让小球在B点由静止释放,让小球绕O 点沿圆2在竖直面内做圆周运动.圆1与直导线在同一竖直面内,圆2与直导线垂直,A、B 两点高度相同,不计空气阻力,则两次小球运动到最低点C时()A.速度大小相等,线的拉力相等B.速度大小不等,线的拉力相等C.速度大小相等,线的拉力不等D.速度大小不等,线的拉力不等答案 C解析由于洛伦兹力不做功,只有重力做功,所以两次小球运动到最低点C时,根据动能定理可知,合外力做功相同,所以两次在最低点小球的速度大小相等;在圆1中小球在最低点时速度方向与磁场方向相互垂直,根据左手定则,如果小球带正电,则在圆1中小球在最低点线的拉力大小满足T1+Bq v-mg=m v2,在圆2中小球在最低点速度方向与磁场方向相互R,则两平行,所受洛伦兹力为0,则在圆2中小球在最低点线的拉力大小满足T2-mg=m v2R次小球运动到最低点C时,线的拉力不等,同理可知,若小球带负电,在C点线的拉力也不相等,所以C正确,A、B、D错误.3.(2022·北京卷·7)正电子是电子的反粒子,与电子质量相同、带等量正电荷.在云室中有垂直于纸面的匀强磁场,从P点发出两个电子和一个正电子,三个粒子运动轨迹如图中1、2、3所示.下列说法正确的是()A .磁场方向垂直于纸面向里B .轨迹1对应的粒子运动速度越来越大C .轨迹2对应的粒子初速度比轨迹3的大D .轨迹3对应的粒子是正电子 答案 A解析 根据题图可知,轨迹1和3对应的粒子绕转动方向一致,则轨迹1和3对应的粒子为电子,轨迹2对应的粒子为正电子,电子带负电荷且顺时针转动,根据左手定则可知,磁场方向垂直纸面向里,A 正确,D 错误;粒子在云室中运行,洛伦兹力不做功,而粒子受到云室内填充物质的阻力作用,粒子速度越来越小,B 错误;带电粒子若仅在洛伦兹力的作用下做匀速圆周运动,根据牛顿第二定律可知q v B =m v 2r ,解得粒子运动的半径为r =m vqB ,根据题图可知轨迹3对应的粒子运动的半径更大,速度更大,粒子运动过程中受到云室内物质的阻力的情况下,此结论也成立,C 错误.4.(2023·福建三明市质检)如图,在xOy 区域存在方向垂直于xOy 平面向外的匀强磁场.一个氕核11H 和一个氦核42He 同时从O 点以相同的动能射出,速度方向均沿x 轴正方向.不计重力及两粒子间的相互作用.以下对氕核11H 和氦核42He 的运动轨迹图判断正确的是( )答案 D解析 氕核11H 和氦核42He 都带正电,根据左手定则可知洛伦兹力沿y 轴负方向,则两粒子都将向y 轴负方向偏转.根据洛伦兹力提供向心力有q v B =m v 2R ,解得R =m v qB=m2E km qB=m ·2E k qB ,而两粒子初动能相同,则411211414212He H H He H He =q mR R q m ⋅⋅=11,故选D.5.(2022·广东卷·7)如图所示,一个立方体空间被对角平面MNPQ 划分成两个区域,两区域分布有磁感应强度大小相等、方向相反且与z 轴平行的匀强磁场.一质子以某一速度从立方体左侧垂直Oyz 平面进入磁场,并穿过两个磁场区域.下列关于质子运动轨迹在不同坐标平面的投影中,可能正确的是( )答案 A解析 由题意知当质子垂直Oyz 平面进入磁场后先在MN 左侧运动,刚进入时根据左手定则可知受到y轴正方向的洛伦兹力,做匀速圆周运动,即质子会向y轴正方向偏移,y轴坐标增大,在MN右侧磁场方向反向,由对称性可知,A可能正确,B错误;根据左手定则可知质子在整个运动过程中都只受到平行于xOy平面的洛伦兹力作用,在z轴方向上没有运动,z 轴坐标不变,故C、D错误.6.(多选)核聚变具有效率极高、原料丰富以及安全清洁等优势,中科院等离子体物理研究所设计制造了全超导非圆界面托卡马克实验装置(EAST),这是我国科学家率先建成世界上第一个全超导核聚变“人造太阳”实验装置.将原子核在约束磁场中的运动简化为带电粒子在匀强磁场中的运动,如图所示,磁场水平向右分布在空间中,所有粒子的质量均为m、电荷量均为q,且粒子的速度在纸面内,忽略粒子重力及粒子间相互作用的影响,以下判断正确的是()A.甲粒子受到的洛伦兹力大小为q v B,且方向水平向右B.乙粒子受到的洛伦兹力大小为0,做匀速直线运动C.丙粒子做匀速圆周运动D.所有粒子运动过程中动能不变答案BD解析甲粒子速度方向与磁场方向垂直,则所受洛伦兹力大小为q v B,由左手定则得,洛伦兹力方向垂直纸面向里,故A错误;乙粒子速度方向与磁场方向平行,则所受洛伦兹力大小为0,做匀速直线运动,故B正确;丙粒子速度方向与磁场方向不垂直,不做匀速圆周运动,故C错误;洛伦兹力不做功,根据功能关系,所有粒子运动过程中动能不变,故D正确.7.(2023·福建福州市模拟)洛伦兹力演示仪的实物图和原理图分别如图(a)、图(b)所示.电子束从电子枪向右水平射出,使玻璃泡中的稀薄气体发光,从而显示电子的运动轨迹.调节加速极电压可改变电子速度大小,调节励磁线圈中的电流可改变磁感应强度,某次实验,观察到电子束打在图(b)中的P点,下列说法正确的是()A.两个励磁线圈中的电流均为顺时针方向B.当增大励磁线圈中的电流时,电子可能出现完整的圆形轨迹C.当加大加速极电压时,电子打在玻璃泡上的位置将上移D.在出现完整轨迹后,减小加速极电压,电子在磁场中圆周运动的周期变小答案 B解析根据左手定则可知磁场方向垂直纸面向外,再由右手螺旋定则知两个励磁线圈中的电流均为逆时针方向,故A错误;经加速极电压后电子加速,根据动能定理有qU=12m v2,电子在磁场中做匀速圆周运动,根据q v B=m v2r 得r=m vqB,当增大励磁线圈中的电流时,磁感应强度变大,使电子做圆周运动的半径减小,可能会出现完整的圆形轨迹,故B正确;加大加速极电压,电子射出时的速度增大,做圆周运动的半径变大,运动轨迹的弯曲程度变小,则电子打在玻璃泡上的位置下移,故C错误;在出现完整轨迹后,减小加速极电压,电子做圆周运动的速度变小,但在磁场中做圆周运动的周期为T=2πR v=2πmqB,与速度无关,则其周期不变,故D错误.8.如图所示,一个粗糙且足够长的斜面体静止于水平面上,并处于方向垂直纸面向外且磁感应强度大小为B的匀强磁场中,质量为m、带电荷量为+Q的小滑块从斜面顶端由静止下滑,在滑块下滑的过程中,斜面体静止不动.下列说法中正确的是()A.滑块受到的摩擦力逐渐增大B.滑块沿斜面向下做匀加速直线运动C.滑块最终要离开斜面D.滑块最终可能静止于斜面上解析 滑块受重力、支持力、垂直于斜面向上的洛伦兹力和沿斜面向上的摩擦力四个力的作用,初始时刻洛伦兹力为0,滑块沿斜面向下加速运动,随着速度v 的增大,洛伦兹力增大,滑块受到的支持力减小,则摩擦力减小,加速度增大,当q v B =mg cos θ时,滑块离开斜面,故C 正确,A 、B 、D 错误.9.(多选)如图所示,空间有一垂直纸面向外、磁感应强度大小为0.5 T 的匀强磁场,一质量为0.2 kg 且足够长的绝缘木板静止在光滑水平面上,在木板左端放置一质量为0.1 kg 、带电荷量q =+0.2 C 的滑块,滑块与绝缘木板之间的动摩擦因数为0.5,滑块受到的最大静摩擦力可认为等于滑动摩擦力.现对木板施加方向水平向左、大小为0.6 N 的恒力,g 取10 m/s 2,则( )A .木板和滑块一直做加速度为2 m/s 2的匀加速运动B .滑块开始做匀加速直线运动,然后做加速度减小的变加速运动,最后做匀速运动C .最终木板做加速度为2 m/s 2的匀加速直线运动,滑块做速度为10 m/s 的匀速直线运动D .最终木板做加速度为3 m/s 2的匀加速直线运动,滑块做速度为10 m/s 的匀速直线运动 答案 BD10.(多选)如图所示,一磁感应强度大小为B 的匀强磁场垂直纸面向里,且范围足够大.纸面上M 、N 两点之间的距离为d ,一质量为m 的带电粒子(不计重力)以水平速度v 0从M 点垂直进入磁场后会经过N 点,已知M 、N 两点连线与速度v 0的方向成30°角.以下说法正确的是( )A .粒子可能带负电B .粒子一定带正电,电荷量为m v 0dBC .粒子从M 点运动到N 点的时间可能是πd 3v 0D .粒子从M 点运动到N 点的时间可能是13πd 3v 0解析 由左手定则可知,粒子带正电,选项A 错误;由几何关系可知,r =d ,由q v 0B =m v 02r 可知电荷量为q =m v 0dB ,选项B 正确;粒子运动的周期T =2πd v 0,第一次到达N 点的时间为t 1=16T =πd 3v 0,粒子第三次到达N 点的时间为t 2=2T +t 1=4πd v 0+πd 3v 0=13πd 3v 0,选项C 、D 正确.11.(2023·广东省模拟)如图甲所示,水平传送带足够长,沿顺时针方向匀速转动,某绝缘带电物块无初速度地从最左端放上传送带.该装置处于垂直纸面向外的匀强磁场中,物块运动的v -t 图像如图乙所示.物块所带电荷量保持不变,下列说法正确的是( )A .物块带正电B .1 s 后物块与传送带共速,所以传送带的速度为0.5 m/sC .传送带的速度可能比0.5 m/s 大D .若增大传送带的速度,其他条件不变,则物块最终达到的最大速度也会增大答案 C解析 在第1 s 内,图像的斜率减小,物块的加速度减小,所受滑动摩擦力减小,对传送带的压力减小,而物块做加速运动,所受洛伦兹力增大,所以洛伦兹力一定竖直向上,由左手定则可知,物块一定带负电,A 错误;物块达到最大速度的条件是摩擦力等于零,不再加速,所以1 s 末物块与传送带间的摩擦力恰好为零,此时物块的速度为0.5 m/s ,传送带的速度可能是0.5 m/s ,也可能大于0.5 m/s ,B 错误,C 正确;若传送带的速度小于0.5 m/s ,物块最终达到的最大速度随着传送带速度的增大而增大;若传送带的速度等于0.5 m/s ,则物块的最大速度等于0.5 m/s ;若传送带的速度大于0.5 m/s ,无论传送带的速度多大,物块加速到0.5 m/s 时都不再加速,即物块的最大速度等于0.5 m/s ,D 错误.12.(多选)如图所示,匀强磁场的方向竖直向下,磁场中有光滑的水平桌面,在桌面上平放着内壁光滑、底部有带电小球的试管.在水平拉力F的作用下,试管向右匀速运动,带电小球能从试管口处飞出,则在小球从管口飞出前的过程中,下列说法正确的是()A.小球带负电B.小球相对水平桌面的运动轨迹是一条抛物线C.洛伦兹力对小球做正功D.水平拉力F不断变大答案BD解析小球能从管口处飞出,说明小球受到指向管口的洛伦兹力,根据左手定则判断,小球带正电,故A错误;设试管运动速度为v1,小球垂直于试管向右的分运动是匀速直线运动,小球沿试管方向受到的洛伦兹力的分力f1=q v1B,q、v1、B均不变,f1不变,则小球沿试管做匀加速直线运动,与平抛运动类似,小球运动的轨迹是一条抛物线,故B正确;洛伦兹力总是与速度方向垂直,不做功,故C错误;设小球沿试管方向的分速度大小为v2,则小球受到垂直试管向左的洛伦兹力的分力大小f2=q v2B,v2增大,则f2增大,而拉力F=f2,则F逐渐增大,故D正确.。
富县高级中学集体备课教案年级:高三理科目:物理授课人:课题磁场安培力1 第课时三维目1、磁场、磁感应强度、磁感线2、安培力重点1、磁场、磁感应强度、磁感线2、安培力中心发言人陈熠难点磁感应强度、安培力教具课型课时安排课时教法学法个人主页教学过程考点一、磁场、磁感应强度1.磁场(1)基本性质:(2)方向:2.磁感应强度考点二、磁感线、电流周围的磁场1.磁感线:2.磁感线的特点3.几种常见的磁场(1)磁铁周围的磁场(2)几种电流周围的磁场分布(P227)磁感应强度的理解与叠加磁感应强度是用比值法定义的,其大小由磁场本身的性质决定,与放入的直导线的电流I的大小、导线长度L的大小无关.故不能根据B=FIL就说B与F成正比,与IL成反比.(1)安培定则的应用:在运用安培定则判定直线电流和环形电流及通电螺线管的磁场时应分清“因”和“果”.(2)磁场的叠加:磁感应强度为矢量,合成与分解遵循平行四边形定则.例1:如图所示,在a、b、c三处垂直于纸面放置三根长直通电导线,电流大小相等,a、b、c是等边三角形的三个顶点,a处电流在三角形几何中心O点产生的磁场的磁感应强度大小为B,求O点处的磁感应强度.教学过程答案:2B,方向平行于ab连线向右1-1:有两根长直导线a、b互相平行放置,如图所示为垂直于导线的截面图,O点为两根导线连线的中点,M、N为两导线附近的两点,它们在两导线连线的中垂线上,且与O点的距离相等.若两导线中通有大小相等、方向相同的恒定电流I,则关于线段MN上各点的磁感应强度,下列说法中正确的是()A.M点和N点的磁感应强度大小相等,方向相同B.M点和N点的磁感应强度大小相等,方向相反C.线段MN上各点的磁感应强度都不可能为零D.线段MN上只有一点的磁感应强度为零考点三、安培力1.安培力的方向(1)左手定则:伸出左手,让拇指与其余四指垂直,并且都在同一个平面内.让磁感线从掌心进入,并使四指指向电流方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向.(2)两平行的通电直导线间的安培力:同向电流互相吸引,异向电流互相排斥.2.安培力的大小(1)当磁场与电流垂直时,安培力最大,F=BIL.(2)当磁场与电流平行时,安培力等于零基础自测.小结作业:随堂演练教后反思审核人签字:年月日。
教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校磁场知识网络:本章在介绍了磁现象的电实质的基础上,主要议论了磁场的描绘方法(定义了磁感觉强度、磁通量等观点,引入了磁感线这个工具)和磁场产生的作用(对电流的安培力作用,对通电线圈的磁力矩作用和对运动电荷的洛仑兹力作用)及有关问题。
此中磁感觉强度、磁通量是电磁学的基本观点,应仔细理解;载流导体在磁场中的均衡、加快运动,带电粒子在洛仑兹力作用下的圆周运动等内容应娴熟掌握;常有磁体四周磁感线的空间散布观点的成立,常是解决有关问题的要点,应注意这方面的训练。
单元切块:依据考纲的要求,本章内容能够分红三部分,即:基本观点安培力;洛伦兹力带电粒子在磁场中的运动;带电粒子在复合场中的运动。
此中要点是对安培力、洛伦兹力的理解、娴熟解决通电直导线在复合场中的均衡和运动问题、带电粒子在复合场中的运动问题。
难点是带电粒子在复合场中的运动问题。
知识点、能力点提示1.经过有关磁场知识的概括,使学生对磁场有较全面的认识,并在此基础上理解磁现象电实质;2.介绍磁性资料及其运用,扩大学生的知识面,培育联系实质的能力;3.磁感觉强度 B 的引入,领会科学研究方法;经过安培力的知识,理解电流表的工作原理;经过安培力的公式 F = IlB sinθ的剖析推理,宽阔学生思路,培育学生思想能力;经过安培力在电流表中的应用,培育学生运用所学知识解决实质问题的意识和能力;4.经过洛仑兹力的引入,培育学生的逻辑推理能力;5.经过带电粒子在磁场中运动及盘旋加快器的介绍,调换学生思虑的踊跃性及思想习惯的培育,并宽阔思路。
基本观点安培力教课目的:1.掌握电流的磁场、安培定章;认识磁性资料,分子电流假说2.掌握磁感觉强度,磁感线,知道地磁场的特色3.掌握磁场对通电直导线的作用,安培力,左手定章4.认识磁电式电表的工作原理5.能够剖析计算通电直导线在复合场中的均衡和运动问题。
专题九磁场考纲展示命题探究考点一磁场磁场力基础点学问点1磁场、磁感应强度、磁感线1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。
(2)方向:小磁针静止时N极所指的方向,即是N极所受磁场力的方向。
2.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)定义式:B=FIL(通电导线垂直于磁场)。
单位:特斯拉。
(3)方向:小磁针静止时N极的指向。
3.磁感线(1)磁感线:在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一样。
(2)两种常见磁铁的磁感线分布,如图甲、乙所示。
(3)几种电流四周的磁场分布直线电流的磁场通电螺线管的磁场环形电流的磁场特点无磁极、非匀强,且距导线越远处磁场越弱及条形磁铁的磁场相像,管内为匀强磁场且环形电流的两侧是N极和S极,且离圆环中心在磁场的某些区域内,磁感线为等间距的平行线,如图所示。
4.地磁场(1)地磁场的N极在地理南极旁边,地磁场的S极在地理北极旁边,磁感线分布如图所示。
(2)地磁场B的水平重量(B x)总是从地理南极指向地理北极,而竖直重量(B y),在南半球垂直地面对上,在北半球垂直地面对下。
赤道处的地磁场沿水平方向指向北。
5.安培分子电流假说(1)内容:在原子、分子等物质微粒的内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为微小的磁体,它的两侧相当于两个磁极。
(2)该假说能够说明磁化、去磁等现象。
(3)分子电流的实质是原子内部带电粒子在不停地运动。
学问点2安培力1.安培力的方向(1)左手定则:伸开左手,让拇指及其余四个手指垂直,并且都及手掌在同一个平面内;让磁感线从掌心进入,并使四指指向电流的方向,这时拇指所指的方向就是通电导线在磁场中所受安培力的方向。
(2)两平行的通电直导线间的安培力:同向电流相互吸引,异向电流相互排斥。
2.安培力的大小F=BIL sinθ(其中θ为B及I之间的夹角)。
如图所示:(1)I∥B时,θ=0或θ=180°,安培力F=0。
第九章磁场一、基本概念1.磁场的产生⑴磁极周围有磁场。
⑵电流周围有磁场(奥斯特)。
安培提出分子电流假说(又叫磁性起源假说),认为磁极的磁场和电流的磁场都是由电荷的运动产生的。
(不等于说所有磁场都是由运动电荷产生的。
)⑶变化的电场在周围空间产生磁场(麦克斯韦)。
2.磁场的基本性质磁场对放入其中的磁极和电流有磁场力的作用(对磁极一定有力的作用;对电流只是可能有力的作用,当电流和磁感线平行时不受磁场力作用)。
这一点应该跟电场的基本性质相比较。
3.磁感应强度ILFB (条件是匀强磁场中,或ΔL很小,并且L⊥B )。
磁感应强度是矢量。
单位是特斯拉,符号为T,1T=1N/(A m)=1kg/(A s2)4.磁感线⑴用来形象地描述磁场中各点的磁场方向和强弱的曲线。
磁感线上每一点的切线方向就是该点的磁场方向,也就是在该点小磁针静止时N极的指向。
磁感线的疏密表示磁场的强弱。
⑵磁感线是封闭曲线(和静电场的电场线不同)。
⑶要熟记常见的几种磁场的磁感线:⑷安培定则(右手螺旋定则):对直导线,四指指磁感线方向;对环行电流,大拇指指中心轴线上的磁感线方向地球磁场通电直导线周围磁场通电环行导线周围磁场;对长直螺线管大拇指指螺线管内部的磁感线方向。
5.磁通量如果在磁感应强度为B 的匀强磁场中有一个与磁场方向垂直的平面,其面积为S ,则定义B 与S 的乘积为穿过这个面的磁通量,用Φ表示。
Φ是标量,但是有方向(进该面或出该面)。
单位为韦伯,符号为W b 。
1W b =1T m 2=1V s=1kg m 2/(A s 2)。
可以认为磁通量就是穿过某个面的磁感线条数。
在匀强磁场磁感线垂直于平面的情况下,B =Φ/S ,所以磁感应强度又叫磁通密度。
在匀强磁场中,当B 与S 的夹角为α时,有Φ=BS sin α。
二、安培力 (磁场对电流的作用力) 1.安培力方向的判定⑴用左手定则。
⑵用“同性相斥,异性相吸”(只适用于磁铁之间或磁体位于螺线管外部时)。
⑶用“同向电流相吸,反向电流相斥”(反映了磁现象的电本质)。
可以把条形磁铁等效为长直螺线管(不要把长直螺线管等效为条形磁铁)。
只要两导线不是互相垂直的,都可以用“同向电流相吸,反向电流相斥”判定相互作用的磁场力的方向;当两导线互相垂直时,用左手定则判定。
例1. 如图所示,可以自由移动的竖直导线中通有向下的电流,不计通电导线的重力,仅在磁场力作用下,导线将如何移动? 解:先画出导线所在处的磁感线,上下两部分导线所受安培力的方向相反,使导线从左向右看顺时针转动;同时又受到竖直向上的磁场的作用而向右移动(不要说成先转90°后平移)。
分析的关键是画出相关的磁感线。
例2. 条形磁铁放在粗糙水平面上,正中的正上方有一导线,通有图示方向的电流后,磁铁对水平面的压力将会__(增大、减小还是不变?)。
水平面对磁铁的摩擦力大小为__。
解:本题有多种分析方法。
⑴画出通电导线中电流的磁场中通过两极的那条磁感线(如图中粗虚线所示),可看出两极受的磁场力的合力竖直向上。
磁铁对水平面的压力减小,但不受摩擦力。
⑵画出条形磁铁的磁感线中通过通电导线的那一条(如图中细虚线所示),可看出导线受到的安培力竖直向下,因此条形磁铁受的反作用力竖直向上。
⑶把条形磁铁等效为通电螺线管,上方的电流是向里的,与通电导线中的电流是同向电流,所以互相吸引。
例3. 如图在条形磁铁N 极附近悬挂一个线圈,当线圈中通有逆时针方向的电流时,线圈将向哪个方向偏转?解:用“同向电流互相吸引,反向电流互相排斥”最简单:条形磁铁的等效螺线管的电流在正面是向下的,与线圈中的电流方向相反,互相排斥,而左边的线圈匝数多所以线圈向右偏转。
(本题如果用“同名磁极相斥,异名磁极相吸”将出现判断错误,因为那只适用于线圈位于磁铁外部的情况。
)例4. 电视机显象管的偏转线圈示意图如右,即时电流方向如图所示。
该时刻由里向外射出的电子流将向哪个方向偏转?解:画出偏转线圈内侧的电流,是左半线圈靠电子流的一侧为向里,右半线S N IN S F F F / F S N i圈靠电子流的一侧为向外。
电子流的等效电流方向是向里的,根据“同向电流互相吸引,反向电流互相排斥”,可判定电子流向左偏转。
(本题用其它方法判断也行,但不如这个方法简洁)。
2.安培力大小的计算 F =BLI sin α(α为B 、L 间的夹角)高中只要求会计算α=0(不受安培力)和α=90°两种情况。
例5. 如图所示,光滑导轨与水平面成α角,导轨宽L 。
匀强磁场磁感应强度为B 。
金属杆长也为L ,质量为m ,水平放在导轨上。
当回路总电流为I 1时,金属杆正好能静止。
求:⑴B 至少多大?这时B 的方向如何?⑵若保持B 的大小不变而将B 的方向改为竖直向上,应把回路总电流I 2调到多大才能使金属杆保持静止?解:画出金属杆的截面图。
由三角形定则可知,只有当安培力方向沿导轨平面向上时安培力才最小,B 也最小。
根据左手定则,这时B 应垂直于导轨平面向上,大小满足:BI 1L =mg sin α, B =mg sin α/I 1L 。
当B 的方向改为竖直向上时,这时安培力的方向变为水平向右,沿导轨方向合力为零,得BI 2L cos α=mg sin α,I 2=I 1/cos α。
(在解这类题时必须画出截面图,只有在截面图上才能正确表示各力的准确方向,从而弄清各矢量方向间的关系)。
例6. 如图所示,质量为m 的铜棒搭在U 形导线框右端,棒长和框宽均为L ,磁感应强度为B 的匀强磁场方向竖直向下。
电键闭合后,在磁场力作用下铜棒被平抛出去,下落h 后落在水平面上,水平位移为s 。
求闭合电键后通过铜棒的电荷量Q 。
解:闭合电键后的极短时间内,铜棒受安培力向右的冲量F Δt =mv 0而被平抛出去,其中F =BIL ,而瞬时电流和时间的乘积等于电荷量Q =I Δt ,由平抛规律可算铜棒离开导线框时的初速度h g s t s v 20==,最终可得hg BL msQ 2=。
三、洛伦兹力1.洛伦兹力运动电荷在磁场中受到的磁场力叫洛伦兹力,它是安培力的微观表现。
计算公式的推导:如图所示,整个导线受到的磁场力(安培力)为F 安 =BIL ;其中I=nesv ;设导线中共有N 个自由电子N=nsL ;每个电子受的磁场力为F ,则F 安=NF 。
由以上四式可得F=qvB 。
条件是v 与B 垂直。
当v 与B 成θ角时,F=qvB sin θ。
2.洛伦兹力方向的判定在用左手定则时,四指必须指电流方向(不是速度方向),即正电荷定向移动的方向;对负电荷,四指应指负电荷定向移动方向的反方向。
例7. 磁流体发电机原理图如右。
等离子体高速从左向右喷射,两极板间有如图方向的匀强磁场。
该发电机哪个极板为正极?两板间最大电压为多少?α B B h s B R + + + + + + - - - - ―αα I F 安F解:由左手定则,正、负离子受的洛伦兹力分别向上、向下。
所以上极板为正。
正、负极板间会产生电场。
当刚进入的正负离子受的洛伦兹力与电场力等值反向时,达到最大电压:U=Bdv 。
当外电路断开时,这也就是电动势E 。
当外电路接通时,极板上的电荷量减小,板间场强减小,洛伦兹力将大于电场力,进入的正负离子又将发生偏转。
这时电动势仍是E=Bdv ,但路端电压将小于Bdv 。
在定性分析时特别需要注意的是:⑴正负离子速度方向相同时,在同一磁场中受洛伦兹力方向相反。
⑵外电路接通时,电路中有电流,洛伦兹力大于电场力,两板间电压将小于Bdv ,但电动势不变(和所有电源一样,电动势是电源本身的性质。
)⑶注意在带电粒子偏转聚集在极板上以后新产生的电场的分析。
在外电路断开时最终将导电,分为p 型和n 型两种。
p 型半导体中空穴为多数载流子;n 型半导体中自由电子为多数载流子。
用以下实验可以判定一块半导体材料是p 型还是n 型:将材料放在匀强磁场中,通以图示方向的电流I ,用电压表比较上下两个表面的电势高低,若上极板电势高,就是p 型半导体;若下极板电势高,就是n 型半导体。
试分析原因。
解:分别判定空穴和自由电子所受的洛伦兹力的方向,由于四指指电流方向,都向右,所以洛伦兹力方向都向上,它们都将向上偏转。
p 型半导体中空穴多,上极板的电势高;n 型半导体中自由电子多,上极板电势低。
注意:当电流方向相同时,正、负离子在同一个磁场中的所受的洛伦兹力方向相同,所以偏转方向相同。
3.洛伦兹力大小的计算 带电粒子在匀强磁场中仅受洛伦兹力而做匀速圆周运动时,洛伦兹力充当向心力,由此可以推导出该圆周运动的半径公式和周期公式: Bqm T Bq mv r π2,== 例9. 如图直线MN 上方有磁感应强度为B 的匀强磁场。
正、负电子同时从同一点O 以与MN 成30°角的同样速度v 射入磁场(电子质量为m ,电荷为e ),它们从磁场中射出时相距多远?射出的时间差是多少?解:正负电子的半径和周期是相同的。
只是偏转方向相反。
先确定圆心,画出半径,由对称性知:射入、射出点和圆心恰好组成正三角形。
所以两个射出点相距2r ,由图还看出经历时间相差2T /3。
答案为射出点相距Be mv s 2=,时间差为Bqm t 34π=∆。
关键是找圆心、找半径和用对称。
例10. 一个质量为m 电荷量为q 的带电粒子从x 轴上的P (a ,0)点以速度v ,沿与x 正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y 轴射出第一象限。
求匀强磁场的磁感应强度B 和射出点的坐标。
解:由射入、射出点的半径可找到圆心O /,并得出半径为Maqmv B Bq mv ar 23,32===得;射出点坐标为(0,a 3)。
4.带电粒子在匀强磁场中的偏转⑴穿过矩形磁场区。
一定要先画好辅助线(半径、速度及延长线)。
偏转角由sin θ=L /R 求出。
侧移由R 2=L 2-(R-y )2解出。
经历时间由Bqm t θ=得出。
注意,这里射出速度的反向延长线与初速度延长线的交点不再是宽度线段的中点,这点与带电粒子在匀强电场中的偏转结论不同!⑵穿过圆形磁场区。
画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
偏角可由R r =2tan θ求出。
经历时间由Bq m t θ=得出。
注意:由对称性,射出线的反向延长线必过磁场圆的圆心。
四、带电粒子在混合场中的运动1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,B E v =。
在本图中,速度方向必须向右。
⑴这个结论与离子带何种电荷、电荷多少都无关。