2、定理2
线性规划的基可行解对应于可行域的顶点。
3、定理3 若线性规划有解,则一定存在基可行解 为最优解。
20
§3 单纯形法 基本思路:从可行域的一个顶点到另一个顶点迭代求最优解。
3.1 初始基可行解的确定 1、松弛基(松弛变量对应的B) max z = x1 + 3x2 + 0x3 + 0x4 [eg.8]max z = x1 + 3x2 x1 + 2x2 + x3 =3 x1 + 2x2 ≤ 3 化标准型 2x1 + 3x2 + x4 = 4 2x1 + 3x2 ≤ 4 x1,x2,x3,x4 ≥ 0 x1,x2 ≥ 0
O(0,0)
Q3(2,3)
Q5(4,3) Q2(4,2)
Q1(4,0)
6、可行基 基可行解对应的B为可行基。
基可行解 非可行解
可行解
基解
17
§2 线性规划问题的几何意义 2.1 基本概念 1、凸集:设K为En(n维欧式空间)的一点集,X(1)∈K,X(2)∈K。 若α X(1)+(1-α )X(2)∈K,则称K为凸集。(0<α <1)
15
4、基解:取B = (p1,p2,·,pm) · · a11,·,a1m x1 · · a1m+1,·,a1n xm+1 · · b1 ┆ ┆ ┆ + ┆ ┆ ┆ =┆ am1,·,amm xm · · amm+1,·,amn xn · · bm ↑ ↑ ↑ ↑ 基 基变量 非基 非基变量 令 xm+1 = · = xn = 0 (非基变量为0) · · 则 BXB = b 1 (0) (0) (0) T ∴