电磁场与电磁波标准答案(1)
- 格式:doc
- 大小:328.00 KB
- 文档页数:6
第一章 矢量场 1.1 z y x C z y x B z y x A ˆˆˆ3;ˆ2ˆˆ;ˆˆ3ˆ2+-=-+=-+= 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B C ⨯ ; (e) () A B C ⨯⨯ (f) () A B C ⨯⋅ 解:(a) 14132222222=++=++=z y x A A A A ; (b) )ˆ2ˆˆ(61ˆz y x BB b -+== ( c) 7=⋅B A ; (d) z y xC B ˆ4ˆ7ˆ---=⨯ (e) z y x C B A ˆ4ˆ2ˆ2)(-+=⨯⨯ (f) 19)(-=⋅⨯C B A 1.2 A z =++2 ρπϕ; B z =-+- ρϕ32 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) B A + 解:(a) 25π+=A ;(b) )ˆ2ˆ3ˆ(141ˆz b -+-=ϕρ;(c) 43-=⋅πB A (d) z A B ˆ)6(ˆ3ˆ)23(+--+=⨯πϕρπ (e) z B A ˆˆ)3(ˆ-++=+ϕπρ 1.3 A r =+-22 πθπϕ; B r =- πθ 求:(a) A ; (b) b ; (c) A B ⋅ ; (d) B A ⨯ ; (e) A B + 解:(a) 254π+=A ; (b) )ˆˆ(11ˆ2θππ-+=r b ; (c) 22π-=⋅B A ;(d) ϕπθππˆ3ˆ2ˆ22++=⨯r A B ; (e) ϕπˆ2ˆ3-=+r B A 1.4 A x y z =+- 2; B x y z =+-α 3 当 A B ⊥时,求α。
解:当 A B ⊥时, A B ⋅=0, 由此得 5-=α 1.5 将直角坐标系中的矢量场 F x y z x F x y z y 12(,,) ,(,,) ==分别用圆柱和圆球坐标系中的坐标分量表示。
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C和()⨯A BC ;(8)()⨯⨯A BC 和()⨯⨯A B C 。
解 (1)23A x y z+-===-e e e A a e ee A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由cos AB θ=14-==⨯A B A B ,得1cos ABθ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ=1117=-A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x yz-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波第5版王家礼答案电磁场与电磁波第5版王家礼答案第一章电磁场和电磁波的基本概念1.1 什么是电磁场?电磁场是描述电荷运动影响的物理场。
它可以被看作是一种对空间的划分,并且在各个空间区域内具有不同的物理状态。
1.2 电磁场的基本方程式是哪些?电磁场的基本方程式包括:麦克斯韦方程组、库仑定律、法拉第电磁感应定律、安培环路定律等。
1.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象。
它具有电场和磁场的相互作用,且在真空和各种介质中都能传播。
第二章静电场和静磁场2.1 什么是静电场?静电场是指当电荷分布不随时间变化、不产生磁场时,所产生的电场。
2.2 静电场的基本定律有哪些?静电场的基本定律包括库仑定律、电场线、电势能和电势。
2.3 什么是静磁场?静磁场是指当电荷分布不随时间变化,但产生了磁场时,所产生的磁场。
2.4 静磁场的基本定律有哪些?静磁场的基本定律包括安培环路定律、比奥萨伐尔定律和洛伦兹力定律。
第三章时变电磁场和电磁波的基本概念3.1 什么是时变电磁场?时变电磁场是指电荷分布随时间变化,且产生了磁场时,所产生的电磁场。
3.2 时变电磁场的基本方程式是哪些?时变电磁场的基本方程式是麦克斯韦方程组,包括麦克斯韦-安培定律、麦克斯韦-法拉第定律、法拉第感应定律和电场定律等。
3.3 什么是电磁波?电磁波是由振动的电荷和振动的磁场所产生的波动现象,它具有电场和磁场的相互作用,可以在真空和各种介质中传播。
3.4 电磁波的基本特征有哪些?电磁波的基本特征包括电场和磁场垂直于传播方向、具有可见光、红外线、紫外线、X射线和γ射线等不同频率和能量等。
第四章电磁波在真空和介质中的传播4.1 电磁波如何在真空中传播?电磁波在真空中传播速度等于光速,即299792458m/s。
4.2 介质是如何影响电磁波传播的?介质对电磁波的传播速度、方向和振动方向都有影响,介质内的电磁波速度取决于介质的介电常数和磁导率。
2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。
当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。
就可将带电体所带电荷看成集中在带电体的中心上。
即将带电体抽离为一个几何点模型,称为点电荷。
2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。
2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。
2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。
表明静电场是无旋场。
2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。
高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无布的电场强度。
2.6简述 和 所表征的静电场特性。
表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。
安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即2.8简述电场与电介质相互作用后发生的现象。
在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系?单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么电位移矢量定义为 其单位是库伦/平方米 (C/m 2) 2.11 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质ερ/=•∇E 0=⨯∇Eερ/=•∇E 0=⨯∇E VS0 0=⋅∇BJ Bμ=⨯∇0=⋅∇BJ Bμ=⨯∇0μCP•∇=-p ρnsp e •=P ρE P EDεε=+=0中的磁感应强度B 可看做真空中传导电流产生的磁感应强度B 0 和磁化电流产生的磁感应强度B ’ 的叠加,即2.12 磁化强度是如何定义的?磁化电流密度与磁化强度又什么关系? 单位体积内分子磁矩的矢量和称为磁化强度;磁化电流体密度与磁化强度:磁化电流面密度与磁化强度: 2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么? 均匀媒质是指介电常数 或磁介质磁导率 处处相等,不是空间坐标的函数。
第一章1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a求:⑴矢量A 的单位矢量A a ;⑵矢量A 和B 的夹角AB θ;⑶A ·B 和A ⨯B⑷A ·(B ⨯C )和(A ⨯B )·C ;⑸A ⨯(B ⨯C )和(A ⨯B )⨯C解:⑴A a =A A =(x a +2y a -3z a )⑵cos AB θ=A ·B /A BAB θ=135.5o⑶A ·B =-11,A ⨯B =-10x a -y a -4z a⑷A ·(B ⨯C )=-42 (A ⨯B )·C =-42⑸A ⨯(B ⨯C )=55x a -44y a -11z a(A ⨯B )⨯C =2x a -40y a +5z a1.3有一个二维矢量场F(r)=x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图形。
解:由dx/(-y)=dy/x,得2x +2y =c1.6求数量场ψ=ln (2x +2y +2z )通过点P (1,2,3)的等值面方程。
解:等值面方程为ln (2x +2y +2z )=c 则c=ln(1+4+9)=ln14那么2x +2y +2z =14 1.9求标量场ψ(x,y,z )=62x 3y +z e 在点P (2,-1,0)的梯度。
解:由ψ∇=x a x ψ∂∂+y a y ψ∂∂+z a zψ∂∂=12x 3y x a +182x 2y y a +z e z a 得 ψ∇=-24x a +72y a +z a1.10 在圆柱体2x +2y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: ⑴求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x)⑵验证散度定理。
《电磁场与电磁波》试题1一、填空题(每小题1分,共10分)1.在均匀各向同性线性媒质中,设媒质的导磁率为μ,则磁感应强度B 和磁场H满足的方程为:。
2.设线性各向同性的均匀媒质中,02=∇φ称为方程。
3.时变电磁场中,数学表达式H E S ⨯=称为。
4.在理想导体的表面,的切向分量等于零。
5.矢量场)(r A穿过闭合曲面S 的通量的表达式为:。
6.电磁波从一种媒质入射到理想表面时,电磁波将发生全反射。
7.静电场是无旋场,故电场强度沿任一条闭合路径的积分等于。
8.如果两个不等于零的矢量的等于零,则此两个矢量必然相互垂直。
9.对平面电磁波而言,其电场、磁场和波的传播方向三者符合关系。
10.由恒定电流产生的磁场称为恒定磁场,恒定磁场是无散场,因此,它可用函数的旋度来表示。
二、简述题(每小题5分,共20分)11.已知麦克斯韦第二方程为t B E ∂∂-=⨯∇,试说明其物理意义,并写出方程的积分形式。
12.试简述唯一性定理,并说明其意义。
13.什么是群速?试写出群速与相速之间的关系式。
14.写出位移电流的表达式,它的提出有何意义?三、计算题(每小题10分,共30分)15.按要求完成下列题目(1)判断矢量函数y x e xz ey B ˆˆ2+-=是否是某区域的磁通量密度?(2)如果是,求相应的电流分布。
16.矢量z y x e e eA ˆ3ˆˆ2-+=,z y x e e eB ˆˆ3ˆ5--=,求(1)B A+ (2)B A ⋅17.在无源的自由空间中,电场强度复矢量的表达式为()jkz y x e E e E eE --=004ˆ3ˆ(1) 试写出其时间表达式; (2)说明电磁波的传播方向;四、应用题(每小题10分,共30分)18.均匀带电导体球,半径为a ,带电量为Q 。
试求 (1) 球内任一点的电场强度 (2)球外任一点的电位移矢量。
19.设无限长直导线与矩形回路共面,(如图1所示), (1)判断通过矩形回路中的磁感应强度的方向(在图中标出); (2)设矩形回路的法向为穿出纸面,求通过矩形回路中的磁通量。
第14讲电磁场与电磁波课程标准课标解读1.初步了解麦克斯韦电磁场理论的基本思想,初步了解场的统一性与多样性,体会物理学对统一性的追求。
2.结合牛顿万有引力定律和麦克斯韦电磁场理论,体会物理学发展过程中对统一性的追求。
1.知道电磁场的概念及产生过程.2.了解电磁波的基本特点、发现过程及传播规律,知道电磁波与机械波的区别.知识点01 电磁场1.变化的磁场产生电场(1)实验基础:如图所示,在变化的磁场中放一个闭合电路,电路里就会产生感应电流.(2)麦克斯韦的见解:电路里能产生感应电流,是因为变化的磁场产生了电场,知识精讲目标导航电场促使导体中的自由电荷做定向运动.(3)实质:变化的磁场产生了电场.2.变化的电场产生磁场麦克斯韦假设,既然变化的磁场能产生电场,那么变化的电场也会在空间产生磁场.【知识拓展1】对麦克斯韦电磁场理论的理解(1)变化的磁场产生电场①均匀变化的磁场产生恒定的电场.②非均匀变化的磁场产生变化的电场.③周期性变化的磁场产生同频率的周期性变化的电场.(2)变化的电场产生磁场①均匀变化的电场产生恒定的磁场.②非均匀变化的电场产生变化的磁场.③周期性变化的电场产生同频率的周期性变化的磁场.【即学即练1】麦克斯韦是从牛顿到爱因斯坦这一阶段中最伟大的理论物理学家,他的科学思想和科学方法的重要意义直到20世纪科学革命来临时才充分体现出来,下列关于麦克斯韦的理论,正确的是()A.均匀变化的电场周围产生均匀变化的磁场B.光是以波动形式传播的一种电磁振动C.水波、声波和电磁波都能在真空中传播D.当电场和磁场同时存在空间某一区域时,就会形成电磁波【答案】B【解析】A.均匀变化的电场周围产生恒定的磁场,故A错误;B.光是以波动形式传播的一种电磁振动,故B正确;C.水波、声波属于机械波,不能在真空中传播;电磁波能在真空中传播,故C错误;D.电磁波是由变化的电场和磁场,从发生区域由近及远传播形成的,故D错误。
《电磁场与电磁波》习题参考标准答案..《电磁场与电磁波》知识点及参考答案第1章⽮量分析1、如果⽮量场F 的散度处处为0,即0F≡,则⽮量场是⽆散场,由旋涡源所产⽣,通过任何闭合曲⾯S 的通量等于0。
2、如果⽮量场F 的旋度处处为0,即0F ??≡,则⽮量场是⽆旋场,由散度源所产⽣,沿任何闭合路径C 的环流等于0。
3、⽮量分析中的两个重要定理分别是散度定理(⾼斯定理)和斯托克斯定理, 它们的表达式分别是:散度(⾼斯)定理:SVFdV F dS ??=??和斯托克斯定理:sCF dS F dl=。
4、在有限空间V 中,⽮量场的性质由其散度、旋度和V 边界上所满⾜的条件唯⼀的确定。
( √ )5、描绘物理状态空间分布的标量函数和⽮量函数,在时间为⼀定值的情况下,它们是唯⼀的。
( √ )6、标量场的梯度运算和⽮量场的旋度运算都是⽮量。
( √ )7、梯度的⽅向是等值⾯的切线⽅向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章电磁场的基本规律(电场部分)1、静⽌电荷所产⽣的电场,称之为静电场;电场强度的⽅向与正电荷在电场中受⼒的⽅向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/⽶)。
3、静电系统在真空中的基本⽅程的积分形式是:V V sD d S d V Q ρ?==?和0lE dl ?=?。
4、静电系统在真空中的基本⽅程的微分形式是:V D ρ??=和0E=。
5、电荷之间的相互作⽤⼒是通过电场发⽣的,电流与电流之间的相互作⽤⼒是通过磁场发⽣的。
6、在两种媒质分界⾯的两侧,电场→E 的切向分量E 1t -E 2t =0;⽽磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ?=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表⾯为等位⾯;在导体表⾯只有电场的法向分量。
《电磁场与电磁波》答案(1)一、判断题(每题2分,共20分)说明:请在题右侧的括号中作出标记,正确打√,错误打×1. 均匀平面波是一种在空间各点处电场强度相等的电磁波。
2. 电磁波的电场强度矢量必与波的传播方向垂直。
3. 在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
4. 静电场是有源无旋场,恒定磁场是有旋无源场。
5. 对于静电场问题,仅满足给定的泊松方程和边界条件,而形式上不同的两个解是不等价的。
6. 电介质在静电场中发生极化后,在介质的表面必定会出现束缚电荷。
7. 用镜像法求解静电场问题的本质,是用场域外的镜像电荷等效的取代原物理边界上的感应电荷或束缚电荷对域内电场的贡献,从而将有界空间问题转化为无界空间问题求解。
8. 在恒定磁场问题中,当矢量位在圆柱面坐标系中可表为()zA A r e =时,磁感应强度矢量必可表为()B B r e φ=。
9. 位移电流是一种假设,因此它不能象真实电流一样产生磁效应。
10.均匀平面波在理想媒质中的传播时不存在色散效应,在损耗媒质中传播时存在色散效应。
二、选择题(每题2分,共20分) (请将你选择的标号填入题后的括号中)1. 有一圆形气球,电荷均匀分布在其表面上,在此气球被缓缓吹大的过程中,始终处在球外的点其电场强度( C )。
[ ×]1 [ ×]2 [ √]3 [ √]4 [ ×]5[ √]6 [ √]7 [ √]8[ ×]9 [ √]10A .变大B .变小C .不变2. 用镜像法求解电场边值问题时,判断镜像电荷的选取是否正确的根据是( D )。
A .镜像电荷是否对称 B .场域内的电荷分布是否未改变 C .边界条件是否保持不变 D .同时选择B 和C3. 一个导体回路的自感( D )。
A .与回路的电流以及回路的形状、大小、匝数和介质的磁导率有关B .仅由回路的形状和大小决定C .仅由回路的匝数和介质的磁导率决定D .由回路的形状、大小、匝数和介质的磁导率决定 4. 判断下列矢量哪一个可能是恒定磁场( C )。
A .369x y zB xe ye ze =++ B .369x y z B ye ze ze =++C .369x y z B ze xe ye =++D .369x y z B xye yze zxe =++5. 静电场强度为3(32)()x y z E ye x z e cy z e =+-++, 试确定常数c 的值( C )。
A .0 B .2 C .-2 D .任意6. 一根足够长的铜管竖直放置,一条形磁铁沿其轴线从静止开始下落,不计空气阻力,磁铁的运动速率将( D )。
A .越来越大B .越来越小C .先增加然后减少D .先增加然后不变7. 无限长直同轴圆柱电容器,内外导体单位长度带电荷量分别为l ρ和l ρ-,内外导体之间充满两种均匀电介质,内层为1ε,外层为2ε。
分界面是以1R 为半径的柱面。
则在介质分界面上有( C )。
A .E 1=E 2, D 1=D 2B .E 1≠E 2, D 1≠D 2C .E 1≠E 2,D 1=D 2 D .E 1=E 2, D 1≠D 28. 在恒定电场中,媒质1是空气,媒质2是水,在分界面上的衔接条件为( A )。
A .E 1t =E 2t , J 1n =J 2n =0 B .E 1n =E 2n , J 1n =J 2n C .E 1t =E 2t , J 1t =J 2t D .E 1n =E 2n , J 1t =J 2t =09. 一半径为 a 的圆柱形导体在均匀外磁场中磁化后,导体内的磁化强度为0z M M e =, 则导体表面的磁化电流密度为( C )。
A .0ms z J M e = B .0ms r J M e = C .0ms J M e φ= 10. 良导体的条件为( A )。
A .γωε>>B .γωε<<C .γωε=三、填空题(每空2分,共10分)1. Maxwell 位移电流假说的物理本质是: 随时间变化的电场将产生磁场 。
2. 若在某真空区域中,恒定电场的矢量位为35x A x e =,则电流分布:J =0(30/)x x e μ-。
3. 在恒定磁场的无源(0J =)区,引入矢量位函数A 的依据是B ∇⋅=。
4. 在时变场中的理想导体表面,电场强度的方向总是与导体表面 垂直 。
5. 在恒定磁场中,矢量位本身没有确定的物理意义,但其环量具有明确的物理意义,即矢量位沿着任意闭合路径的环量,就等于 以此闭合路径为边界的曲面上 磁感应强度的通量 。
四、简答题(每题5分,共10分)1. 写出坡印亭定理的数学表达式,并说明各项的物理意义。
答:坡印亭定理的数学表达式为22211()()22Sd E H ds E H d E d dt ττεμτγτ-⨯⋅=++⎰⎰⎰各项的物理意义如下: 等式右边第一项2211()22d E H d dt τεμτ+⎰,表示单位时间内体积τ内电磁能的增加。
等式右边第二项2E d τγτ⎰,表示单位时间内体积τ内转化为焦耳热的电磁能量。
等式左边()SE H ds -⨯⋅⎰,则表示单位时间内,穿过闭合面S 进入体积τ的电磁能。
2. 写出时变电磁场中,在任意两种介质1和2分界面上,磁场强度、电场强度、磁感应强度、电位移矢量所满足的条件,并作出示意图进行说明。
答:磁场强度的边界条件为: 12()s n H H J ⨯-=电场强度的边界条件为: 12()0n E E ⨯-= 磁感应强度的边界条件为: 12()0n B B ⋅-= 电位移矢量的边界条件为: 12()n D D σ⋅-=五、推导和计算题(40分)1.(10分)由Maxwell 方程出发,导出电流连续性方程。
解: 由Maxwell 方程 DH J t∂∇⨯=+∂ 和 D ρ∇⋅= (3分) ∵ 0H ∇⋅∇⨯=∴ 0DJ t ∂∇⋅+∇⋅=∂ (3分) 而 ()D D t t ∂∂∇⋅=∇⋅∂∂ ∴ 0J D J t t ρ∂∂∇⋅+∇⋅=∇⋅+=∂∂ (3分)即 0J tρ∂∇⋅+=∂ (1分)2θ2H H n1θ2θ2B B n 2θ2E E n1θ2θ2D D n2.(10分)将一无穷大导体平板折成90°角并接地,两点电荷Q 1=Q 2=5C 位于角平分线上距离顶点1m 和2m 处,现欲运用镜像法求两点电荷所在区域内的场。
(1)请在图中标出所有镜像电荷的位置(4分); (2)请写出各镜像电荷的电量(3分); (3)请写出各镜像电荷的坐标(3分)。
解:镜像电荷Q 3 、Q 4 、Q 5 、Q 6 、Q 7 、Q 8 的电量分别为:Q 3=Q 4=Q 5=Q 6=-5C, Q 7=Q 8=5C 各镜像电荷的坐标分别为:Q 3: (2,2-), Q 4,)Q 5: (2-,2), Q 6: () Q 7: (2-,2-), Q 8: (,)3.(10分)在相对介电常数为4r ε=,相对磁导率为1r μ=的理想介质中,一正弦均匀平面波沿+z 传播,已知电场沿x 方向,频率8110f Hz =⨯,振幅4510/m E V m -=⨯,设0t =时,在32z m =处电场等于其振幅值。
(1)求电场强度的瞬时值。
(6分) (2)求磁场强度的瞬时值。
(4分)解:依题意电场强度的瞬时值可表为:cos()x m E e E t kz ωψ=-+ 其中,82210f Hz ωππ==⨯,4(/)3k rad m π===30,2t z m ==时,m E E = 43cos()132πψ∴-⋅+=,0ψ= 故:84cos(210)3x m E e E t z ππ=⨯-r112060()2μηππε===⨯=Ω ∴48841104cos(210)cos(210)(/)3123my y E H e t z e t z A m ππππηπ-⨯=⨯-=⨯-4.(10分)两个相距L 的同轴单匝线圈C 1、C 2,半径分别为r 1和r 2,其中C 1的半径很小,满足条件r 1<<L 。
计算两线圈的互感。
解:设C 1载有电流I 1。
因为 r 1<<L ,C 1的场在C 2上的矢量位可用微小电流环在远场区的矢量位表示,即:201112sin 4I r A e r φμθ=∵ r =2sin r r θ==∴ 201121223/224()I r r A e r L φμ=+222011212112223/2222()C I r r A dl A r r L πμφπ=⋅=⋅=+⎰∴ 2201212223/2122()r r M I r L πμφ==+2。