3互感器试验方法
- 格式:doc
- 大小:3.14 MB
- 文档页数:28
电压互感器三倍频感应耐压试验详解目录一、前言 (2)1.1 试验目的 (2)1.2 试验意义 (3)1.3 试验设备简介 (4)二、试验原理 (6)2.1 电压互感器工作原理 (6)2.2 三倍频感应耐压试验原理 (7)2.3 试验设备工作原理 (8)三、试验设备 (10)3.1 试验变压器 (11)3.2 控制系统 (13)3.3 保护装置 (14)3.4 试验接线方法 (15)四、试验步骤 (16)4.1 试验前的准备工作 (17)4.2 试验过程 (18)4.3 试验结果分析 (19)4.4 试验注意事项 (20)五、试验结果评估 (21)5.1 试验结果的判断标准 (22)5.2 试验结果的记录与报告 (22)5.3 试验结果的应用 (23)六、安全注意事项 (24)6.1 人员安全 (25)6.2 设备安全 (26)6.3 试验过程中的安全措施 (27)七、试验过程中的问题及处理 (28)7.1 试验过程中的异常情况 (29)7.2 问题的分析与解决 (30)7.3 防范措施 (31)一、前言随着电力系统的不断发展,电压互感器(VT)作为其关键设备之一,在电力传输和分配过程中发挥着越来越重要的作用。
电压互感器是一种专门用于测量高电压的设备,它可以将高电压降低到可以安全测量的水平。
为了确保电压互感器的正常运行和延长其使用寿命,对其进行耐压试验是非常必要的。
在三倍频感应耐压试验中,我们将测试电压互感器在高频下的绝缘性能。
这种试验方法可以有效地模拟电压互感器在实际工作中可能遇到的高频过电压情况,从而检验其绝缘结构的可靠性和稳定性。
通过三倍频感应耐压试验,我们可以及时发现并处理潜在的安全隐患,确保电力系统的安全稳定运行。
1.1 试验目的电压互感器三倍频感应耐压试验是针对电力系统中电压互感器的一种重要检测方法,旨在评估其在实际运行中的绝缘性能和耐压能力。
通过该试验,可以发现电压互感器在设计和制造过程中可能存在的绝缘缺陷,以及在实际运行中可能出现的绝缘老化、疲劳等问题。
互感器的特性试验方法互感器的特性试验方法与电力变压器的基本相同。
一、测量互感器绕组的直流电阻电压互感器一次绕组线径较细,易发生断线、短路或匝间击穿等故障,二次绕组因导线较粗很少发生这种状况,因而交接、大修时应测量电压互感器一次绕组的直流电阻。
各种类型的电压互感器一次绕组的直流电阻均在几百欧至几千欧之间,一般采纳直流电阻测试仪进行测量,测量结果应与制造厂或以前测得的数据无明显变化。
有时为了推断电流互感器一次绕组接头有无接触不良等现象,需要采纳压降法和双臂电桥等测量一次绕组的直流电阻;有时为了判别套管型电流互感器分接头的位置,也使用变压器直流电阻测试仪测量绕组的直流电阻。
二、极性试验电流互感器和电压互感器的极性很重要,极性推断错误会使计量仪表指示错误,更为严峻的是使带有方向性的继电爱护误动作。
互感器一、二次绕组间均为减极性。
极性试验方法与电力变压器相同,一般采纳直流法。
试验时留意电源应加在互感器一次测;测量仪表接在互感器二次侧。
三、变比试验《规程》规定要检查互感器各分接头的变比,并要求与铭牌相比没有显著差别。
1.电流互感器变比的检查检查电流互感器的变比,采纳与标注电流互感器相比较的方法。
其试验接线如图1-1所示。
图1-1 电流互感器变比检查试验接线图T1—单相调压器;T2—升流器;TAN—标准电流互感器;TAX—被试电流互感器试验时,将被试电流互感器与标准电流互感器一次测串联,二次侧各接一只0.5级电流表,用调压器和升流器供应一次侧一合适电流,当电流升至互感器的额定电流值时(或在30%~70%额定电流范围内多选几点),同时记录两只电流表的读数,则被试电流互感器的实际变比为:K=KNIN/I变比误差为△K=[(K-KxN)/KxN]×100%以上式中KN、IN——标准电流互感器的变比和二次电流值;K、I——被试电流互感器的变比和二次电流值;KxN——被试电流互感器的额定变比。
试验时应留意,应将非被试电流互感器二次绕组短路,严防开路;应尽量选择使标准电流互感器与被试电流互感器变比相同,假如变比正确的话,其二次绕组电流表读数也应相同。
电压互感器三倍频感应耐压试验xx年xx月xx日contents •试验目的•试验原理•试验系统及配置•试验过程•试验结果分析•试验影响因素及控制措施•安全防护及注意事项目录01试验目的用于变换电压的设备,将高电压转换为低电压,以便于测量和保护。
电压互感器一种用于检验电压互感器性能的试验方法,通过模拟电源频率三倍的频率,检测互感器的耐压能力和绝缘水平。
三倍频感应耐压试验定义和概念电压互感器作为电力系统中的重要设备,需要保证其正常运行和可靠性。
三倍频感应耐压试验可以检验电压互感器的绝缘性能和耐压能力,预防潜在的故障和损坏,确保电力系统的安全稳定运行。
试验的重要性试验目的和意义验证电压互感器是否能够承受电源频率三倍的频率所带来的电压冲击。
对电压互感器的设计、制造和运行提供科学有效的依据,提高电力系统的安全性和可靠性。
检验电压互感器的性能和质量是否符合运行要求。
02试验原理电压互感器是一种变压器,用于将高电压转换为较低电压,以便于测量和保护。
电压互感器通常采用电磁感应原理进行能量传递,将一次侧的电压转换为二次侧的电压。
电压互感器工作原理三倍频感应耐压试验是一种用于检验电压互感器性能的试验方法。
通过将三倍于额定频率的交流电压加到电压互感器的一次侧,以模拟实际运行中的过电压情况。
三倍频感应耐压试验原理试验原理的细节和重点试验过程中需要关注电压互感器的饱和程度和热稳定性能。
需要确定合适的试验条件和参数,如电压等级、频率、波形等,以确保试验的有效性和安全性。
需要注意电压互感器的绝缘性能和保护措施,以避免试验过程中发生闪络或短路等故障。
03试验系统及配置试验系统的组成包括三倍频电源装置和调压器,提供试验所需的三倍频交流电。
电源部分变压器部分测量部分控制部分包括被试品电压互感器和试验变压器,将三倍频电源连接到被试品上。
包括隔离变压器、电压表、电流表等,用于测量被试品的电压、电流等参数。
包括继电器、接触器等控制元件,用于控制试验的启动、停止等操作。
《电压互感器三倍频感应耐压试验》xx年xx月xx日•试验目的•试验原理•试验步骤目录•试验结果分析•试验注意事项01试验目的通过三倍频感应耐压试验,对电压互感器的绝缘性能进行严格检测,确保其在高电压下的稳定性和可靠性。
试验过程中,模拟实际运行条件,对电压互感器的绝缘材料和结构进行考验,从而有效评估其绝缘性能。
通过三倍频感应耐压试验,模拟实际运行中的高电压环境,对电压互感器的耐压等级进行检测。
试验中,观察电压互感器的电压承受情况,判断其是否达到预期的耐压等级,确保其在高电压环境下的稳定运行。
三倍频感应耐压试验通过对电压互感器在高电压环境下的性能检测,评估其在运行中的安全性能。
试验结果可以反映电压互感器在各种条件下的性能表现,为设备的安全运行提供有力的参考依据。
评估电压互感器的安全性能02试验原理三倍频电源设备产生频率为300Hz的交流电,通过变压器产生三倍频的交流电压。
三倍频电源电压互感器在三倍频交流电压的作用下,产生相应的感应电动势,通过测量其感应电动势的大小来判断互感器的绝缘性能。
感应耐压三倍频感应耐压的原理电源设备选择能够产生300Hz交流电的电源设备,要求其具有足够的容量和稳定性,以满足试验要求。
变压器根据被试电压互感器的电压等级和容量,选择合适的变压器以产生相应的三倍频交流电压。
试验电源的选取试验标准依据国家相关标准和技术规范,制定相应的试验标准和规范。
试验操作严格按照试验标准和规范进行操作,确保试验结果的准确性和可靠性。
试验标准与规范03试验步骤准备三倍频电源装置、电压互感器、电容分压器、控制台、电源线、保护电阻、连接线等设备和材料。
对三倍频电源装置进行外观检查,确保装置无损坏和变形。
对电压互感器进行检查,确保其无异常和损伤。
对电容分压器进行检查,确保其完好无损,连接线无松动。
对控制台进行检查,确保其操作正常,电源线连接良好。
准备试验设备和材料进行试验操作将三倍频电源装置与电压互感器连接,并将连接线固定好。
互感器试验原理及试验方法互感器试验原理及试验方法主要涉及到电流互感器和电压互感器的试验。
电流互感器的试验原理是基于电磁感应定律进行工作的,与变压器相似。
在正常工作状态下,一、二次绕组上的压降很小,相当于一个短路状态的变压器,所以铁芯中的磁通也很小。
这时,一、二次绕组的磁势大小相等,方向相反,因此电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。
当端子的感应电势方向一致时,称为同名端。
如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。
对于电流互感器的试验方法,主要有电流测量法和电压测量法。
电流测量法是在电流互感器一次侧输入一个电流,二次侧通过感应一次电流产生的磁通而产生二次电流。
而电压测量法是在电流互感器的二次侧输入一个电压,一次侧通过测量一次的感应电压得到变比。
电压互感器的试验原理与变压器相似,一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。
电压互感器进行励磁特性与励磁曲线试验时,一次绕组、二次绕组及辅助绕组均开路,非加压绕组尾端接地,特别是分级绝缘电压互感器一次绕组尾端更应注意接地,铁芯及外壳接地,二次绕组加压。
至于具体的试验方法,包括试验接线和试验步骤。
在试验前,应对电压互感器进行放电,并将高压侧尾端接地,拆除电压互感器一次、二次所有接线。
加压的开路,非加压绕组尾端、铁芯及外壳接地。
试验前应根据电压互感器最大容量计算出最大允许电流。
在试验过程中,应检查加压的二次绕组尾端不应接地,检查接线无误后提醒监护人注意监护。
合上电源开关,调节调压器缓慢升压,可按相关标准的要求施加试验电压,并读取点试验电压的电流。
读取电流后立即降压,电压降至零后切断电源,将被试品放电接地。
注意在任何试验电压下电流均不能超过最大允许电流。
互感器试验导则1. 引言互感器是电力系统中常用的重要设备,用于测量和保护电流。
为了确保互感器的准确性和可靠性,在其设计、制造和使用过程中需要进行一系列试验。
本文将介绍互感器试验导则,包括试验目的、试验方法、试验装置和试验步骤等内容,以帮助工程师和技术人员正确进行互感器试验。
2. 试验目的互感器试验的目的是验证互感器的性能指标是否满足设计要求,并评估其准确性和可靠性。
具体目的包括: - 确定互感器的变比和相位差; - 测量互感器的短路阻抗; - 检测互感器的绝缘强度; - 验证互感器在额定负荷下的温升情况; - 检查互感器外观和连接方式是否符合要求。
3. 试验方法根据不同类型和规格的互感器,可以采用以下试验方法: - 变比测量:通过将已知电压或电流输入到互感器中,并测量输出信号来计算变比。
- 相位差测量:将已知频率和相位的电压或电流输入到互感器的一侧,测量另一侧的输出信号,并计算相位差。
- 短路阻抗测量:通过将互感器的一侧短接,施加已知电压或电流到另一侧,并测量输入和输出信号来计算短路阻抗。
- 绝缘强度测试:在规定的工频或冲击电压下,对互感器进行绝缘强度测试,检查是否存在绝缘击穿或漏电现象。
- 负荷试验:在额定负荷下对互感器进行长时间运行,观察温升情况并验证其可靠性。
- 外观检查:检查互感器外观是否完好无损,并验证连接方式是否正确。
4. 试验装置为了进行互感器试验,需要准备以下试验装置: - 可调变压器:用于提供不同变比和相位的电压; - 电流源:用于提供不同大小和相位的电流; - 示波器:用于测量输入和输出信号的波形、幅值和相位差; - 温度计:用于测量互感器温升情况; - 绝缘强度测试仪:用于进行绝缘强度测试; - 外观检查工具:如放大镜、直尺等。
5. 试验步骤根据互感器的不同类型和试验要求,试验步骤可能会有所不同。
以下是一个通用的互感器试验步骤示例: 1. 确认试验装置和仪器是否正常工作,并进行校准。
互感器试验方法1 基本概念1.1 概述典型的互感器是利用电磁感应原理将高电压转换成低电压,或将大电流转换成小电流,为测量装置、保护装置、控制装置提供合适的电压或电流信号。
电力系统常用的电压互感器,其一次侧电压与系统电压有关,通常是几百伏~几百千伏,标准二次电压通常是100V 和100V/3两种;而电力系统常用的电流互感器,其一次侧电流通常为几安培~几万安培,标准二次电流通常有5A 、1A 、0.5A 等。
1.2 电压互感器的原理电压互感器的原理与变压器相似,如图1.1所示。
一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。
根据电磁感应定律,绕组的电压U 与电压频率f 、绕组的匝数W 、磁通Ф的关系为:图1.1 电压互感器原理U = K f WФ (1.1) 式中,K 为常数。
也可变换为:Wf K U =Φ (1.2) 由于磁路中只有一个磁通Ф,所以:2211W f K U W f K U = (1.3) 整理后得:2121W W U U = (1.4) 即电压互感器一、二次的电压比等于一、二次绕组的匝数比。
1.3 电流互感器的原理在原理上也与变压器相似,如图1.2所示。
与电压互感器的主要差别是:正常工作状态下,一、二次绕组上的压降很小(注意不是指对地电压),相当于一个短路状态的变压器,所以铁芯中的磁通Ф也很小,这时一、二次绕组的磁势F (F=IW )大小相等,方向相反。
即:2211W I W I = (1.5)变换后可得:1221W W I I = (1.6) 即电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。
图1.2 电流互感器的原理1.4 互感器绕组的端子和极性电压互感器绕组分为首端和尾端,对于全绝缘的电压互感器,一次绕组的首端和尾端可承受的对地电压是一样的,而半绝缘结构的电压互感器,尾端可承受的电压一般只有几kV 左右。
常见的用A 和X 分别表示电压互感器一次绕组的首端和尾端,用a 、x 或P1、 P2表示电压互感器二次绕组的首端或尾端;电流互感器常见的用L 1 、L 2分别表示一次绕组首端和尾端,二次绕组则用K 1、K 2或S1、S2表示首端或尾端,不同的生产厂家其标号可能不一样,通常用下标1表示首端,下标2表示尾端。
当端子的感应电势方向一致时,称为同名端;反过来说,如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。
标号同为首端或同为尾端的端子而且感应电势方向一致,这种标号的绕组称为减极性,如图1.3a 所示,此时A-a 端子的电压是两个绕组感应电势相减的结果。
在互感器中正确的标号规定为减极性。
图1.3b 是错误的极性(加极性),此时一、二次绕组的同名端感应电势的方向是相反的。
不管是电流互感器还是电压互感器,极性错误(或接错端子)都可能会造成计量、保护、控制的错误。
比如:(1)用于计量时,功率反向;(2)用于保护时,造成保护误动;(3)用于同期回路时,造成非同期合闸。
a 减极性b 加极性图1.3 减极性和加极性原理1.5互感器的绝缘结构(1)干式(2)油浸式(3)SF6绝缘。
1.6 电压互感器的结构(1)串级式电压互感器采用串级式结构可以降抵主绝缘的要求,高压绕组对铁芯的电压只有最高电压的1/4,可以降低制造成本。
结构如图1.4、图1.5所示。
图1.4 串级式电压互感器原理接线图图1.5 110kV串级式电压互感器(2)全绝缘油浸式电压互感器全绝缘油浸式电压互感器的A端和X端对地绝缘水平是相同的,多见于35kV及以下的电压互感器,结构见图1.6。
(3)全绝缘干式电压互感器结构见图1.7。
图1.6 全绝缘10kV 油浸式电压互感器 图1.7 全绝缘干式电压互感器(4)SF6绝缘电压互感器SF6绝缘电压互感器有与GIS 配套的结构,也有室外独立安装的独立式结构,其外形见图1.8,内部结构见图1.9。
(5)电容式电压互感器(CVT )电容式电压互感器采用电容器分压的原理先将系统电压降为1.3万伏左右,再通过中间变压器降为标准的二次电压。
结构见图1.10。
CVT 一次电压U 1与中间电压U Z 的关系为:121Z 1C C C U U += (1.7)图1.8 六氟化硫绝缘电压互感器图1.9 SF6绝缘独立式电压互感器a 普通结构b 带有地刀K1图1.10 电容式电压互感器原理接线图1.7 电流互感器的结构(1)串级式图1.11 串级式电流互感器串级式电流互感器可以降低绝缘要求,但由于是几个电流互感器串接,增加了误差。
(2)油浸电容型绝缘a.油浸电容型正立式电流互感器的内部结构见图1.12。
图1.12 油浸电容型正立式电流互感器b.油浸倒立式电流互感器的结构见图1.13和图1.14。
合资产倒立式电流互感器的二次铁芯线圈内置于圆形铁心外罩内,二次引线通过与铁心外罩直接焊接的圆柱形金属管引出(运行中金属管直接接地),铁心外罩与直接焊接的圆柱形金属铝管外绕绝缘层,绝缘层内设置若干电容屏构成主电容,绝缘层最外一层电容称“未屏”,与设备高压端相连。
从结构上分析,高压端对铁心外罩有一个电容,对金属铝管又有一个电容,这2个电容并联构成主电容。
接近金属管最里一屏电容称“零屏”,运行中外引接地。
正常运行时设备的二次引线金属管与“零屏”同时接地。
国产倒立式电流互感的设计基本原理、绝缘结构与进口或合资设备相同,所不同的是二次引线的金属管与金属管的零屏引线焊接在一起,组装后外引接地,瓷套内二次引线金属管不再接地固定。
国产倒置式流变这种将器身接地的方式主要考虑运行中的维护,因此现场实际测量中用传统的电桥正接法就能测量出设备的整体电容与介质损耗。
图1.13 油浸倒立式电流互感器图1.14 油浸倒立式电流互感器绝缘结构(3)SF6绝缘倒置式电流互感器其外观见图1.15,内部结构见图1.16。
图1.15 SF6绝缘倒置式电流互感器图1.16 SF6倒置式电流互感器的绝缘结构(4)高压干式电流互感器高电压干式电流互感器也有正立式结构和倒立式结构。
正立式结构见图1.17。
图1.17 干式电流互感器结构(正立式)1.8 电压互感器和电流互感器在结构上的主要差别(1)电压互感器和电流互感器都可以有多个二次绕组,但电压互感器可以多个二次绕组共用一个铁芯,电流互感器则必需是每个二次绕组都必需有独立的铁芯,有多少个二次绕组,就有多少个铁芯。
(2)电压互感器一次绕组匝数很多,导线很细,二次绕组匝数较少,导线稍粗;而变电站用的高压电流互感器一次绕组只有1到2匝,导线很粗,二次绕组匝数较多,导线的粗细与二次电流的额定值有关。
(3)电压互感器正常运行时,严禁将一次绕组的低压端子打开,严禁将二次绕组短路;电流互感器正常运行时,严禁将二次绕组开路。
1.9 电压互感器型号意义第一个字母:J—电压互感器。
第二个字母:D—单相;S—三相;C—串级式;W—五铁芯柱。
第三个字母:G—干式,J—油浸式;C—瓷绝缘;Z—浇注绝缘;R—电容式;S—三相;Q-气体绝缘第四个字母:W—五铁芯柱;B—带补偿角差绕组。
连字符后的字母:GH—高海拔地区使用;TH—湿热地区使用。
1.10 电流互感器的型号意义电流互感器的型号由字母符号及数字组成,通常表示电流互感器绕组类型、绝缘种类、使用场所及电压等级等。
字母符号含义如下:第一位字母:L——电流互感器。
第二位字母:M——母线式(穿心式);Q——线圈式;Y——低压式;D——单匝式;F——多匝式;A——穿墙式;R——装入式;C——瓷箱式;Z ——支柱式;V ——倒装式。
第三位字母:K——塑料外壳式;Z——浇注式;W——户外式;G——改进型;C——瓷绝缘;P——中频;Q ——气体绝缘。
第四位字母:B——过流保护;D——差动保护;J——接地保护或加大容量;S——速饱和;Q——加强型。
字母后面的数字一般表示使用电压等级。
例如:LMK-0.5S型,表示使用于额定电压500V及以下电路,塑料外壳的穿心式S级电流互感器。
LA-10型,表示使用于额定电压10kV电路的穿墙式电流互感器。
2 电压互感器和电流互感器共有的试验项目2.1 绝缘电阻测量(1)试品温度应在10-40℃之间;(2)用2500V兆欧表测量,测量前对被试绕组进行充分放电;(3)试验接线:电磁式电压互感器需拆开一次绕组的高压端子和接地端子,拆开二次绕组,;测量电容式电压互感器中间变压器的绝缘电阻时,须将中间变压器一次线圈的末端(通常为X端)及C2的低压端(通常为δ)打开,将二次绕组端子上的外接线全部拆开,按图2.1接好试验线路。
电流互感器按图2.2接好试验线路。
图2.1 电磁式电压互感器绝缘电阻测量接线图2.2 电流互感器绝缘电阻测量接线(4)驱动兆欧表达额定转速,或接通兆欧表电源开始测量,待指针稳定后(或60s),读取绝缘电阻值;读取绝缘电阻后,先断开接至被试绕组的连接线,然后再将绝缘电阻表停止运转;(5)断开绝缘电阻表后应对被试品放电接地。
关键点:a.采用2500V兆欧表测量b.测量前被试绕组应充分放电c.拆开端子连接线时,拆前必须做好记录,恢复接线后必须认真检查核对d.当电容式电压互感器一次绕组的末端在内部连接而无法打开时可不测量e. 如果怀疑瓷套脏污影响绝缘电阻,可用软铜线在瓷套上绕一圈,并与兆欧表的屏蔽端连接。
试验要求:a.与历次试验结果和同类设备的试验结果相比无显著差别;b.一次绕组对二次绕组及地应大于1000MΩ,二次绕组之间及对地应大于10MΩ。
c.不应低于出厂值或初始值的70%;d.电容型电流互感器末屏绝缘电阻不宜小于1000MΩ;否则应测量其tanδ。
2.2 二次绕组交流耐压试验互感器二次绕组之间及其对外壳的工频耐压标准为2kV,当绝缘电阻大于10MΩ时可用2500V兆欧表代替。
2.3 极性检查(1)方法1:干电池法将1号干电池的“-”极接到一次绕组的尾端(X端或L2端),将二次绕组的a端(或K1端)接到指针式直流毫伏表的“+”端,x端(或K2)接到表的“-”端,当将干电池的“+”极接到一次绕组的首端A端(或L1端)时,如果毫伏表指针向正方向摆动,则表明二次绕组极性正确,反之则不正确。
此时,其他绕组应处于开路状态,见图2.3;a 电压互感器极性检查b 电流互感器极性检查图2.3 极性试验接线图a.对每个二次绕组分别进行;b.接线本身的正负方向必需正确;c.检查时应先将毫伏表放在直流毫伏的一个较大档位,根据指针摆动的幅度对档位进行调整,使得既能观察到明确的摆动又不超量程打表;d.电池连通2~3s后立即断开以防电池放电过量。
(2)方法2:采用成套装置,参照仪器使用说明书进行。
试验要求:与铭牌和标志相符。
2.4 绕组直流电阻测量(1)对电压互感器一次绕组,宜采用单臂电桥进行测量;(2)对电压互感器的二次绕组以及电流互感器的一次或二次绕组,宜采用双臂电桥进行测量,如果二次绕组直流电阻超过10Ω,应采用单臂电桥测量;(3)也可采用直流电阻测试仪进行测量,但应注意测试电流不宜超过线圈额定电流的50%,以免线圈发热直流电阻增加,影响测量的准确度。