平面直角坐标系知识点总结
- 格式:doc
- 大小:181.00 KB
- 文档页数:4
平面直角坐标知识点总结平面直角坐标系是数学中常用的一种坐标系统,用于描述平面上点的位置。
它由横轴和纵轴组成,分别称为x轴和y轴。
本文将从基础概念、坐标表示、点的位置关系、距离计算和直角坐标系的应用等方面,逐步介绍平面直角坐标的相关知识点。
一、基础概念平面直角坐标系是由两条相互垂直的坐标轴所构成,通常将横轴表示为x轴,纵轴表示为y轴。
坐标原点是两条轴的交点,记作O。
在平面直角坐标系中,每个点的位置都可以用一对有序实数(x, y)来表示,其中x表示横坐标,y表示纵坐标。
二、坐标表示在平面直角坐标系中,每个点的坐标表示方法如下: - 如果点在x轴上,纵坐标为0,横坐标为实数x; - 如果点在y轴上,横坐标为0,纵坐标为实数y; - 如果点在第一象限,横坐标和纵坐标都是正数; - 如果点在第二象限,横坐标为负数,纵坐标为正数; - 如果点在第三象限,横坐标和纵坐标都是负数;- 如果点在第四象限,横坐标为正数,纵坐标为负数。
三、点的位置关系在平面直角坐标系中,可以通过坐标的比较来判断点的位置关系。
常见的点的位置关系有: - 如果两个点的横坐标和纵坐标都相等,那么这两个点重合; - 如果两个点的纵坐标相等但横坐标不等,那么这两个点在同一条水平直线上; - 如果两个点的横坐标相等但纵坐标不等,那么这两个点在同一条垂直直线上; - 如果一个点的横坐标大于另一个点的横坐标,且纵坐标大于另一个点的纵坐标,那么前者在后者的右上方; - 如果一个点的横坐标大于另一个点的横坐标,且纵坐标小于另一个点的纵坐标,那么前者在后者的右下方; - 如果一个点的横坐标小于另一个点的横坐标,且纵坐标大于另一个点的纵坐标,那么前者在后者的左上方; - 如果一个点的横坐标小于另一个点的横坐标,且纵坐标小于另一个点的纵坐标,那么前者在后者的左下方。
四、距离计算在平面直角坐标系中,可以通过坐标计算两点之间的距离。
设A(x1, y1)和B(x2, y2)是平面直角坐标系中的两个点,它们之间的距离公式为: d = √[(x2 - x1)² + (y2 - y1)²]五、直角坐标系的应用平面直角坐标系在几何学、物理学、经济学等领域有广泛的应用。
平面直角坐标系知识点总结归纳平面直角坐标系是分析平面上点的位置和运动的基本工具之一、它由两条相互垂直的数轴(通常称为x轴和y轴)组成,在规定的单位长度上构成一个矩形坐标系。
该坐标系可以用来描述平面内的点的位置以及它们之间的关系。
以下是平面直角坐标系的一些重要知识点:1.坐标轴:平面直角坐标系包括两条垂直于彼此的直线,称为坐标轴。
其中一条被标记为x轴,另一条被标记为y轴。
2.原点:平面直角坐标系的交点称为原点,通常标记为O。
3.坐标:平面直角坐标系中的每个点都可以用一对有序实数(x,y)来表示,其中x表示在x轴上的位置,y表示在y轴上的位置。
这对实数称为坐标。
例如,点(3,4)表示位于x轴上3个单位和y轴上4个单位的点。
4.象限:平面直角坐标系将平面分为四个象限。
第一象限位于x轴和y轴的正方向上,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向上,第四象限位于x轴的正方向和y轴的负方向。
象限用于确定坐标点的相对位置和符号。
5.距离:在平面直角坐标系中,可以使用勾股定理计算两点之间的距离。
两点之间的距离公式为:d=√((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)是两点的坐标。
6.斜率:斜率用于描述直线的倾斜程度。
在平面直角坐标系中,可以使用两点间的坐标来计算斜率。
斜率公式为:m=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两点。
7. 截距:截距是指直线与y轴的交点。
在平面直角坐标系中,斜率截距公式为:y = mx + b,其中m是斜率,b是截距。
8.正交性:平面直角坐标系的x轴和y轴相互垂直,也就是说它们的夹角为90度。
这种相互垂直的性质被称为正交性。
9.平移:平面直角坐标系中的点可以通过平移来改变它们的位置。
平移是指沿着x轴和y轴移动一定的距离,而不改变它们之间的相对位置。
10.缩放:可以通过缩放来改变坐标系的单位长度。
数学三单元知识点总结一、平面直角坐标系1、平面直角坐标系的引入平面直角坐标系是数学中最重要的概念之一,它是平面上表示和研究几何图形和代数关系的有效工具。
平面直角坐标系由横坐标轴x和纵坐标轴y组成。
横坐标轴x和纵坐标轴y 的交点O称为原点,以此为基准,构成了一个直角坐标系。
2、平面直角坐标系的性质在平面直角坐标系中,可以通过点坐标的形式表示平面上的点。
每个点都有唯一的坐标表示,坐标的大小表示了点到原点的距离。
坐标轴的交点为原点,坐标轴分为正半轴和负半轴,方向由原点向右为正,向上为正。
3、平面直角坐标系中的距离公式在平面直角坐标系中,两个点的距离可以通过坐标表示的点之间的距离公式求得。
设两个点A(x1, y1)和B(x2, y2),则点A和点B之间的距离为\sqrt{(x2-x1)^2 + (y2-y1)^2}。
二、一次函数与二次函数1、一次函数的定义与性质一次函数是形如y=kx+b的函数,其中k和b为常数,k称为斜率,b称为截距。
一次函数可以通过截距和斜率的概念来描述其图像的特点,斜率决定了函数的倾斜方向和倾斜程度,截距决定了函数与坐标轴的交点位置。
2、一次函数的图像特点一次函数的图像是一条直线,斜率k决定了直线的倾斜程度,当斜率k>0时,直线向右倾斜,当斜率k<0时,直线向左倾斜。
3、二次函数的定义与性质二次函数是形如y=ax^2+bx+c的函数,其中a、b和c为常数,a ≠ 0。
二次函数的图像是一条抛物线,开口方向由二次项的系数a的正负决定,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
4、二次函数的图像特点二次函数的图像是一条抛物线,其顶点坐标为(-b/2a,f(-b/2a)),抛物线的开口方向由二次项的系数a的正负决定,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
三、数列与数列的运算1、数列的概念数列是按照一定的规律排列的一串数字集合,其中每一个数字称为数列的项。
数学篇数苑纵横坐标系与其它数学知识存在不可分割的联系.许多知识在平面直角坐标系中进行研究会更加直观易懂.所以只有牢固掌握了与直角坐标系有关的知识点与考点,才能更好地学习一次函数、反比例函数和二次函数等相关知识.一、平面直角坐标系相关知识点归纳1.平面直角坐标系的定义:在平面内画两条互相垂直、原点重合的数轴,就组成平面直角坐标系.水平的数轴称为x 轴或横轴,竖直的数轴称为y 轴或纵轴,两坐标轴的交点为平面直角坐标系的原点.2.各个象限内点的特征:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限.坐标在四个象限的特点:点P (x ,y )在第一象限则x >0,y >0;在第二象限则x <0,y >0;在第三象限则x <0,y <0;在第四象限则x >0,y <0.3.点到坐标轴的距离:点P (x ,y )到x 轴的距离为|y |,到y 轴的距离为|x |.到坐标原点的距离为x 2+y 2.4.点的对称:点P (m ,n ),关于x 轴的对称点坐标是(m ,-n ),关于y 轴的对称点坐标是(-m ,n ),关于原点的对称点坐标是(-m ,-n ).5.平行线:平行于x 轴的直线上的点的特征:纵坐标相等,如直线PQ ,P (m ,n )Q (p ,n );平行于y 轴的直线上的点的特征:横坐标相等,如直线PQ 、P (m ,n )、Q (m ,p ).6.象限角的平分线:第一、三象限角平分线上的点横、纵坐标相等,可记作:P (m ,m );点P (a ,b )关于第一、三象限坐标轴夹角平分线的对称点坐标是(b ,a );第二、四象限角P (m ,-m );点P (a ,b )关于第二、四象限坐标轴夹角平分线的对称点坐标是(-b ,-a ).7.点的平移:在平面直角坐标系中,将点(x ,y )向右平移a 个单位长度,可以得到对应点(x +a ,y );向左平移a 个单位长度,可以得到对应点(x -a ,y );向上平移b 个单位长度,可以得到对应点(x ,y +b );向下平移b 个单位长度,可以得到对应点(x ,y -b ).二、平面直角坐标系相关考点归纳1.求坐标求点的坐标的方法是过这个点向x 轴作垂线,则垂足对应的数就是该点的横坐标;过这个点向y 轴作垂线,则垂足对应的数就是该点的纵坐标.确定了一个点的横坐标和纵坐标,就知道这个点的坐标.例1如图1,在平面直角坐标系xOy 中,已知点A(3,4),将OA 绕坐标原点O 逆时针旋转90°至OA ′,则点A ′的坐标是.解:如图2,过点A 作AB ⊥x 轴于B ,过点A ′作A ′B ′⊥x 轴于B ′,∵OA 绕坐标原点O 逆时针旋转90°至OA ′,∴OA =OA ′,∠AOA ′=90°,∵∠A ′OB ′+∠AOB =90°,∠AOB +∠OAB =90°,∴∠OAB =∠A ′OB ′.在△AOB 和△OA ′B ′中,ìíîïï∠OAB =∠A ′OB ′,∠ABO =∠OB ′A ′,OA =OA ′,∴△AOB ≌△OA ′B ′(AAS ),∴OB ′=AB =4,A ′B ′=OB =3,有关平面直角坐标系的知识点及考点归纳湖南怀化顾建明图123数学篇数苑纵横图2例2在平面直角坐标系中,A(-5,0),B(3,0),点C在y轴上,△ABC的面积为12,求点C的坐标.解:∵点A(-5,0),B(3,0),都在x轴上,∴AB=8.∵△ABC的面积为12,点C在y轴上,∴△ABC的面积=12AB⋅OC=12.解得OC=3,若点C在y轴的正半轴上,则点C的坐标为(0,3),若点C在y轴的负半轴上,则点C的坐标为(0,-3),综上所述,点C的坐标为(0,3)或(0,-3).2.求象限在平面直角坐标系中,各象限内点的符号特点是:第一象限内的点,横坐标和纵坐标都为正;第二象限内点的横坐标为负,纵坐标为正;第三象限内点的横坐标和纵坐标都为负;第四象限内点的横坐标为正,纵坐标为负.确定了点横坐标及纵坐标的正负,就确定了象限.例3若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是().A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定解:∵(x+y)2=x2+y2+2xy,∴原式可化为xy=-1,∴x、y异号,∴点M(x,y)在第二象限或第四象限.故选B项.例4已知点P(x,y)在函数y=1x2+-x的图象上,那么点P在平面直角坐标系中的().A.第一象限B.第二象限C.第三象限D.第四象限解:由题意x2≠0且-x≥0,∴x<0,∴1x2>0,x>0,∴y>0.∴点P(x,y)在第二象限.故选B项.3.求面积当三角形有一边在x轴上时,则以x轴上的边为底边,其长等于x轴上两个顶点横坐标差的绝对值,此边上的高就等于另一个顶点纵坐标的绝对值;当三角形的一边在y 轴上时,则以y轴上的边为底边,其长等于y 轴上两个顶点纵坐标差的绝对值,此边上的高就等于另一个顶点横坐标的绝对值.确定了三角形的底边和高就能求出面积.例5如图3,△ABC的三个顶点坐标分别是A(2,4),B(-2,0),C(3,0),求△ABC的面积.图3解:过A作AD⊥x轴,垂足为D,∵A的坐标是(2,4),∴AD=4,24数学篇∵B (-2,0),C (3,0),∴BC =5,∴S △ABC =12BC ∙AD =12×5×4=10.例6如图4,平面直角坐标系中,已知点A (-3,-1),B (1,3),C (2,-3),求三角形ABC 的面积.图4分析:由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一个坐标轴平行,高(宽)与另一个坐标轴平行.这样,梯形(长方形)的面积就容易求出,然后再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.解:如图5,过点A 、C 分别作平行于y 轴的直线,与过点B 平行于x 轴的直线交于点D 、E ,则四边形ADEC 为梯形.图5因为A (-3,-1),B (1,3),C (2,-3),所以AD =4,CE =6,DB =4,BE =1,DE =5.所以S △ABC =12(AD +CE )×DE -12×AD ×DB-12×CE ×BE =12×(4+6)×5-12×4×4-12×6×1=14.平面直角坐标系可以帮助我们建立图形与数量间的联系,并为几何问题和代数问题的相互转化提供条件.因此,同学们一定要掌握好平面直角坐标系的相关知识点与考点,从而不断提高分析问题和解答问题的能力.上期《<实数>巩固练习》参考答案1.D ;2.C ;3.D ;4.A ;5.B ;6.5;7.-1;8.4;9.14或22;10.-3;11.解:(1)3,14-3;(2)∵2<6<3,4<21<5,∴m =6-2,n =4,∴2m +n -26=2(6-2)+4-26=0;(3)a =15,b =32-5.12.解:(1)原来正方形场地的周长为80m;(2)设长方形场地宽为3a m ,则长为5a m.由题意有:3a ×5a =315,解得:a =±21,∵3a 表示长度,∴a >0,∴a =21,∴这个长方形场地的周长为2(3a +5a )=16a =1621(m ),∵80=16×5=16×25>1621,∴这些铁栅栏够用.答:这些铁栅栏够用.数苑纵横25。
温馨提示(a , b )与(b , a )顺序不同,含义就不同。
例如:用(3 , 5) 表示第 3 列的第 5 位同学,那么(5 , 3) 就表示第 5 列的第 3 位同学。
夯实基础平面直角坐标系平面直角坐标系的有关概念一.有序数对在日常生活中,可以用有序数对来描述物体的位置,这样可以用含有两个数的组合来表示一个确定的位置,其中两个数各自表示不同的含义,我们把这种有顺序的两个数 a 与b 组成的数对,叫做有序数对,记作(a , b )。
例 1:(1)在一层的电影院内如何找到电影票上所指的位置?(2)在电影票上, 如果把“5 排 8 号”简记为(5,8),那么“4 排 9 号”如何表示?(8,3)表示什么含义?二.平面直角坐标系相关概念具体内容平面直角坐标系定义在平面内画两条互相垂直并且原点重合的数轴,这样就建立了平面直角坐标系两轴水平的数轴叫做 x 轴或横轴,取向右为正方向;垂直的数轴叫做 y 轴或纵轴,取向上为正方向 原点 两轴的交点O 为平面直角坐标系的原点 坐标平面坐标系所在的平面叫做坐标平面三.象限x 轴和 y 轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限,如图。
y第二象限第三象限第一象限Ox第四象限y b • Oax例 2:设M (a , b ) 为平面直角坐标系中的点。
(1) 当a > 0, b < 0 时,点M 位于第几象限?(2) 当ab > 0 时,点M 位于第几象限?四.点的坐标对于坐标平面内的任意一点 A ,过点 A 分别向 x 轴、 y 轴作垂线,垂足在 x 轴、 y 轴上对应的数 a 、b 分别叫做点 A 的横坐标和纵坐标,有序数对(a , b )叫做点 A 的坐标,记作A (a , b ) ,如图。
1. 已知坐标平面内的点,确定点的坐标先由已知点 P 分别向 x 轴、 y 轴作垂线,设垂足分别为 A 、 B ,再求出垂足 A 在 x 轴上的坐标 a 与垂足 B 在 y 轴上的坐标b ,最后按顺序写成(a , b )即可。
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
平面直角坐标系知识点口诀一、平面直角坐标系基本概念口诀。
1. 坐标轴。
- 平面直角坐标系,横轴纵轴要牢记。
- 横轴名叫x轴,向右为正方向齐。
- 纵轴名叫y轴,向上为正方向立。
- 原点坐标是(0,0),两条数轴交点集。
2. 象限。
- 坐标平面分象限,一、二、三、四按序排。
- 右上象限是第一,符号为(+, +)真开怀。
- 左上象限第二家,符号是(-, +)不奇怪。
- 左下象限第三处,(-, -)符号记心怀。
- 右下象限第四域,(+, -)符号要明白。
3. 点的坐标。
- 点在平面有坐标,先横后纵顺序好。
- 横坐标x把位标,纵坐标y来相靠。
- 例如点A(x,y),x在前来y在后。
二、坐标的平移口诀。
1. 左右平移。
- 点沿x轴左右移,左右平移x变起。
- 向左平移减数值,向右平移加无疑。
- 例如点P(x,y),向左平移a单位,新坐标为(x - a,y)。
- 向右平移a单位,新坐标就成(x+a,y)。
2. 上下平移。
- 点沿y轴上下移,上下平移y变易。
- 向下平移减数值,向上平移加进去。
- 若点Q(x,y),向上平移b单位,新坐标为(x,y + b)。
- 向下平移b单位,新坐标就是(x,y - b)。
三、对称点坐标口诀。
1. 关于x轴对称。
- 关于x轴来对称,横坐标x不变更。
- 纵坐标y变符号,正负相反记心中。
- 点M(x,y)对称点,x轴对称M'(x, - y)。
2. 关于y轴对称。
- 关于y轴的对称,纵坐标y不折腾。
- 横坐标x变符号,正负互换要记清。
- 若点N(x,y)对称,y轴对称N'(-x,y)。
3. 关于原点对称。
- 原点对称有特点,横纵坐标都要变。
- 横坐标x变符号,纵坐标y也换脸。
- 点P(x,y)对称点,原点对称P'(-x, - y)。
X平面直角坐标系知识点归纳1、在平面内,两条互相垂直且有公共原点的数轴组成了平面直角坐标系;2、坐标平面上的任意一点 P 的坐标,都和惟一的一对有序实数对(a,b )一一对应;其中,a 为横坐标,b 为纵坐标坐标;3、 x 轴上的点,纵坐标等于 0; y 轴上的点,横坐标等于 0; 坐标轴上的点 不属于任何象限;4、 四个象限的点的坐标具有如下特征:小结:(1 )点P ( x, y )所在的象限 —►横、纵坐标X 、y 的取值的正负性;(2 )点P ( X, y )所在的数轴 —*■横、纵坐标X 、y 中必有一数为零;5、 在平面直角坐标系中,已知点p (a,b ),则(1) 点P 到X 轴的距离为b ;( 2 )点P 到y 轴的距离为(3) 点P 到原点o 的距离为PO = .a 2 b 26、 平行直线上的点的坐标特征:a )在与x 轴平行的直线上,所有点的纵坐标相等;b )在与y 轴平行的直线上,所有点的横坐标相等;d bJ_____ P(a,b) 1____________ 1-3 -2 -1 0 -1-2 -31a X点A 、B 的纵坐标都等于m ;象限 横坐标X 纵坐标y 第一象限 正 正 第二象限 负 正 第三象限负 负 第四象限正负b YC点C、D的横坐标都等于n ;,nD 'XX7、对称点的坐标特征:8、两条坐标轴夹角平分线上的点的坐标的特征:a)若点P ( m,n )在第一、三象限的角平分线上,则 b)若点P ( m,n )在第二、四象限的角平分线上,贝Um基本练习:练习 仁在平面直角坐标系中,已知点 P ( m 5,m2 )在x 轴上,贝U P 点坐标为 _________2练习2 :在平面直角坐标系中,点P ( m 2, 4 ) 一定在 _____________ 象限;2练习3 :已知点P ( a 1, a 9)在x 轴的负半轴上,则 P 点坐标为___________________ ;练习4 :已知X 轴上一点A (3 , 0) , y 轴上一点B ( 0 , b ),且AB=5,则b 的值为 ______________ ; 练习5 :点M (2 , - 3)关于x 轴的对称点N 的坐标为 _______________ ;关于y 轴的对称点P的坐标为 ________ ;关于原点的对称点 Q 的坐标为 ___________ 。
平面直角坐标系
第一节平面直角坐标系
点的坐标:
(1)我们把有顺序的两个数a和b组成的数对,叫做有序数对,记作(a,b).
(2)平面直角坐标系的相关概念
①建立平面直角坐标系的方法:在同一平面内画;两条有公共原点且垂直的数轴.
②各部分名称:水平数轴叫x轴(横轴),竖直数轴叫y轴(纵轴),x轴一般取向右为正方向,y轴一般取
象上为正方向,两轴交点叫坐标系的原点.它既属于x轴,又属于y轴.
(3)坐标平面的划分
建立了坐标系的平面叫做坐标平面,两轴把此平面分成四部分,分别叫第一象限,第二象限,第三象限,第四象限.坐标轴上的点不属于任何一个象限.
(4)坐标平面内的点与有序实数对是一一对应的关系
第二节坐标方法的简单应用
坐标确定位置。
平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。
ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。
四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。
确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。
四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。
平面直角坐标系
二、知识重点梳理
知识点一:有序数对
比方教室中座位的地点,常用“几排几列”来表示,而排数和列数的先后序次影响座位
的地点,所以用有序次的两个数 a 与b 构成有序数时,记作(a , b) ,表示一个物体的地点。
我们把这类有序次的两个数 a 与b 构成的数对叫做有序数对,记作: (a,b) .
重点讲解:
对“有序”要正确理解,即两个数的地点不可以随意交换,(a ,b) 与 (b ,a) 序次不一样,含义就不一样,表示不一样地点。
知识点二:平面直角坐标系以及坐标的看法
1. 平面直角坐标系
x 在平面内画两条相互垂直、原点重合的数轴就构成平面直角坐标系。
水平的数轴称为
轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两
坐标轴的交点为平面直角坐标系的原点(如图 1) 。
注:我们在画直角坐标系时,要注意两坐标轴是相互垂直的,且有公共原点,平时取向右与
向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条相互垂直且有公共原点的数轴构成的。
2.点的坐标
点的坐标是在平面直角坐标系中确立点的地点的主要表示方法,是今后研究函数的基
础。
在平面直角坐标系中,要想表示一个点的详尽地点,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点 A 分别向 x 轴和 y 轴作垂线,垂足 M在 x 轴上的坐标是 a,垂足N在 y 轴上的坐标是 b,我们说点 A 的横坐标是 a,纵坐标是 b,那么有序数对( a,b )叫做
点 A 的坐标 . 记作 :A(a,b). 用(a , b) 来表示,需要注意的是一定把横坐标写在纵坐标前面,
所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后边。
横、纵坐标的地点不可以颠倒。
②由点的坐标的意义可知:点P(a ,b) 中, |a| 表示点到y 轴的距离; |b| 表示点到x轴的距离。
知识点三:点坐标的特色
l.四个象限内点坐标的特色:
两条坐标轴将平面分成4个地域称为象限,按逆时针序次分别叫做第一、二、三、四象限,如图 2.这四个象限的点的坐标符号分别是(+,+),( - , +),( - ,- ),( +,- ).
2.数轴上点坐标的特色:
x 轴上的点的纵坐标为0,可表示为(a,0 );
y 轴上的点的横坐标为0,可表示为(0,b) .
注意: x 轴, y 轴上的点不在任何一个象限内,关于坐标平面内随意一个点,不在这四
个象限内,就在座标轴上。
坐标轴上的点不属于任何一个象限,这一点要特别注意。
3. 象限的角均分线上点坐标的特色:
第一、三象限角均分线上点的横、纵坐标相等,可表示为(a , a) ;
第二、四象限角均分线上点的横、纵坐标互为相反数,可表示为(a , -a)
.注:若点 P(a , b) 在第一、三象限的角均分线上,则a=b;
若点 P(a ,b) 在第二、四象限的角均分线上,则a=- b。
4. 对称点坐标的特色:
P(a , b) 关于 x 轴对称的点的坐标为(a,-b) ;
P(a , b) 关于 y 轴对称的点的坐标为(-a,b) ;
P(a , b) 关于原点对称的点的坐标为(-a,-b) .
5.平行于坐标轴的直线上的点:
平行于 x 轴的直线上的点的纵坐标同样;
平行于 y 轴的直线上的点的横坐标同样。
6.各个象限内和坐标轴上点的坐标符号规律:
象限横纵坐标符号(a , b) 图象
第一象限( +,+ )a > 0, b> 0
第二象限( -,+ )a < 0, b> 0
第三象限( -,- )a < 0, b< 0
第四象限( +,- )a > 0, b< 0
x 轴上正半轴 ( +, 0)
负半轴 ( -, 0)
y 轴上正半轴 (0 ,+ )
负半轴 (0 ,- )
原点(0,0)
五、特别地点点的特别坐标:
坐标轴上连线平行于点 P( x ,y )在各象限象限角均分线上点 P (x ,y )坐标轴的点的坐标特色的点
X 轴Y 轴原平行 X轴平行 Y轴第一第二第三第四第一、第二、点象限象限象限象限三象限四象限(x,0 (0,y) (0,0 纵坐标相横坐标相x > 0 x < 0 x < 0 x > 0 (m,m) (m,- ) ) 同横坐标同纵坐标 y > 0 y > 0 y < 0 y < 0 m)
不一样不一样
知识点四:简单应用
l. 用坐标表示地理地点
依据已知条件,建立合适的平面直角坐标系,是确立点的地点的必经过程,一般地只有建立了合适的直角坐标系,点的地点才能得以确立,才能使数与形有机地联合在一起。
利用
平面直角坐标系绘制地域内一些地点分布状况,也就是绘制平面图的过程:
( 1)建立坐标系,选择一个合适的参照点为原点,确立x 轴, y 轴的正方向;
(2)依据详尽问题确立合适的比率尺,在座标轴上标出单位长度;
(3)在座标平面内画出这些点,写出各点的坐标和各个地点的名
称.重点讲解:
在建立平面直角坐标系时,我们一般选择那些使点的地点比较简单确立的方法,比方借
助于图形的某边所在直线为坐标轴等。
在详尽问题中要注意解析题目,灵巧运用。
而建立平面直角坐标系的方法是不独一的。
2.用坐标表示平移
( 1)点的平移:
在平面直角坐标系中,将点(x , y) 向右或向左平移 a 个单位长度,可以获得对应点(x +a, y) 或 (x - a, y) ;将点 (x ,y) 向上或向下平移 b 个单位长度,可以获得对应点(x ,y+b)或 (x , y- b) 。
由上可归纳为:
①在座标系内,左右平移的点的坐标规律:右加左减;②
在座标系内,上下平移的点的坐标规律:上加下减;
③在座标系内,平移的点的坐标规律:沿 x 轴平移纵坐标不变 , 沿 y 轴平移横坐标不变.
( 2)图形的平移:
在平面直角坐标系内,假如把一个图形各个点的横坐标都加上或减去一个正数a,相应的新图形就是把原图形向右或向左平移 a 个单位长度;假如把各个点的纵坐标都加上或减去
一个正数a,相应的新图形就是把原图形向上或向下平移了 a 个单位长度。
注:平移是图形的整体地点的挪动,图形上各点都发生同样性质的变化,所以图形的平移问题可以转变成点的平移问题来解决。
注意平移只改变图形的地点,图形的大小和形状不
发生变化 .
三、规律方法指导
学习本章第一要理解好有序数对的看法,也就是在这里的数不仅表示大小,还表示方
向.而且它的地点也是不可以改变的.其次,平面直角坐标系的引入,它是帮助我们研究事物的地点关系的一个工具,那么,关于点坐标的特色要熟练掌握,这样关于解题和应用都有很大帮
助.最后就是应用平面直角坐标系解决实质问题,特别是平移图形,这里学生必定要画
平面直角坐标系,领会数形联合在数学中的作用,这是利用左右脑学习的最好方法.。