断口形貌的分类及微观特征
- 格式:doc
- 大小:10.67 KB
- 文档页数:2
断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。
穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。
沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。
下面分别加以讨论。
1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。
宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。
众所周知,这种断口称为杯锥状断口。
断口表面粗糙不平,无金属光泽,故又称为纤维状断口。
微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。
每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。
第二相质点的尺寸远小于韧窝的尺寸。
韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。
由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。
在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。
图3-41是微孔穿过第二相质点的示意图。
若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。
2)在韧窝的底部没有第二相质点存在的情况。
韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。
这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。
因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。
当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。
韧窝的形状与应力状态有较大关系。
合金钢冶金缺陷断口的宏观形貌和微观形态1 纤维状断口断口特征:呈暗灰绒毯状,无结晶颗粒,断口边缘常有显著的塑性变形,形成剪切唇。
微观特征;多为等轴状和抛物线状韧窝。
纤维状断口一般属于钢材的正常断口,它表示钢材有良好的韧性。
2 萘状断口宏观特征:较平坦的粗晶断口,用掠射光照射时,由于各晶面具有不同的反光能力,因而闪烁着结晶萘一般的光泽。
微观特征:准解理或解理特征。
河流很短,有时出现舌状花样。
局部有硫化锰析出,它们可能沿原始奥氏体晶界析出或沿奥氏体晶面析出。
萘状断口分别是合金结构钢和高速钢因过热或重复淬火而产生的一种粗晶缺陷。
为不允许存在的断口。
3 结晶状断口宏观特征:断口齐平,呈亮灰色,有强烈的金属光泽和明显的结晶颗粒。
微观特征:解理或准解理断裂。
4 横列结晶断口:宏观特征:与加工方向成一定角度的灰色小平面,一般多出现在相当于钢锭的柱状晶发达部位。
微观特征:一般为沿柱状晶粒边界断裂的韧性晶界断口,韧窝尺寸变化大,其中有夹杂物。
5 瓷状断口宏观特征:类似细碎片的断口,呈亮灰色。
微观特征:准解理断口为主。
瓷状断口对于淬火后低温回火的钢平说属于正常断口。
对于淬火后中温或高温回火的钢来说,表明热处理工艺不当。
6 非金属夹杂断口宏观特征:为各种颜色的非结晶的条状或块状缺陷。
微观特征:缺陷区为大量的颗粒状非金属夹杂物,其种类随钢种不同而异。
7 偏析线断口宏观特征:为反射能力较强的银亮色线条,其方向与加工方向相同。
酸性平炉钢大锻件的偏析线多为粗而亮,而碱怍电炉钢薄壁管的偏析线多为细而密的。
微观特征:为穿晶断口。
偏析线处为光滑的沟坑,其中布满夹杂物。
在粗而亮的偏析线中多为不易变形的硫化钙、氧化铝和氮化铝等,在细而密在偏析线中多为可变形的硫化物。
解理断裂定义解理断裂~宏观脆性断裂解理面:一解理断口宏观形貌特征结晶状小平面、“放射状”或“人字形”花样。
1)结晶状小平面:解理断口上的结晶面宏观上无规则取向。
在光照下呈现许多反光小平面。
2)放射状或人字形花样放射条纹的收敛处和人字的尖端为裂纹源。
人字型形态反映材料性质和加载速度。
材料机械性能相同时,加载速度越大“人字纹”越明显。
加载速度相同时,材料脆性越大,“人字纹”越明显。
二解理断口微观形貌特征河流花样、舌状花样、扇形花样、鱼骨状花样、瓦纳纹及二次裂纹。
1河流花样1)解理台阶产生机制(1)两个不再同一平面的解理裂纹通过与主解理面相垂直的二次解理形成解理台阶。
(2)解理裂纹与螺位错相交截形成台阶。
(3)解理裂纹之间形成较大的塑性变形,通过撕裂方式连接形成台阶(4)通过基体和孪晶的界面发生开裂连接形成台阶2)河流花样的起源及在裂纹扩展中的形态变化(1)河流花样起源于有界面的地方:晶界、亚晶界、孪晶界(2)起源于夹杂物或析出相(3)起源于晶粒内部~解理面与螺位错交割所致扩展过程中:(1)小角度晶界现象:连续地穿过晶界,顺延至下一个晶粒原因:偏转角度小(2)扭转晶界(孪晶界)现象:发生河流的激增原因:偏转角度大,裂纹需重新形核(3)普通大角度晶界现象:产生大量河流,晶界两侧河流台阶的高度差大2 舌状花样现象:体心立方晶体在低温和快速加载时及密排六方金属材料中由于孪生是主要形变形式,断口上经常可以看到舌状花样。
形成机理:主裂纹从A扩展至B,遇到孪晶,然后沿着孪晶界扩展至C,此时,如果孪晶发生二次解理,则裂纹沿CHK扩展,如果孪晶发生撕裂,则裂纹沿CDE扩展。
舌状花样成对出现,在一个断面上凸出,在另外一个断面上凹陷。
3 扇形花样起源于靠近晶界的经历内部,以扇形的方式向外扩展。
解理台阶为扇形的肋。
4 鱼骨状花样现象:体心立方金属材料中例如碳钢、不锈钢有时看到形状类似鱼脊骨的花样。
中间脊线是{100}[100]解理造成的,两侧是{100}[110]和{112}[110]解理造成的。
断心的宏瞅形貌、微瞅形态及断裂机理之阳早格格创做按断裂的道路,断心可分为脱晶断裂战沿晶断裂二大类.脱晶断裂又分为脱晶韧性断裂战脱晶解理断裂(其中包罗准解理断裂).沿晶断裂也分为沿晶韧性断裂战沿晶坚性断裂.底下分别加以计划.(1)脱晶韧窝型断心断裂脱过晶粒里里,由洪量韧窝的成核、扩展、对接而产死的一种断心.宏瞅形貌:正在推伸考查情况下,经常先塑性变形,引起缩颈,而后正在缩颈部位裂纹沿与中力笔直的目标扩展,到一定程度后得稳,沿与中力成45°目标赶快死少至断裂.寡所周知,那种断心称为杯锥状断心.断心表面细糙不仄,无金属光芒,故又称为纤维状断心.微瞅形态:正在电子隐微镜战扫描电镜下瞅察,断心常常是由洪量韧窝对接而成的.每个韧窝的底部往往存留着第二相(包罗非金属夹纯)量面.第二相量面的尺寸近小于韧窝的尺寸.韧窝产死的本果普遍有二种产死情况:1)韧窝底部有第二相量面的情况.由于第二相量面与基体的力教本能分歧(其余,还有第二相量面与基体的分散本领、热伸展系数、第二相量面自己的大小、形状等的效率),所以正在塑性变形历程中沿第二相量面鸿沟(大概脱过第二相量面)易产死微孔裂纹的核心.正在应力效率下,那些微孔裂纹的核心渐渐少大,并随着塑性变形的减少,隐微孔坑之间的对接部分渐渐变薄,直至末尾断裂.图3-41是微孔脱过第二相量面的示企图.若微孔沿第二相面鸿沟成核、扩展产死韧窝型裂纹后,则第二相量面留正在韧窝的某一侧.2)正在韧窝的底部不第二相量面存留的情况.韧窝的产死是由于资料中本去有隐微孔穴大概者是由于塑性变形而产死的隐微孔穴,那些隐微孔穴随塑性变形的删大而不竭扩展战相互对接,直至断裂.那种韧窝的产死往往需要举止很大的塑性变形后才搞够真止.果此,正在那类断心上往往惟有少量的韧窝大概少量变形状韧窝,有的以至经很大的塑性变形后仍睹不到韧窝.当变形不大时,断心呈波纹状大概蛇形格式,而当变形很大时,则为无特性的仄里.韧窝的形状与应力状态有较大闭系.由于试样的受力情况大概是笔直应力、切应力大概由直矩引起的应力,那三种情况下韧窝的形状是纷歧样的.(2)解理与准解理断心1)解理断心.断裂是脱过晶粒、沿一定的结晶教仄里(即解理里)的分散,特天是正在矮温大概赶快加载条件下.解理断裂普遍是沿体心坐圆晶格的{100}里,六圆晶格的{0001}里爆收的.宏瞅形貌:解理断裂的宏瞅断心喊法很多,比圆称为“山脊状断心”、“结晶状断心”、以及“萘状断心”等(睹图片3-53).山脊状断心的山脊指背断裂源,可根据山脊状正接直线群判决断裂起面战断裂目标.萘状断心上有许多与背分歧、比较光润的小仄里,它们象条晶体一般闪闪收光.那些与背分歧的小仄里与晶粒的尺寸相对于应,反映了金属晶粒的大小.微瞅形态:正在电子隐微镜下瞅察时,解理断心呈“河流格式”战“舌状格式”.2)准解理断心.那种断心正在矮碳钢中最罕睹.前述的结晶状断心便是准解理断心,它正在宏瞅上类似解理断心.准解理断心的微瞅形态主假如由许多准解理小仄里、“河流格式”、“舌状格式”及“撕裂岭”组成.沿晶断心是沿分歧与背的晶粒鸿沟爆收断裂.其爆收的主要本果是由于晶界强化,使晶界强度明隐矮于晶内强度而引起的.制成晶界强化的本果很多,比圆,锻制历程中加热战塑性变形工艺不当引起的宽沉细晶;下温加热时气氛中的C、H等元素浓度过下以及炉中残存有铜,渗人晶界;过烧时的晶界熔化大概氧化;加热及热却不当制成沿晶界析出第二相量面大概坚性薄膜;合金元素战夹纯偏偏析制成沿晶界的富集;其余沿晶界的化教腐蚀战应力腐蚀等等,皆不妨制成晶界强化,爆收沿晶断心.(1)沿晶韧窝型断心若第二相量面沿晶界析出的稀度很下,大概果有一定稀度的第二相量面再加上晶粒细大,皆市爆收沿晶韧窝型断裂.沿晶韧窝产死的本果与脱晶韧窝相共.那种断裂的隐微裂纹是沿着大概脱过第二相量面成核的.隐微裂纹的扩展战对接,伴伴随一定量的微瞅塑性变形.正在断心表面可瞅到许多位背分歧、无金属光芒的“小棱里”大概“小仄里”.那些“小棱里”大概“小仄里”的尺寸与晶粒尺寸相对于应(如果晶粒细小,则断心表面上的“小棱里”大概“小仄里”用肉眼便不克不迭瞅到大概不明隐).正在电子隐微镜下瞅察“小校里”大概“小仄里”,它是由洪量韧窝组成的,韧窝底部往往存留有第二相量面(大概薄膜).石状断心战棱里断心皆是沿晶韧窝型断心.其余,偏偏析线也是一种沿晶韧窝型断心.(2)沿晶坚性断心正在沿晶坚性断心上,险些不塑性变形的痕迹大概仅瞅到极少的韧窝.比圆,过烧后的断心,便是沿晶界氧化物薄膜爆收的一种沿晶坚性断裂.其余,18-8奥氏体不锈钢沿晶界洪量析出碳化物后,也易爆收沿晶坚断;沿晶界化教腐蚀战应力腐蚀(包罗氢坚)后爆收的断心,也皆是沿晶坚性断心.属于那类断心的另有层状断心战撕痕状断心等.上头介绍的断心微瞅形态,是依照断裂的道路去分类的.而本量死产中睹到的断心偶尔往往是由几种典型并存的混同断心.比圆,石状断心中,如果“小棱里”大概“小仄里”不是贯脱所有断里,断心时常是沿晶战脱晶混同断心.正在本量死产中根据缺陷断心的宏瞅形貌战微瞅形态便不妨推断出缺陷的典型、缺陷爆收的本果战应采与的对于策.比圆某厂死产的迫打炮炮尾,正在试炮时时常爆收合断的情况,经断心考查创制是石状断心,经选区电子衍射分解确认韧窝底部的析出相颗粒是MnS再分散现场考察认为该缺陷爆收的本果是末锻前的加热温度过下,末锻时的变形程度过小制成的.由于加热温度下,使奥氏体晶粒细大,并使MnS洪量溶进基体,锻后热却时,MhS沿细大的奥氏体晶界析出,制成晶界宽沉强化所致,厥后改变预制坯的尺寸以删大末锻的变形量,并落矮末锻前的加热温度,问题便圆谦天办理了.又比圆某厂死产的Cr—Ni—Mo—V钢某种庞大轴类锻件,正在运止中爆收的坚性断裂,经断心考验创制:此类锻件存留有棱里断心.该锻件用的钢是正在5t碱性电弧炉中用氧化法冶炼的,锭沉2.2t,锻制加热温度为1180~1200℃,保温3h以上,锻后坐时收热处理炉举止退火、扩氢处理,而后举止细加工战调量处理.调量后正在二端切与试片,做纵背断心考验,创制有棱里断心,棱里断心大多出当前庞大锻件的心部,而锻件边部仍为仄常的纤维状断心,金相构制中有沿本细大奥氏体晶界的析出相的链状搜集.棱里断心的微瞅形态,韧窝内的析出相为不准则的四边形,呈薄片状,经选区电子衍射决定为AlN.由AlN的等温析出直线可睹,正在约900℃缓缓热却时,将有洪量的AlN析出.根据上述考验截止分解认为:1)该Cr—Ni—Mo—V钢庞大轴类锻件,其棱里断心主假如正在锻制加热时温度较下,保温时间过少,正在锻后缓热历程中,固溶进基体的洪量AlN呈薄片状沿细大的奥氏体晶界呈链状搜集析出,制成微孔散合型沿晶断裂而产死的.奥氏体晶粒越细大,析出相稀度愈下,晶界强化愈宽沉. 2)锻制下温加热的时间越少,固溶人基体的AlN越多,随后缓热历程中产死校里断心的倾背越大,果此适合统制锻制加热典型是很要害的.3)由于AlN正在奥氏体区析出峰值的温度约为900℃,其析出相随保温时间的延少而减少.果此,采与落矮待料温度,减少一次过热工艺,则能加快锻后热却速度,缩小锻件正在奥氏体区AlN析出峰值温度的停顿时间,果而便能压制AlN沿细大奥氏体晶界的析出.死产考查说明,那是预防Cr—Ni—Mo—V钢锻件爆收棱里断心的灵验步伐.。
断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。
穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。
沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。
下面分别加以讨论。
1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。
宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。
众所周知,这种断口称为杯锥状断口。
断口表面粗糙不平,无金属光泽,故又称为纤维状断口。
微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。
每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。
第二相质点的尺寸远小于韧窝的尺寸。
韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。
由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。
在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。
图3-41是微孔穿过第二相质点的示意图。
若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。
2)在韧窝的底部没有第二相质点存在的情况。
韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。
这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。
因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。
当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。
韧窝的形状与应力状态有较大关系。
断口的宏观形貌、微观形态及断裂机理按断裂的途径,断口可分为穿晶断裂和沿晶断裂两大类。
穿晶断裂又分为穿晶韧性断裂和穿晶解理断裂(其中包括准解理断裂)。
沿晶断裂也分为沿晶韧性断裂和沿晶脆性断裂。
下面分别加以讨论。
1.穿晶断口(1)穿晶韧窝型断口断裂穿过晶粒内部,由大量韧窝的成核、扩展、连接而形成的一种断口。
宏观形貌:在拉伸试验情况下,总是先塑性变形,引起缩颈,然后在缩颈部位裂纹沿与外力垂直的方向扩展,到一定程度后失稳,沿与外力成45°方向快速发展至断裂。
众所周知,这种断口称为杯锥状断口。
断口表面粗糙不平,无金属光泽,故又称为纤维状断口。
微观形态:在电子显微镜和扫描电镜下观察,断口通常是由大量韧窝连接而成的。
每个韧窝的底部往往存在着第二相(包括非金属夹杂)质点。
第二相质点的尺寸远小于韧窝的尺寸。
韧窝形成的原因一般有两种形成情况:1)韧窝底部有第二相质点的情况。
由于第二相质点与基体的力学性能不同(另外,还有第二相质点与基体的结合能力、热膨胀系数、第二相质点本身的大小、形状等的影响),所以在塑性变形过程中沿第二相质点边界(或穿过第二相质点)易形成微孔裂纹的核心。
在应力作用下,这些微孔裂纹的核心逐渐长大,并随着塑性变形的增加,显微孔坑之间的连接部分逐渐变薄,直至最后断裂。
图3-41是微孔穿过第二相质点的示意图。
若微孔沿第二相点边界成核、扩展形成韧窝型裂纹后,则第二相质点留在韧窝的某一侧。
2)在韧窝的底部没有第二相质点存在的情况。
韧窝的形成是由于材料中原来有显微孔穴或者是由于塑性变形而形成的显微孔穴,这些显微孔穴随塑性变形的增大而不断扩展和相互连接,直至断裂。
这种韧窝的形成往往需要进行很大的塑性变形后才能够实现。
因此,在这类断口上往往只有少量的韧窝或少量变形状韧窝,有的甚至经很大的塑性变形后仍见不到韧窝。
当变形不大时,断口呈波纹状或蛇形花样,而当变形很大时,则为无特征的平面。
韧窝的形状与应力状态有较大关系。
常见材料失效形式与分析1.概述材料失效分析技术包括:感官检查、断口分析、化学成分分析、力学性能测试、组织分析、无损检测、残余应力测试、结构受力分析、使用维护分析、环境分析等。
其中断口分析是重要的一环。
材料失效形式有断裂、变形、腐蚀、磨损等。
在机械装备的各类失效中以断裂失效最主要、危害最大。
断口是断裂失效中两断裂分离面的简称。
断口真实地记录了裂纹由萌生、扩展直至失稳断裂全过程的各种与断裂有关的信息。
对断口进行定性和定量分析,可为断裂失效模式及断裂类型的确定提供有力依据,为断裂失效原因的诊断提供线索,并且可以作为冲击试验转变温度的确定依据。
断口金相学不仅能在设备失效后进行诊断分析,还可为新产品、新装备投入使用进行预研预测。
本实验的主要内容为:观察不同载荷下失效的金属断口的宏观形貌和微观形貌,掌握其宏观形貌特征和微观形貌特征。
2.实验目的(1)了解拉伸、冲击、疲劳断口各特征区的构成及形貌特征;(2)掌握判定断口承载类型及断裂性质的方法。
3.实验装置及材料(1)扫描电子显微镜(JSM-6390A型)一台;(2)超声清洗仪(SCQ-200)一台;(3)拉伸、冲击、疲劳断口试样若干;(4)放大镜一只;(5)吹风机一只;(6)丙酮、无水酒精、导电胶带若干。
4.实验原理4.1断口形貌特征:(1)宏观形貌特征包括断口附近的残留塑性变形特征,如:缩颈量的多少、表面的凹凸程度,有无剪切唇等;断口的光泽和颜色:各区域的颜色及亮、暗程度,氧化腐蚀产物的颜色;断口的形貌特征花样:如纤维状、结晶状、发光小平面、放射线、弧形线等;特征区的位置、分布、面积;材料内部缺陷的痕迹等。
(2)微观形貌特征断口上常见的微观特征有:韧窝,特征包括微孔深度、大小,微孔形态(等轴、剪切、撕裂)等;滑移,具有滑移线、蛇形花样、涟波花样和延伸区(平直区)等特征;解理,包括台阶、河流、舌状、扇形、鱼骨状花样及瓦纳线等特征。
准解理,介于解理断裂与塑性断裂间的一种过渡断裂形式,具有解理小平面、撕裂棱、浅韧窝、涟波花样及延伸区等特征;沿晶断裂,具有岩石状、冰糖状等特征;疲劳,具有条带、二次裂纹、轮胎花样等特征;腐蚀,具有氧化物、腐蚀产物、泥纹等特征。
地质学断裂类型形貌
断口形貌是指构件断裂时形成的新表面的形貌。
断口形貌又有宏观形貌和微观(电子显微)形貌之分。
宏观形貌是可以用肉眼或放大镜直接观察到的断裂表面的外貌。
从断裂方向描述时,有正断与斜断之分。
从表面花纹形状来分,有灰暗的纤维状,有金属闪光的结晶状、疲劳贝壳弧线状、粗粒状,还有放射纹、人字纹、剪切唇之断口形貌fracturesurfacernor}h}ingy材料断裂表面的形貌。
可分作宏观形貌和微观形貌两类‘前者可通过低倍显微镜观察,后者一般需用扫描电子显微镜观察。
材料延性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂或氢脆断裂等不同类型的断n各有共特定的显微形貌
特征,通过断日形貌分析有助于揭示材料的断裂原因、过程和机理。
断口形貌的分类及微观特征
断口形貌可以根据其外观分为以下几类:
1. 河流断口:呈现出弯曲的流水形状和河道峡谷的特征,通常见于金属的高强度拉伸和冲击断口。
2. 绒毛断口:这种断口看起来像一块绒毛,主要是由于断面存在许多小孔和纤维状物质形成的,常见于吸水性材料,如木材和纸张。
3. 贝壳断口:这种断口形状有如贝壳的形态,外形平滑而有规律,常见于金属和玻璃等坚硬材料。
4. 支沟型断口:这种断口从宏观上看像一条支沟,常见于部分塑料材料和玻璃等材料。
5. 脆性断口:这种断口通常在低温下出现,表现为突然断开,并且断口表现出平整的层状或亚晶粒骨架。
微观特征方面,不同材料的断口形貌会呈现出不同的微观特征。
例如,海绵状金属断口会展现出大量的细小孔洞分布在其断面中。
而在钢铁等材料的断口中,会看到沿晶裂纹或交互合并的岛状晶界。
此外,断口中晶粒的尺寸和取向也会对其
宏观形态产生影响。