2017-2018学年数学人教A版必修五优化练习:第一章 1.2 第3课时 几何计算问题 Word版含解析
- 格式:doc
- 大小:103.50 KB
- 文档页数:6
第一章 1.3 1.3.2 球的体积和表面积A 级 基础巩固一、选择题1.如果三个球的半径之比是1︰2︰3,那么最大球的表面积是其余两个球的表面积之和的 ( B )A .59倍 B .95倍 C .2倍D .3倍[解析] 设小球半径为1,则大球的表面积S 大=36π,S 小+S 中=20π,36π20π=95.2.若两球的体积之和是12π,经过两球球心的截面圆周长之和为6π,则两球的半径之差为 ( A )A .1B .2C .3D .4[解析] 设两球的半径分别为R 、r (R >r ),则由题意得⎩⎪⎨⎪⎧4π3R 3+4π3r 3=12π2πR +2πr =6π,解得⎩⎪⎨⎪⎧R =2r =1.故R -r =1.3.一个正方体表面积与一个球表面积相等,那么它们的体积比是 ( A ) A .6π6B .π2C .2π2 D .3π2π[解析] 由6a 2=4πR 2得aR=2π3,∴V 1V 2=a 343πR 3=34π⎝⎛⎭⎪⎫2π33=6π6. 4.球的表面积与它的内接正方体的表面积之比是 ( C ) A .π3B .π4C .π2D .π[解析] 设正方体的棱长为a ,球半径为R ,则3a 2=4R 2,∴a 2=43R 2,球的表面积S 1=4πR 2,正方体的表面积 S 2=6a 2=6×43R 2=8R 2,∴S 1︰S 2=π2.5.正方体的内切球与其外接球的体积之比为 ( C ) A .1︰ 3B .1︰3C .1︰3 3D .1︰9[解析] 设正方体的棱长为a ,则它的内切球的半径为12a ,它的外接球的半径为32a ,故所求体积之比为1︰3 3.6.若与球外切的圆台的上、下底面半径分别为r 、R ,则球的表面积为 ( C ) A .4π(r +R )2B .4πr 2R2C .4πRrD .π(R +r )2[解析] 解法一:如图,设球的半径为r 1,则在Rt △CDE 中,DE =2r 1,CE =R -r ,DC =R +r .由勾股定理得4r 21=(R +r )2-(R -r )2,解得r 1=Rr .故球的表面积为D 球=4πr 21=4πRr .解法二:如图,设球心为O ,球的半径为r 1,连接OA 、OB ,则在Rt △AOB 中,OF 是斜边AB 上的高.由相似三角形的性质得OF 2=BF ·AF =Rr ,即r 21=Rr ,故r 1=Rr ,故球的表面积为S 球=4πRr .二、填空题7.(2017·天津理,10)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为__9π2__.[解析] 设正方体的棱长为a ,则6a 2=18, ∴a = 3.设球的半径为R ,则由题意知2R =a 2+a 2+a 2=3, ∴R =32.故球的体积V =43πR 3=43π×(32)3=9π2.8.已知棱长为2的正方体的体积与球O 的体积相等,则球O 的半径为[解析] 设球O 的半径为r ,则43πr 3=23,解得r =36π.三、解答题9.体积相等的正方体、球、等边圆柱(轴截面为正方形)的全面积分别是S 1、S 2、S 3,试比较它们的大小.[解析] 设正方体的棱长为a ,球的半径为R ,等边圆柱的底面半径为r ,则S 1=6a 2,S 2=4πR 2,S 3=6πr 2.由题意知,43πR 3=a 3=πr 2·2r ,∴R =334πa ,r =312πa , ∴S 2=4π⎝ ⎛⎭⎪⎫334πa 2=4π·3916π2a 2=336πa 2, S 3=6π⎝ ⎛⎭⎪⎫312πa 2=6π·314π2a 2=354πa 2, ∴S 2<S 3.又6a 2>332πa 2=354πa 2,即S 1>S 3. ∴S 1、S 2、S 3的大小关系是S 2<S 3<S 1.10.某组合体的直观图如图所示,它的中间为圆柱形,左右两端均为半球形,若图中r =1,l =3,试求该组合体的表面积和体积.[解析] 该组合体的表面积S =4πr 2+2πrl =4π×12+2π×1×3=10π. 该组合体的体积V =43πr 3+πr 2l =43π×13+π×12×3=13π3.B 级 素养提升一、选择题1.用一个平行于水平面的平面去截球,得到如图所示的几何体,则它的俯视图是 ( B )[解析] 选项D 为主视图或者侧视图,俯视图中显然应有一个被遮挡的圆,所以内圆是虚线,故选B .2.若一个球的外切正方体的表面积等于6 cm 2,则此球的体积为 ( A ) A .π6cm 3B .6π8cm 3C .4π3cm 3D .6π6cm 3[解析] 设球的半径为R ,正方体的棱长为a , ∴6a 2=6,∴a =1.∴2R =1,∴R =12.∴球的体积V =43πR 3=43π×(12)3=π6.3.一个球与一个上、下底面为正三角形,侧面为矩形的棱柱的三个侧面和两个底面都相切,已知这个球的体积为32π3,那么这个正三棱柱的体积是 ( D )A .96 3B .16 3C .24 3D .48 3[解析] 由题意可知正三棱柱的高等于球的直径,从棱柱中间截得球的大圆内切于正三角形,正三角形与棱柱底的三角形全等,设三角形边长为a ,球半径为r ,由V 球=43×πr 3=32π3解r =2.S 底=12×a ×a 2-a 24=12a ·r ×3,得a =23r =43,所以V 柱=S 底·2r =48 3.4.已知某几何体的三视图如图所示,其中正视图、侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为 ( C )A .2π3+12B .4π3+16C .2π6+16D .2π3+12[解析] 由已知的三视图可知原几何体的上方是三棱锥,下方是半球,∴V =13×(12×1×1)×1+[4π3×(22)3]×12=16+2π6,故选C .二、填空题5.一个半径为2的球体经过切割后,剩余部分几何体的三视图如图所示,则该几何体的表面积为__16π__.[解析] 该几何体是从一个球体中挖去14个球体后剩余的部分,所以该几何体的表面积为34×(4π×22)+2×π×222=16π.6.圆柱形容器内盛有高度为8 cm 的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__4__cm.[解析] 设球的半径为r ,则圆柱形容器的高为6r ,容积为πr 2×6r =6πr 3,高度为8 cm 的水的体积为8πr 2,3个球的体积和为3×43πr 3=4πr 3,由题意得6πr 3-8πr 2=4πr 3,解得r =4(cm).C 级 能力拔高1.盛有水的圆柱形容器的内壁底面半径为5 cm ,两个直径为5 cm 的玻璃小球都浸没于水中,若取出这两个小球,则水面将下降多少?[解析] 设取出小球后,容器中水面下降h cm , 两个小球的体积为V 球=2[4π3×(52)3]=125π3(cm 3),此体积即等于它们的容器中排开水的体积V =π×52×h ,所以125π3=π×52×h ,所以h =53,即若取出这两个小球,则水面将下降53cm.2.已知四面体的各面都是棱长为a 的正三角形,求它外接球的体积及内切球的半径. [解析] 如图,设SO 1是四面体S -ABC 的高,则外接球的球心O 在SO 1上.设外接球半径为R .∵四面体的棱长为a ,O 1为正△ABC 中心, ∴AO 1=23×32a =33a ,SO 1=SA 2-AO 21=a 2-13a 2=63a , 在Rt △OO 1A 中,R 2=AO 21+OO 21=AO 21+(SO 1-R )2, 即R 2=(33a )2+(63a -R )2,解得R =64a , ∴所求外接球体积V 球=43πR 3=68πa 3.∴OO 1即为内切球的半径,OO 1=63a -64a =612a , ∴内切球的半径为612a .。
人民教育出版社 高中数学必修五第一章 解三角形1.1两角和与差的正弦、余弦和正切公式 练习(P4) 1、(1)14a ≈,19b ≈,105B =︒; (2)18a ≈cm ,15b ≈cm ,75C =︒. 2、(1)65A ≈︒,85C ≈︒,22c ≈;或115A ≈︒,35C ≈︒,13c ≈; (2)41B ≈︒,24A ≈︒,24a ≈. 练习(P8) 1、(1)39.6,58.2, 4.2 cm A B c ≈︒≈︒≈; (2)55.8,81.9,10.5 cm B C a ≈︒≈︒≈. 2、(1)43.5,100.3,36.2A B C ≈︒≈︒≈︒; (2)24.7,44.9,110.4A B C ≈︒≈︒≈︒. 习题1.1 A 组(P10) 1、(1)38,39,80a cm b cm B ≈≈≈︒; (2)38,56,90a cm b cm C ≈≈=︒ 2、(1)114,43,35;20,137,13A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈ (2)35,85,17B C c cm ≈︒≈︒≈;(3)97,58,47;33,122,26A B a cm A B a cm ≈︒≈︒≈≈︒≈︒≈; 3、(1)49,24,62A B c cm ≈︒≈︒≈; (2)59,55,62A C b cm ≈︒≈︒≈; (3)36,38,62B C a cm ≈︒≈︒≈; 4、(1)36,40,104A B C ≈︒≈︒≈︒; (2)48,93,39A B C ≈︒≈︒≈︒;习题1.1 A 组(P10)1、证明:如图1,设ABC ∆的外接圆的半径是R ,①当ABC ∆时直角三角形时,90C ∠=︒时,ABC ∆的外接圆的圆心O 在Rt ABC ∆的斜边AB 上.在Rt ABC ∆中,sin BC A AB=,sin ACB AB = 即sin 2a A R =,sin 2b B R = 所以2sin a R A =,2sin b R B = 又22sin902sin c R R RC ==⋅︒= 所以2sin , 2sin , 2sin a R A b R B c R C ===②当ABC ∆时锐角三角形时,它的外接圆的圆心O 在三角形内(图2),作过O B 、的直径1A B ,连接1A C ,则1A BC ∆直角三角形,190ACB ∠=︒,1BAC BAC ∠=∠. 在1Rt A BC ∆中,11sin BCBAC A B=∠, 即1sin sin 2aBAC A R=∠=, 所以2sin a R A =,同理:2sin b R B =,2sin c R C =③当ABC ∆时钝角三角形时,不妨假设A ∠为钝角, 它的外接圆的圆心O 在ABC ∆外(图3)(第1题图1) (第1题图2)作过O B 、的直径1A B ,连接1A C .则1A BC ∆直角三角形,且190ACB ∠=︒,1180BAC∠=︒-∠在1Rt A BC ∆中,12sin BC R BAC =∠,即2sin(180)a R BAC =︒-∠即2sin a R A =同理:2sin b R B =,2sin c R C =综上,对任意三角形ABC ∆,如果它的外接圆半径等于则2sin , 2sin , 2sin a R A b R B c R C ===2、因为cos cos a A b B =,所以sin cos sin cos A A B B =,即sin2sin2A B = 因为02,22A B π<<,所以22A B =,或22A B π=-,或222A B ππ-=-. 即A B =或2A B π+=.所以,三角形是等腰三角形,或是直角三角形.在得到sin2sin2A B =后,也可以化为sin2sin20A B -= 所以cos()sin()0A B A B +-= 2A B π+=,或0A B -=即2A B π+=,或A B =,得到问题的结论.1.2应用举例 练习(P13)1、在ABS ∆中,32.20.516.1AB =⨯= n mile ,115ABS ∠=︒,根据正弦定理,sin sin(6520)AS ABABS =∠︒-︒得sin 16.1sin115sin(6520)AS AB ABS ==⨯∠=⨯︒-︒∴S 到直线AB 的距离是sin 2016.1sin115sin 207.06d AS =⨯︒=⨯︒≈(cm ). ∴这艘船可以继续沿正北方向航行. 2、顶杆约长1.89 m. 练习(P15)1、在ABP ∆中,180ABP γβ∠=︒-+,180()180()(180)BPA ABP αβαβγβγα∠=︒---∠=︒---︒-+=-在ABP ∆中,根据正弦定理,sin sin AP ABABP APB=∠∠ sin(180)sin()AP aγβγα=︒-+-sin()sin()a AP γβγα⨯-=-(第1题图3)所以,山高为sin sin()sin sin()a h AP αγβαγα-==-2、在ABC ∆中,65.3AC =m ,25251738747BAC αβ'''∠=-=︒-︒=︒909025256435ABC α''∠=︒-=︒-︒=︒ 根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 65.3sin7479.8sin sin6435AC BAC BC ABC '⨯∠⨯︒==≈'∠︒m井架的高约9.8m.3、山的高度为200sin38sin 29382sin9⨯︒︒≈︒m练习(P16) 1、约63.77︒. 练习(P18) 1、(1)约2168.52 cm ; (2)约2121.75 cm ; (3)约2425.39 cm . 2、约24476.40 m3、右边222222cos cos 22a b c a c b b C c B b c ab ac+-+-=+=⨯+⨯22222222222a b c a c b a a a a a+-+-=+===左边 【类似可以证明另外两个等式】习题1.2 A 组(P19)1、在ABC ∆中,350.517.5BC =⨯= n mile ,14812622ABC ∠=︒-︒=︒78(180148)110ACB ∠=︒+︒-︒=︒,1801102248BAC ∠=︒-︒-︒=︒根据正弦定理,sin sin AC BCABC BAC=∠∠ sin 17.5sin 228.82sin sin 48BC ABC AC BAC ⨯∠⨯︒==≈∠︒n mile货轮到达C 点时与灯塔的距离是约8.82 n mile. 2、70 n mile.3、在BCD ∆中,301040BCD ∠=︒+︒=︒,1801804510125BDC ADB ∠=︒-∠=︒-︒-︒=︒130103CD =⨯= n mile根据正弦定理,sin sin CD BDCBD BCD=∠∠ 10sin (18040125)sin 40BD=∠︒-︒-︒︒10sin 40sin15BD ⨯︒=︒在ABD ∆中,451055ADB ∠=︒+︒=︒,1806010110BAD ∠=︒-︒-︒=︒1801105515ABD ∠=︒-︒-︒=︒根据正弦定理,sin sin sin AD BD AB ABD BAD ADB ==∠∠∠,即sin15sin110sin55AD BD AB==︒︒︒10sin 40sin15sin1510sin 40sin15 6.84sin110sin110sin 70BD AD ⨯︒⨯︒⨯︒⨯︒︒===≈︒︒︒n mile sin5510sin 40sin5521.65sin110sin15sin70BD AB ⨯︒⨯︒⨯︒==≈︒︒⨯︒n mile如果一切正常,此船从C 开始到B 所需要的时间为:6.8421.65206010306086.983030AD AB +++⨯+≈+⨯≈ min即约1小时26分59秒. 所以此船约在11时27分到达B 岛. 4、约5821.71 m5、在ABD ∆中,700 km AB =,1802135124ACB ∠=︒-︒-︒=︒根据正弦定理,700sin124sin35sin 21AC BC==︒︒︒700sin35sin124AC ⨯︒=︒,700sin 21sin124BC ⨯︒=︒700sin35700sin 21786.89 km sin124sin124AC BC ⨯︒⨯︒+=+≈︒︒所以路程比原来远了约86.89 km.6、飞机离A 处探照灯的距离是4801.53 m ,飞机离B 处探照灯的距离是4704.21 m ,飞机的高度是约4574.23 m.7、飞机在150秒内飞行的距离是15010001000 m 3600d =⨯⨯根据正弦定理,sin(8118.5)sin18.5d x=︒-︒︒这里x 是飞机看到山顶的俯角为81︒时飞机与山顶的距离.飞机与山顶的海拔的差是:sin18.5tan81tan8114721.64 m sin(8118.5)d x ⨯︒⨯︒=⨯︒≈︒-︒ 山顶的海拔是2025014721.645528 m -≈8、在ABT ∆中,21.418.6 2.8ATB ∠=︒-︒=︒,9018.6ABT ∠=︒+︒,15 m AB =根据正弦定理,sin 2.8cos18.6AB AT =︒︒,即15cos18.6sin 2.8AT ⨯︒=︒塔的高度为15cos18.6sin 21.4sin 21.4106.19 m sin 2.8AT ⨯︒⨯︒=⨯︒≈︒9、3261897.8 km 60AE ⨯== 在ACD ∆中,根据余弦定理:AC =101.235== 根据正弦定理,sin sin AD ACACD ADC=∠∠ sin 57sin66sin 0.5144101.235AD ADC ACD AC ⨯∠⨯︒∠==≈30.96ACD ∠≈︒13330.96102.04ACB ∠≈︒-︒=︒(第9题)在ABC ∆中,根据余弦定理:AB =245.93=≈222222245.93101.235204cos 0.584722245.93101.235AB AC BC BAC AB AC +-+-∠==≈⨯⨯⨯⨯54.21BAC ∠=︒在ACE ∆中,根据余弦定理:CE =90.75=≈22222297.890.75101.235cos 0.42542297.890.75AE EC AC AEC AE EC +-+-∠=≈≈⨯⨯⨯⨯64.82AEC ∠=︒180(18075)7564.8210.18AEC ︒-∠-︒-︒=︒-︒=︒所以,飞机应该以南偏西10.18︒的方向飞行,飞行距离约90.75 km . 10、如图,在ABC ∆AC ==37515.44 km ==222222640037515.44422000.692422640037515.44AB AC BC BAC AB AC +-+-∠=≈≈-⨯⨯⨯⨯133.82BAC ∠≈︒, 9043.82BAC ∠-︒≈︒ 所以,仰角为43.82︒11、(1)211sin 2833sin 45326.68 cm 22S ac B ==⨯⨯⨯︒≈(2)根据正弦定理:sin sin a c A C =,36sin sin66.5sin sin32.8a c C A =⨯=⨯︒︒2211sin66.5sin 36sin(32.866.5)1082.58 cm 22sin32.8S ac B ︒==⨯⨯⨯︒+︒≈︒(3)约为1597.94 2cm12、212sin 2nR nπ.13、根据余弦定理:222cos 2a c b B ac +-= 所以222()2cos 22a a a m c c B =+-⨯⨯⨯B22222()22a a c b c a c ac +-=+-⨯⨯222222222211()[42()]()[2()]22a c a c b b c a =+-+-=+-所以a m =b m =,c m =14、根据余弦定理的推论,222cos 2b c a A bc +-=,222cos 2c a b B ca+-=所以,左边(cos cos )c a B b A =-222222()22c a b b c a c a b ca bc +-+-=⨯-⨯222222221()(22)222c a b b c a c a b c c +-+-=-=-=右边习题1.2 B 组(P20)1、根据正弦定理:sin sin a b A B =,所以sin sin a Bb A= 代入三角形面积公式得211sin 1sin sin sin sin 22sin 2sin a B B CS ab C a C a A A==⨯⨯= 2、(1)根据余弦定理的推论:222cos 2a b c C ab +-=由同角三角函数之间的关系,sin C == 代入1sin 2S ab C =,得12S ====记1()2p a b c =++,则可得到1()2b c a p a +-=-,1()2c a b p b +-=-,1()2a b c p c +-=-代入可证得公式(2)三角形的面积S 与三角形内切圆半径r 之间有关系式122S p r pr =⨯⨯=其中1()2p a b c =++,所以S r p == (3)根据三角形面积公式12a S a h =⨯⨯所以,22()()()a S h p p a p a p a a a ==---,即2()()()a h p p a p a p a a =--- 同理2()()()b h p p a p a p a b =---,2()()()c h p p a p a p a c=---第一章 复习参考题A 组(P24)1、(1)219,3851,8.69 cm B C c ''≈︒≈︒≈; (2)4149,10811,11.4 cm B C c ''≈︒≈︒≈;或13811,1149, 2.46 cm B C c ''≈︒≈︒≈ (3)112,3858,28.02 cm A B c ''≈︒≈︒≈; (4)2030,1430,22.92 cm B C a ''≈︒≈︒≈; (5)1620,1140,53.41 cm A C b ''≈︒≈︒≈; (6)2857,4634,10429A B C '''=︒=︒=︒; 2、解法1:设海轮在B 处望见小岛在北偏东75︒,在C 处望见小岛在北偏东60︒,从小岛A 向海轮的航线BD 作垂线,垂线段AD 的长度为x n mile ,CD 为y n mile.则 tan 30tan 308tan 30tan15tan1588tan15x x y y x x x x y y ⎧⎧=︒=⎪⎪⎪⎪︒⇒⇒=-⎨⎨︒︒⎪⎪=︒=+⎪⎪+︒⎩⎩8tan15tan304tan30tan15x ︒︒==︒-︒所以,这艘海轮不改变航向继续前进没有触礁的危险. 3、根据余弦定理:2222cos AB a b ab α=+-所以 222cos AB a b ab α=+-222cos 2a AB b B a AB+-=⨯⨯2222222cos 22cos a a b ab b a a b ab αα++--=⨯⨯+-22cos 2cos a b a b ab αα-=+-从B ∠的余弦值可以确定它的大小.类似地,可以得到下面的值,从而确定A ∠的大小. 22cos cos 2cos b a A a b ab αα-=+-4、如图,,C D 是两个观测点,C 到D 的距离是d ,航船在时刻1t 在A 处,以从A 到B 的航向航行,在此时测出ACD ∠和CDA ∠. 在时刻2t ,航船航行到B 处,此时,测出CDB ∠和BCD ∠. 根据正弦定理,在BCD ∆中,可以计算出BC 的长,在ACD ∆中,可以计算出AC 的长. 在ACB ∆中,AC 、BC 已经算出,ACB ACD BCD ∠=∠-∠,解ACD ∆, 求出AB 的长,即航船航行的距离,算出CAB ∠,这样就可以算出航船的航向和速度.(第2题)dCBA(第4题)5、河流宽度是sin()sin sin h αβαβ-. 6、47.7 m.7、如图,,A B 是已知的两个小岛,航船在时刻1t 在C 处,以从C 到D 的航向航行,测出ACD ∠和BCD ∠. 在时刻2t ,航船航行到D 处,根据时间和航船的速度,可以计算出C 到D 的距离是d ,在D 处测出CDB ∠和 CDA ∠. 根据正弦定理,在BCD ∆中,可以计算出BD 的长,在ACD ∆中,可以计算出AD 的长. 在ABD ∆中,AD 、BD 已经算出,ADB CDB CDA ∠=∠-∠,根据余弦定理,就可 以求出AB 的长,即两个海岛,A B 的距离.第一章 复习参考题B 组(P25)1、如图,,A B 是两个底部不可到达的建筑物的尖顶,在地面某点处,测出图中AEF ∠,AFE ∠的大小,以及EF 的距离. 定理,解AEF ∆,算出AE . 在BEF ∆中,测出BEF ∠和BFE ∠, 利用正弦定理,算出BE . 在AEB ∆中,测出AEB ∠,利用余弦定 理,算出AB 的长. 本题有其他的测量方法.2、关于三角形的面积公式,有以下的一些公式:(1)已知一边和这边上的高:111,,222a b c S ah S bh S ch ===;(2)已知两边及其夹角:111sin ,sin ,sin 222S ab C S bc A S ca B===;(3)已知三边:S =,这里2a b cp ++=;(4)已知两角及两角的共同边:222sin sin sin sin sin sin ,,2sin()2sin()2sin()b C Ac A B a B CS S S C A A B B C ===+++;(5)已知三边和外接圆半径R :4abc S R=. 3、设三角形三边长分别是1,,1n n n -+,三个角分别是,3,2απαα-.由正弦定理,11sin sin 2n n αα-+=,所以1cos 2(1)n n α+=-. 由余弦定理,222(1)(1)2(1)cos n n n n n α-=++-⨯+⨯⨯.即2221(1)(1)2(1)2(1)n n n n n n n +-=++-⨯+⨯⨯-,化简,得250n n -=所以,0n =或5n =. 0n =不合题意,舍去. 故5n =所以,三角形的三边分别是4,5,6. 可以验证此三角形的最大角是最小角的2倍. 另解:先考虑三角形所具有的第一个性质:三边是连续的三个自然数.(1)三边的长不可能是1,2,3. 这是因为123+=,而三角形任何两边之和大于第三边. (2)如果三边分别是2,3,4a b c ===.因为 2222223427cos 22348b c a A bc +-+-===⨯⨯22717cos22cos 12()1832A A =-=⨯-=2222222341cos 22234a b c C ab +-+-===-⨯⨯在此三角形中,A 是最小角,C 是最大角,但是cos2cos A C ≠, 所以2A C ≠,边长为2,3,4的三角形不满足条件.(3)如果三边分别是3,4,5a b c ===,此三角形是直角三角形,最大角是90︒,最小角不等于45︒. 此三角形不满足条件. (4)如果三边分别是4,5,6a b c ===.此时,2222225643cos 22564b c a A bc +-+-===⨯⨯2231cos22cos 12()148A A =-=⨯-=2222224561cos 22458a b c C ab +-+-===⨯⨯此时,cos2cos A C =,而02,A C π<<,所以2A C = 所以,边长为4,5,6的三角形满足条件.(5)当4n >,三角形的三边是,1,2a n b n c n ==+=+时,三角形的最小角是A ,最大角是C . 222cos 2b c a A bc +-=222(1)(2)2(1)(2)n n n n n +++-=++2652(1)(2)n n n n ++=++52(2)n n +=+1322(2)n =++222cos 2a b c C ab +-=222(1)(2)2(1)n n n n n ++-+=+2232(1)n n n n --=+32n n -=1322n=-cos A 随n 的增大而减小,A 随之增大,cos C 随n 的增大而增大,C 随之变小. 由于4n =时有2C A =,所以,4n >,不可能2C A =. 综上可知,只有边长分别是4,5,6的三角形满足条件.第二章 数列2.1数列的概念与简单表示法 练习(P31) 1、2、前5项分别是:1,0,1,0,1--.3、例1(1)1(2,)1(21,)n n m m N na n m m N n⎧-=∈⎪⎪=⎨⎪=-∈⎪⎩**; (2)2(2,)0(21,)n n m m N a n m m N ⎧=∈⎪=⎨=-∈⎪⎩**说明:此题是通项公式不唯一的题目,鼓励学生说出各种可能的表达形式,并举出其他可能的通项公式表达形式不唯一的例子.4、(1)1()21n a n Z n +=∈-; (2)(1)()2n n a n Z n +-=∈; (3)121()2n n a n Z +-=∈ 习题2.1 A 组(P33) 1、(1)2,3,5,7,11,13,17,19;(2) (3)1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.2、(1)11111,,,,491625; (2)2,5,10,17,26--.3、(1)(1),4-,9,(16-),25,(36-),49; 12(1)n n a n +=-; (2)1,(,2;n a =4、(1)1,3,13,53,2132; (2)141,5,,,5454--.5、对应的答案分别是:(1)16,21;54n a n =-;(2)10,13;32n a n =-;(3)24,35;22n a n n =+.6、15,21,28; 1n n a a n -=+. 习题2.1 B 组(P34)1、前5项是1,9,73,585,4681.该数列的递推公式是:1118,1n n a a a +=+=.通项公式是:817n n a -=.2、110(10.72)10.072a =⨯+=﹪; 2210(10.72)10.144518a =⨯+=﹪; 3310(10.72)10.217559a =⨯+=﹪; 10(10.72)n n a =⨯+﹪. 3、(1)1,2,3,5,8; (2)358132,,,,2358.2.2等差数列练习(P39)1、表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15,11-,24-.2、152(1)213n a n n =+-=+,1033a =.3、4n c n =4、(1)是,首项是11m a a md +=+,公差不变,仍为d ;(2)是,首项是1a ,公差2d ;(3)仍然是等差数列;首项是716a a d =+;公差为7d . 5、(1)因为5375a a a a -=-,所以5372a a a =+. 同理有5192a a a =+也成立; (2)112(1)n n n a a a n -+=+>成立;2(0)n n k n k a a a n k -+=+>>也成立. 习题2.2 A 组(P40)1、(1)29n a =; (2)10n =; (3)3d =; (4)110a =.2、略.3、60︒.4、2℃;11-℃;37-℃.5、(1)9.8s t =; (2)588 cm ,5 s. 习题2.2 B 组(P40)1、(1)从表中的数据看,基本上是一个等差数列,公差约为2000,52010200280.2610a a d =+=⨯ 再加上原有的沙化面积5910⨯,答案为59.2610⨯;(2)2021年底,沙化面积开始小于52810 hm ⨯. 2、略. 2.3等差数列的前n 项和 练习(P45) 1、(1)88-; (2)604.5.2、59,11265,112n n a n n ⎧=⎪⎪=⎨+⎪>⎪⎩ 3、元素个数是30,元素和为900.习题2.3 A 组(P46)1、(1)(1)n n +; (2)2n ; (3)180个,和为98550; (4)900个,和为494550.2、(1)将120,54,999n n a a S ===代入1()2n n n a a S +=,并解得27n =; 将120,54,27n a a n ===代入1(1)n a a n d =+-,并解得1713d =.(2)将1,37,6293n d n S ===代入1(1)n a a n d =+-,1()2n n n a a S +=,得111237()6292n n a a a a =+⎧⎪⎨+=⎪⎩;解这个方程组,得111,23n a a ==.(3)将151,,566n a d S ==-=-代入1(1)2n n n S na d -=+,并解得15n =;将151,,1566a d n ==-=代入1(1)n a a n d =+-,得32n a =-.(4)将2,15,10n d n a ===-代入1(1)n a a n d =+-,并解得138a =-;将138,10,15n a a n =-=-=代入1()2n n n a a S +=,得360n S =-. 3、44.5510⨯m. 4、4.5、这些数的通项公式:7(1)2n -+,项数是14,和为665.6、1472.习题2.3 B 组(P46)1、每个月的维修费实际上是呈等差数列的. 代入等差数列前n 项和公式,求出5年内的总共的维修费,即再加上购买费,除以天数即可. 答案:292元.2、本题的解法有很多,可以直接代入公式化简,但是这种比较繁琐. 现提供2个证明方法供参考. (1)由 61615S a d =+,1211266S a d =+,18118153S a d =+ 可得61812126()2()S S S S S +-=-. (2)1261212126()()S S a a a a a a -=+++-+++7812a a a =+++126(6)(6)(6)a d a d a d =++++++126()36a a a d =++++636S d =+同样可得:1812672S S S d -=+,因此61812126()2()S S S S S +-=-.3、(1)首先求出最后一辆车出发的时间4时20分;所以到下午6时,最后一辆车行驶了1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分. 各辆车的行驶时间呈等差数列分布,代入前n 项和公式,这个车队所有车的行驶时间为2418531522S +=⨯= h. 乘以车速60 km/h ,得行驶总路程为2550 km. 4、数列1(1)n n ⎧⎫⎨⎬+⎩⎭的通项公式为111(1)1n a n n n n ==-++ 所以111111111()()()()1122334111n nS n n n n =-+-+-++-=-=+++ 类似地,我们可以求出通项公式为1111()()n a n n k k n n k==-++的数列的前n 项和. 2.4等比数列 练习(P52)1、2、由题意可知,每一轮被感染的计算机台数构成一个首项为180a =,公比为20q =的等比数列,则第5轮被感染的计算机台数5a 为 447518020 1.2810a a q ==⨯=⨯.3、(1)将数列{}n a 中的前k 项去掉,剩余的数列为12,,k k a a ++. 令,1,2,k i b a i +==,则数列12,,k k a a ++可视为12,,b b .因为11(1)i k i i k ib a q i b a ++++==≥,所以,{}n b 是等比数列,即12,,k k a a ++是等比数列.(2){}n a 中的所有奇数列是135,,,a a a ,则235211321(1)k k a a a q k a a a +-=====≥.所以,数列135,,,a a a 是以1a 为首项,2q 为公比的等比数列.(3){}n a 中每隔10项取出一项组成的数列是11223,,,a a a ,则1112231111121110(1)k k a a a q k a a a +-=====≥所以,数列11223,,,a a a 是以1a 为首项,11q 为公比的等比数列.猜想:在数列{}n a 中每隔m (m 是一个正整数)取出一项,组成一个新的数列,这个数列是以1a 为首项,1m q +为公比的等比数列.4、(1)设{}n a 的公比为q ,则24228511()a a q a q ==,而262837111a a a q a q a q ⋅=⋅= 所以2537a a a =⋅,同理2519a a a =⋅ (2)用上面的方法不难证明211(1)nn n a a a n -+=⋅>. 由此得出,n a 是1n a -和1n a +的等比中项. 同理:可证明,2(0)nn k n k a a a n k -+=⋅>>. 由此得出,n a 是n k a -和n k a +的等比中项(0)n k >>. 5、(1)设n 年后这辆车的价值为n a ,则13.5(110)n n a =-﹪. (2)4413.5(110)88573a =-≈﹪(元). 用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)1、(1)可由341a a q =,得11a =-,6671(1)(3)729a a q ==-⨯-=-. 也可由671a a q =,341a a q =,得337427(3)729a a q ==⨯-=-(2)由131188a q a q =⎧⎪⎨=⎪⎩,解得12723a q =⎧⎪⎨=⎪⎩,或12723a q =-⎧⎪⎨=-⎪⎩(3)由416146a q a q ⎧=⎪⎨=⎪⎩,解得232q =,862291173692a a q a q q a q ==⋅==⨯=还可由579,,a a a 也成等比数列,即2759a a a =,得22795694a a a ===.(4)由411311156a q a a q a q ⎧-=⎪⎨-=⎪⎩①②①的两边分别除以②的两边,得2152q q +=,由此解得12q =或2q =. 当12q =时,116a =-. 此时2314a a q ==-. 当2q =时,11a =. 此时2314a a q ==. 2、设n 年后,需退耕n a ,则{}n a 是一个等比数列,其中18(110),0.1a q =+=﹪.那么2005年需退耕5551(1)8(110)13a a q =+=+≈﹪(万公顷) 3、若{}n a 是各项均为正数的等比数列,则首项1a 和公比q 都是正数. 由11n n a a q-=11(1)22)n n qq --===.那么数列{}n a为首项,12q 为公比的等比数列.4、这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05×2 mm ,再对折后厚度为0.05×22 mm ,再对折后厚度为0.05×32 mm. 设00.05a =,对折n 次后报纸的厚度为n a ,则{}n a 是一个等比数列,公比2q =. 对折50次后,报纸的厚度为505050131000.052 5.6310 mm 5.6310 m a a q ==⨯≈⨯=⨯这时报纸的厚度已经超出了地球和月球的平均距离(约83.8410 m ⨯),所以能够在地球和月球之间建一座桥.5、设年平均增长率为1,105q a =,n 年后空气质量为良的天数为n a ,则{}n a 是一个等比数列.由3240a =,得2231(1)105(1)240a a q q =+=+=,解得10.51q =≈ 6、由已知条件知,,2a bA G +==,且02a b A G +-== 所以有A G ≥,等号成立的条件是a b =. 而,a b 是互异正数,所以一定有A G >.7、(1)2±; (2)22()ab a b ±+. 8、(1)27,81; (2)80,40,20,10. 习题2.4 B 组(P54)1、证明:由等比数列通项公式,得11m m a a q -=,11n n a a q -=,其中1,0a q ≠所以 1111m m n m n n a a q q a a q---== 2、(1)设生物体死亡时,体内每克组织中的碳14的原子核数为1个单位,年衰变率为q ,n 年后的残留量为n a ,则{}n a 是一个等比数列. 由碳14的半衰期为5730则 57305730112n a a qq===,解得157301()0.9998792q =≈ (2)设动物约在距今n 年前死亡,由0.6n a =,得10.9998790.6n n a a q ===. 解得 4221n ≈,所以动物约在距今42213、在等差数列1,2,3,…中,有7108917a a a a +==+,1040203050a a a a +==+ 由此可以猜想,在等差数列{}n a 中若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a +=+. 从等差数列与函数之间的联系的角度来分析这个问题:由等差数列{}n a 的图象,可以看出k p a k a p =,s q a sa q=根据等式的性质,有k s p q a a k sa a p q++=++,所以k s p q a a a a +=+. 猜想对于等比数列{}n a ,类似的性质为:若*(,,,)k s p q k s p q N +=+∈,则k s p q a a a a ⋅=⋅. 2.5等比数列的前n 项和 练习(P58) 1、(1)6616(1)3(12)189112a q S q --===--. (2)1112.7()9190311451()3n n a a q S q----===----. 2、设这个等比数列的公比为q(第3题)所以 101256710()()S a a a a a a =+++++++555S q S =+55(1)q S =+50=同理 1015105S S q S =+.因为 510S =,所以由①得 5101051416S q q S =-=⇒= 代入②,得1015105501610210S S q S =+=+⨯=.3、该市近10年每年的国内生产总值构成一个等比数列,首项12000a =,公比 1.1q =设近10年的国内生产总值是10S ,则10102000(1 1.1)31874.81 1.1S -=≈-(亿元)习题2.5 A 组(P61)1、(1)由34164641a q a ===--,解得4q =-,所以144164(4)5111(4)a a q S q ---⨯-===---. (2)因为2131233(1)S a a a a q q --=++=++,所以2113q q --++=,即2210q q --=解这个方程,得1q =或12q =-. 当1q =时,132a =;当12q =-时,16a =.2、这5年的产值是一个以1138 1.1151.8a =⨯=为首项, 1.1q =为公比的等比数列所以5515(1)151.8(1 1.1)926.75411 1.1a q S q -⨯-==≈--(万元) 3、(1)第1个正方形的面积为42cm ,第2个正方形的面积为22cm ,…,这是一个以14a =为首项,12q =为公比的等比数列所以第10个正方形的面积为99710114()22a a q -==⨯=(2cm )(2)这10个正方形的面积和为77110101422821112a a qS q---⨯-===---(2cm )4、(1)当1a =时,2(1)(1)(2)()12(1)2n n na a a n n --+-++-=-----=-当1a ≠时,22(1)(2)()()(12)n n a a a n a a a n -+-++-=+++-+++(1)(1)12n a a n n a -+=-- (2)1212(235)(435)(35)2(12)3(555)n n n n -------⨯+-⨯+-⨯=+++-+++11(1)5(15)323(1)(15)2154n n n n n n ----+-⨯-⨯=+--- (3)设21123n n S x x nx -=++++……①则 212(1)n n n xS x x n x nx -=+++-+……②①-②得,21(1)1n n n x S x x x nx --=++++-……③当1x =时,(1)1232n n n S n +=++++=;当1x ≠时,由③得,21(1)1n n n x nx S x x -=--- 5、(1)第10次着地时,经过的路程为91002(50251002)-++++⨯1291911002100(222)2(12)100200299.61 (m)12------=+⨯+++-=+⨯≈- (2)设第n 次着地时,经过的路程为293.75 m ,则1(1)12(1)12(12)1002100(222)100200293.7512n n ---------+⨯+++=+⨯=-所以130********.75n --⨯=,解得120.03125n -=,所以15n -=-,则6n = 6、证明:因为396,,S S S 成等差数列,所以公比1q ≠,且9362S S S =+即,936111(1)(1)(1)2111a q a q a q q q q---⨯=+--- 于是,9362q q q =+,即6321q q =+ 上式两边同乘以1a q ,得741112a q a q a q =+ 即,8252a a a =+,故285,,a a a 成等差数列 习题2.5 B 组(P62) 1、证明:11111()(1())1n n n n n n n n n b bb a b a a a b b a a b aa ab a+++---+++=+++==--2、证明:因为7714789141277()S S a a a q a a a q S -=+++=+++= 141421141516211277()S S a a a q a a a q S -=+++=+++=所以71472114,,S S S --成等比数列3、(1)环保部门每年对废旧物资的回收量构成一个等比数列,首项为1100a =,公比为 1.2q =. 所以,2010年能回收的废旧物资为89100 1.2430a =⨯≈(t )(2)从2002年到2010年底,能回收的废旧物资为9919(1)100(1 1.2)208011 1.2a q S q --==≈--(t )可节约的土地为165048320⨯=(2m ) 4、(1)依教育储蓄的方式,应按照整存争取定期储蓄存款利率计息,免征利息税,且若每月固定存入a 元,连续存n 个月,计算利息的公式为()2a na n+⨯月利率.因为整存整取定期储蓄存款年利率为2.52﹪,月利率为0.21﹪故到期3年时一次可支取本息共(505036)360.2118001869.932+⨯⨯⨯+=﹪(元)若连续存6年,应按五年期整存整取定期储蓄存款利率计息,具体计算略. (2)略.(3)每月存50元,连续存3年按照“零存整取”的方式,年利率为1.89﹪,且需支付20﹪的利息税所以到期3年时一次可支取本息共1841.96元,比教育储蓄的方式少收益27.97元.(4)设每月应存入x 元,由教育储蓄的计算公式得36(36)0.2136100002x x x +⨯+=﹪解得267.39x ≈(元),即每月应存入267.39(元) (5)(6)(7)(8)略5、设每年应存入x 万元,则2004年初存入的钱到2010年底利和为7(12)x +﹪,2005年初存入的钱到2010年底利和为6(12)x +﹪,……,2010年初存入的钱到2010年底利和为(12)x +﹪. 根据题意,76(12)(12)(12)40x x x ++++++=﹪﹪﹪根据等比数列前n 项和公式,得7(12)(1 1.02)401 1.02x +-=-﹪,解得52498x ≈(元)故,每年大约应存入52498元第二章 复习参考题A 组(P67)1、(1)B ; (2)B ; (3)B ; (4)A .2、(1)212n n n a -=; (2)12(1)(21)1(2)n n n a n +--=+; (3)7(101)9n n a =-; (4)1(1)n n a =+-或1cos n a n π=+.3、4、如果,,a b c 成等差数列,则5b =;如果,,a b c 成等比数列,则1b =,或1-.5、n a 按顺序输出的值为:12,36,108,324,972. 86093436sum =.6、81381.9(10.13)1396.3⨯+≈﹪(万) 7、从12月20日到次年的1月1日,共13天. 每天领取的奖品价值呈等差数列分布.110,100d a ==. 由1(1)2n n n S a n d -=+得:1313121001310208020002S ⨯=⨯+⨯=>. 所以第二种领奖方式获奖者受益更多.8、因为28374652a a a a a a a +=+=+=所以34567285450()2a a a a a a a +++++==+,则28180a a +=.9、容易得到101010,1012002n n na n S +==⨯=,得15n =.10、212212()()()n n n n S a a a a nd a nd a nd ++=+++=++++++2121()n a a a n nd S n d =++++⨯=+32122312(2)(2)(2)n n n n S a a a a nd a nd a nd ++=+++=++++++2121()22n a a a n nd S n d =++++⨯=+容易验证2132S S S =+. 所以,123,,S S S 也是等差数列,公差为2n d . 11、221(1)(1)4(1)221a f x x x x x =+=+-++=-- 223(1)(1)4(1)267a f x x x x x =-=---+=-+ 因为{}n a 是等差数列,所以123,,a a a 也是等差数列. 所以,2132a a a =+. 即,20286x x =-+. 解得1x =或3x =. 当1x =时,1232,0,2a a a =-==. 由此可求出24n a n =-. 当3x =时,1232,0,2a a a ===-. 由此可求出42n a n =-.第二章 复习参考题B 组(P68)1、(1)B ; (2)D .2、(1)不成等差数列. 可以从图象上解释. ,,a b c 成等差,则通项公式为y pn q =+的形式,且,,a b c 位于同一直线上,而111,,a b c 的通项公式却是1y pn q =+的形式,111,,a b c不可能在同一直线上,因此肯定不是等差数列.(2)成等比数列. 因为,,a b c 成等比,有2b ac =. 又由于,,a b c 非零,两边同时取倒数,则有21111b ac a c==⨯. 所以,111,,a b c也成等比数列.3、体积分数:60.033(125)0.126⨯+≈﹪,质量分数:60.05(125)0.191⨯+≈﹪.4、设工作时间为n ,三种付费方式的前n 项和分别为,,n n n A B C . 第一种付费方式为常数列;第二种付费方式为首项是4,公差也为4的等差数列;第三种付费方式为首项是0.4,公比为2的等比数列. 则38n A n =,2(1)44222n n n B n n n -=+⨯=+, 0.4(12)0.4(21)12n n n C -==--. 下面考察,,n n n A B C 看出10n <时,380.4(21)n n >-. 因此,当工作时间小于10天时,选用第一种付费方式. 10n ≥时,,n n n n A C B C ≤≤因此,当工作时间大于10天时,选用第三种付费方式.5、第一星期选择A 种菜的人数为n ,即1a n =,选择B 种菜的人数为500a -. 所以有以下关系式:2118030a a b =⨯+⨯﹪﹪3228030a a b =⨯+⨯﹪﹪……118030n n b a a b --=⨯+⨯﹪﹪500n n a b +=所以111502n n a a -=+,115003502n n n b a a -=-=-如果1300a =,则2300a =,3300a =,…,10300a = 6、解:由1223n n n a a a --=+得 1123()n n n n a a a a ---+=+以及1123(3)n n n n a a a a ----=--所以221213()37n n n n a a a a ---+=+=⨯,221213(1)(3)(1)13n n n n a a a a ----=--=-⨯. 由以上两式得,11437(1)13n n n a --=⨯+-⨯所以,数列的通项公式是11137(1)134n n n a --⎡⎤=⨯+-⨯⎣⎦ 7、设这家牛奶厂每年应扣除x 万元消费基金2002年底剩余资金是1000(150)x +-﹪2003年底剩余资金是2[1000(150)](150)1000(150)(150)x x x x +-+-=+-+-﹪﹪﹪﹪ ……5年后达到资金 54321000(150)(150)(150)(150)(150)2000x x x x +-+-+-+-+=﹪﹪﹪﹪﹪ 解得 459x ≈(万元)第三章 不等式3.1不等关系与不等式 练习(P74)1、(1)0a b +≥; (2)4h ≤; (3)(10)(10)3504L W L W ++=⎧⎨>⎩.2、这给两位数是57.3、(1)>; (2)<; (3)>; (4)<;习题3.1 A 组(P75)1、略.2、(1)24<; (2>3、证明:因为20,04x x >>,所以21104x x x ++>+>因为22(1)02x +>>,所以12x+>4、设A 型号帐篷有x 个,则B 型号帐篷有(5)x +个,050448054853(5)484(4)48x x x x x x >⎧⎪+>⎪⎪<⎪⎨<-<⎪⎪+<⎪+⎪⎩≥5、设方案的期限为n 年时,方案B 的投入不少于方案A 的投入.所以,(1)5105002n n n -+⨯≥ 即,2100n ≥.习题3.1 B 组(P75)1、(1)因为222259(56)30x x x x x ++-++=+>,所以2225956x x x x ++>++ (2)因为222(3)(2)(4)(69)(68)10x x x x x x x ----=-+--+=>所以2(3)(2)(4)x x x ->--(3)因为322(1)(1)(1)0x x x x x --+=-+>,所以321x x x >-+(4)因为22222212(1)1222(1)(1)10x y x y x y x y x y ++-+-=++-+-=-+-+> 所以2212(1)x y x y ++>+-2、证明:因为0,0a b c d >>>>,所以0ac bd >>又因为0cd >,所以10cd >于是0a bd c>>>3、设安排甲种货箱x 节,乙种货箱y 节,总运费为z .所以 352515301535115050x y x y x y +⎧⎪+⎨⎪+=⎩≥≥ 所以28x ≥,且30x ≤所以 2822x y =⎧⎨=⎩,或2921x y =⎧⎨=⎩,或3020x y =⎧⎨=⎩所以共有三种方案,方案一安排甲种货箱28节,乙种货箱22节;方案二安排甲种货箱29节,乙种货箱21节;方案三安排甲种货箱30节,乙种货箱20节. 当3020x y =⎧⎨=⎩时,总运费0.5300.82031z =⨯+⨯=(万元),此时运费较少. 3.2一元二次不等式及其解法 练习(P80) 1、(1)1013x x ⎧⎫-⎨⎬⎩⎭≤≤; (2)R ; (3){}2x x ≠; (4)12x x ⎧⎫≠⎨⎬⎩⎭; (5)31,2x x x ⎧⎫<->⎨⎬⎩⎭或; (6)54,43x x x ⎧⎫<>⎨⎬⎩⎭或; (7)503x x ⎧⎫-<<⎨⎬⎩⎭.2、(1)使2362y x x =-+的值等于0的x的集合是1⎧⎪⎨⎪⎪⎩⎭;使2362y x x =-+的值大于0的x的集合为11x x x ⎧⎪<>+⎨⎪⎪⎩⎭或; 使2362y x x =-+的值小于0的x的集合是11x x ⎧⎪<<⎨⎪⎪⎩⎭. (2)使225y x =-的值等于0的x 的集合{}5,5-; 使225y x =-的值大于0的x 的集合为{}55x x -<<; 使225y x =-的值小于0的x 的集合是{}5,5x x x <->或. (3)因为抛物线2+610y x x =+的开口方向向上,且与x 轴无交点 所以使2+610y x x =+的等于0的集合为∅; 使2+610y x x =+的小于0的集合为∅; 使2+610y x x =+的大于0的集合为R. (4)使231212y x x =-+-的值等于0的x 的集合为{}2; 使231212y x x =-+-的值大于0的x 的集合为∅;使231212y x x =-+-的值小于0的x 的集合为{}2x x ≠. 习题3.2 A 组(P80)1、(1)35,22x x x ⎧⎫<->⎨⎬⎩⎭或; (2)x x ⎧⎪<<⎨⎪⎪⎩⎭;(3){}2,5x x x <->或; (4){}09x x <<.2、(1)解2490x x -+≥,因为200∆=-<,方程2490x x -+=无实数根所以不等式的解集是R ,所以y R. (2)解2212180x x -+-≥,即2(3)0x -≤,所以3x =所以y {}3x x =3、{33m m m <-->-+或;4、R.5、设能够在抛出点2 m 以上的位置最多停留t 秒. 依题意,20122v t gt ->,即212 4.92t t ->. 这里0t >. 所以t 最大为2(精确到秒)答:能够在抛出点2 m 以上的位置最多停留2秒. 6、设每盏台灯售价x 元,则15[302(15)]400x x x ⎧⎨-->⎩≥. 即1520x <≤.所以售价{}1520x x x ∈<≤习题3.2 B 组(P81)1、(1)x ⎧⎪<<⎨⎪⎪⎩⎭; (2){}37x x <<; (3)∅; (4)113x x ⎧⎫<<⎨⎬⎩⎭. 2、由22(1)40m m ∆=--<,整理,得23210m m +->,因为方程23210m m +-=有两个实数根1-和13,所以11m <-,或213m >,m 的取值范围是11,3m m m ⎧⎫<->⎨⎬⎩⎭或.3、使函数213()324f x x x =--的值大于0的解集为33x x x ⎧⎪<<+⎨⎪⎪⎩⎭或.4、设风暴中心坐标为(,)a b ,则a =22450b +<,即150150b -<<151)13.72=≈(h ),3001520=. 所以,经过约13.7小时码头将受到风暴的影响,影响时间为15小时.3.3二元一次不等式(组)与简单的线性规划问题 练习(P86) 1、B . 2、D . 3、B .4解:设家具厂每天生产A 类桌子x 张,B 类桌子y 张.对于A 类桌子,x 张桌子需要打磨10x min ,着色6x min ,上漆6x min 对于B 类桌子,y 张桌子需要打磨5y min ,着色12y min ,上漆9y min 而打磨工人每天最长工作时间是450min ,所以有105450x y +≤. 类似地,612480x y +≤,69450x y +≤ 在实际问题中,0,0x y ≥≥;所以,题目中包含的限制条件为 1054506124806945000x y x y x y x y +⎧⎪+⎪⎪+⎨⎪⎪⎪⎩≤≤≤≥≥练习(P91)1、(1)目标函数为2z x y =+,可行域如图所示,作出直线2y x z =-+,可知z 要取最大值,即直线经过点C 时,解方程组11x y y +=⎧⎨=-⎩得(2,1)C -,所以,max 222(1)3z x y =+=⨯+-=.(2)目标函数为35z x y =+,可行域如图所示,作出直线35z x y =+ 可知,直线经过点B 时,Z 取得最大值. 直线经过点A 时,Z 取得最小值. 解方程组 153y x x y =+⎧⎨-=⎩,和15315y x x y =+⎧⎨+=⎩(第1题)可得点(2,1)A --和点(1.5,2.5)B .所以max 3 1.55 2.517z =⨯+⨯=,min 3(2)5(1)11z =⨯-+⨯-=-2、设每月生产甲产品x 件,生产乙产品y 件,每月收入为z 元,目标函数为30002000z x y =+,需要满足的条件是 2400250000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥,作直线30002000z x y =+当直线经过点A 时,z 取得最大值. 解方程组 24002500x y x y +=⎧⎨+=⎩可得点(200,100)A ,z 的最大值为800000元. 习题3.3 A 组(P93)1、画图求解二元一次不等式:(1)2x y +≤; (2)22x y ->; (3)2y -≤; (4)3x ≥2、3(第2题)解:设每周播放连续剧甲x 次,播放连续剧乙y目标函数为6020z x y =+,所以,题目中包含的限制条件为8040320600x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≥≥≥可行域如图. 解方程组80403206x y x y +⎧⎨+⎩==得点M 的坐标为(2,4),所以max 6020200z x y =+= 答:电视台每周应播放连续剧甲2次,播放连续剧乙4次,才能获得最高的收视率. 4、设每周生产空调器x 台,彩电y 台,则生产冰箱120x y --台,产值为z . 则,目标函数为432(120)2240z x y x y x y =++--=++ 所以,题目中包含的限制条件为111(120)402341202000x y x y x y x y ⎧++--⎪⎪⎪--⎨⎪⎪⎪⎩≤≥≥≥即,312010000x y x y x y +⎧⎪+⎪⎨⎪⎪⎩≤≤≥≥ 可行域如图,解方程组3120100x y x y +⎧⎨+⎩==得点M 的坐标为(10,90),所以max 2240350z x y =++=(千元)答:每周应生产空调器10台,彩电90台,冰箱20台,才能使产值最高,最高产值是350千元.习题3.3 B 组(P93)1、画出二元一次不等式组 231223600x y x y x y +⎧⎪+>-⎪⎨⎪⎪⎩≤≥≥,所表示的区域如右图2、画出(21)(3)0x y x y +--+>表示的区域.3、设甲粮库要向A 镇运送大米x 吨、向B 镇运送大米y 吨,总运费为z . 则乙粮库要向A 镇运送大米(70)x -吨、向B 镇运送大米(110)y -吨,目标函数(总运费)为 122025101512(70)208(110)609030200z x y x y x y =⨯⨯+⨯⨯+⨯⨯-+⨯⨯-=++.所以,题目中包含的限制条件为 100(70)(110)800700x y x y x y +⎧⎪-+-⎪⎨⎪⎪⎩≤≤≤≤≥.所以当70,30x y ==时,总运费最省 min 37100z =(元) 所以当0,100x y ==时,总运费最不合理 max 39200z =(元)使国家造成不该有的损失2100元.答:甲粮库要向A 镇运送大米70吨,向B 镇运送大米30吨,乙粮库要向A 镇运送大米0吨,向B 镇运送大米80吨,此时总运费最省,为37100元. 最不合理的调运方案是要向A 镇运送大米0吨,向B 镇运送大米100吨,乙粮库要向A 镇运送大米70吨,向B 镇运送大米10吨,此时总运费为39200元,使国家造成损失2100元.3.42a b+练习(P100)(第2题)1、因为0x >,所以12x x +≥当且仅当1x x =时,即1x =时取等号,所以当1x =时,即1x x+的值最小,最小值是2. 2、设两条直角边的长分别为,a b ,0,a >且0b >,因为直角三角形的面积等于50.即 1502ab =,所以 20a b +==≥,当且仅当10a b ==时取等号.答:当两条直角边的长均为10时,两条直角边的和最小,最小值是20. 3、设矩形的长与宽分别为a cm ,b cm. 0a >,0b > 因为周长等于20,所以10a b +=所以 2210()()2522a b S ab +===≤,当且仅当5a b ==时取等号.答:当矩形的长与宽均为5时,面积最大.4、设底面的长与宽分别为a m ,b m. 0a >,0b >因为体积等于323m ,高2m ,所以底面积为162m ,即16ab =所以用纸面积是 222324()32323264S ab bc ac a b =++=+++=+=≥ 当且仅当4a b ==时取等号答:当底面的长与宽均为4米时,用纸最少. 习题3.4 A 组(P100) 1、(1)设两个正数为,a b ,则0,0a b >>,且36ab =所以 12a b +==≥,当且仅当6a b ==时取等号. 答:当这两个正数均为6时,它们的和最小.(2)设两个正数为,a b ,依题意0,0a b >>,且18a b +=所以2218()()8122a b ab +==≤,当且仅当9a b ==时取等号.答:当这两个正数均为9时,它们的积最大. 2、设矩形的长为x m ,宽为y m ,菜园的面积为S 2m . 则230x y +=,S x y =⨯由基本不等式与不等式的性质,可得211219002252()222242x y S x y +=⨯⨯=⨯=≤. 当2x y =,即1515,2x y ==时,菜园的面积最大,最大面积是22522m .3、设矩形的长和宽分别为x 和y ,圆柱的侧面积为z ,因为2()36x y +=,即18x y +=. 所以222()1622x y z x y πππ+=⨯⨯⨯=≤, 当x y =时,即长和宽均为9时,圆柱的侧面积最大.4、设房屋底面长为x m ,宽为y m ,总造价为z 元,则12xy =,12y x=。
课时作业(二十五)1.若log x 4=2,则x 的值为( ) A.±2 B.2 C.-2 D. 2答案 B2.若b =a 2(a >0且a ≠1),则有( ) A.log 2b =a B.log 2a =b C.log b a =2 D.log a b =2答案 D3.在对数式log (x -1)(3-x)中,实数x 的取值范围应该是( ) A.1<x <3 B.x >1且x ≠2 C.x >3 D.1<x <3且x ≠2答案 D解析 ⎩⎪⎨⎪⎧3-x>0,x -1>0,x -1≠1,解得1<x<3且x ≠2.4.若log x 3y =4,则x ,y 之间的关系正确的是( ) A.x 4=3y B.y =64x C.y =3x 4 D.x =3y 2答案 A解析 log x 3y =4=log x x 4,则x 4=3y.5.下列指数式与对数式互化不正确的一组是( ) A.100=1与lg1=0 B.27-13=13与log 2713=-3C.log 39=2与32=9D.log 55=1与51=5答案 B6.已知log 2x =4,则x -12=( )A.13B.123C.33D.14答案 D 7.与函数y =10lg(x -1)的图像相同的函数是( )A.y =x -1B.y =|x -1|C.y =x 2-1x +1D.y =⎝ ⎛⎭⎪⎫x -1x -12答案 D 解析 y =10lg(x-1)=x -1(x>1).8.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2 C.5-2或5+2 D.2- 5答案 B9.若f(10x )=x ,则f(3)等于( ) A.log 310 B.lg3 C.103 D.310 答案 B10.21+12·log 25的值等于( )A.2+ 5B.2 5C.2+52D.1+52 答案 B 11.log333=________.答案 312.求下列各式的值.(1)log 1515; (2)log 0.41; (3)log 981; (4)log 2.56.25; (5)log 7343; (6)log 3243. 答案 (1)1 (2)0 (3)2 (4)2 (5)3 (6)5 13.求x 的值.(1)x =log 124; (2)x =log 93; (3)x =71-log 75;(4)log x 8=-3; (5)log 12x =4.答案 (1)-2 (2)14 (3)75 (4)12 (5)11614.求值:(1)log 84; (2)2log 23-2.解析 (1)设log 84=x ,则8x =4,即23x =22,∴3x =2,x =23,故log 84=23.(2)∵alog a N =N ,∴2log 23=3. ∴2log 23-2=2log 23÷22=3÷4=34.15.若log 2[log 0.5(log 2x)]=0,求x 的值. 解析 由条件知log 0.5(log 2x)=1=log 0.50.5, 得log 2x =12=log 22,从而x = 2.►重点班·选做题16.求2log 412-3log 927+5log 2513的值 .解析 原式=4log 412-9log 927+25log 2513=12-27+13=23-33+13=-233.1.若5lgx =25,则x 的值为________. 答案 1002.设集合A ={5,log 2(a +3)},集合B ={a ,b},若A ∩B ={2},则A ∪B =__________. 答案 {1,2,5}解析 由A ∩B ={2},知log 2(a +3)=2, 得a =1,由此知b =2.故A ∪B ={1,2,5}. 3.设x =log 23,求23x -2-3x2x -2-x 的值.解析 23x -2-3x 2x -2-x =(2x -2-x )(22x +1+2-2x)2x -2-x=22x +1+2-2x=919. 4.已知6a =8,试用a 表示下列各式: (1)log 68; (2)log 62; (3)log 26. 解析 (1)log 68=a.(2)由6a=8,得6a=23,即6a3=2,所以log 62=a3.(3)由6a 3=2,得23a =6,所以log 26=3a.5.已知log a b =log b a(a>0且a ≠1;b>0且b ≠1),求证:a =b 或a =1b.证明 令log a b =log b a =t ,则a t =b ,b t =a. ∴(a t )t =a ,则at 2=a ,∴t 2=1,t =±1. 当t =1时,a =b ;当t =-1时,a =1b .所以a =b 或a =1b .。
C.f(x ) • f( — x) < 0D.f (x) • f( — x)>0答案 B解析 F( — x) = f( — x) + f(x) = F(x).又x € ( — a , a)关于原点对称,• F(x)是偶函数.答案 由f(x)是偶函数,可得f( — x) = f(x).由g(x)是奇函数,可得 g( — x) =— g(x).T |g(x)|为偶函数,••• f(x) + |g(x)|为偶函数.6.对于定义域为R 的任意奇函数f(x)都恒成立的是()课时作业(十七)1.321函数的奇偶性(第1课时)1.下列函数中既是奇函数,又在定义域上是增函数的是 A.y = 3x + 1 B.f(x) 1 C.y = 1 — x D.f(x)答案 D 2.若函数 f(x) = J ,x>°, —1, x <0,则 f(x) A.偶函数 B.奇函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 答案 B 3.已知 y = f(x) , x € ( — a , a), F(x) = f(x) + f( — x),则 F(x)是( ) 4 J JB.偶函数 A.奇函数C.既是奇函数又是偶函数D.非奇非偶函数4.(2015 •辽宁)已知函数f(x)是定义在R 上的奇函数,则下列函数中为奇函数的是① y = f(|x|) ② y = f( — x)③ y = xf(x)A.①③ C.①④④ y = f(x) + xB.②③ D.②④答案 D5.设函数f(x)和g(x)分别是R 上的偶函数和奇函数,则下列结论恒成立的是 (+ |g(x)|是偶函数B.f(x) — |g(x)|是奇函数 A.f(x)C.|f(x)| + g(x)是偶函数D.|f(x)|— g(x)是奇函数解析A. f( x) —B. f(x) —f( —x) <0C.f(x ) • f( —x) < 0D.f (x) • f( —x)>0--3 + a = — 5,…a = — 8. 10. 下列命题正确的是①对于函数y = f(x),若f( — 1) =— f(1),贝U f(x)是奇函数; ②若f(x)是奇函数,则f(0) = 0;③若函数f(x)的图像不关于y 轴对称,则f(x) 一定不是偶函数. 答案③11.设f(x)是定义在R 上的奇函数,当 x W0时,f(x) = 2x 2 — x ,贝U f(1)= 答案 —3答案 C解析 由f( — X )=- f(x)知f( — x)与f(x)互为相反数,•••只有C 成立.7.若f(x)为R 上的奇函数,给出下列四个说法:① f(x) + f( — x) = 0; ② f(x) — f( — x) = 2f(x);③f (x) • f( — x)<0 ; =—1.其中一定正确的个数为(A.OB.1C.2D.3答案 解析 ••• f(x)在R 上为奇函数,. ■- f( — x) =— f(x).•f(x)+ f( — x) = f(x) — f(x) = 0,故①正确.f(x) — f( — x) = f(x) + f(x) = 2f(x),故②正确.当x = 0时, f(x) • f( — x) = 0,故③不正确. 当x = 0时,严)=0无意义,故④不正确.8.函数f(x) 的图像关于(A.y 轴对称 C.原点对称答案 D.直线y = x 对•••定乂域为(—m , 0) U (0 , +m )关于原点对称,f( — x) = — f(x) , • f(x) 的图像关于原点对称.9.如果定义在区间[3 + a , 5]上的函数f(x)为奇函数,那么a 的值为 __________________ .J r X I答案 —8解析 • f(x)定义域为[3 + a , 5],且为奇函数,解析 •f(x)奇函数,12. _________________________________________________ 若函数f(x) = x2—|x + a|为偶函数,则实数a = ___________________________________________答案 013. 定义在R 上的奇函数f(x)为增函数,偶函数g(x)在区间[0 ,+^)上的图像与f(x)的图 像重合,设a>b>0,给出下列不等式: ①f(b) — f( — a)>g(a) — g( — b); ②f(b) — f( — a)<g(a) — g(b); ③f(a)— f( — b)>g(b) — g( — a);④f(a) — f( — b)<g(b) — g( — a).其中成立的是 ___________ .答案①③ 解析 —f( — a) = f(a) , g( — b) = g(b),•••a>b>0,「. f(a)>f(b) , g(a)>g(b). ••• f(b) — f( — a) = f(b) + f(a) = g(b) + g(a) >g(a) — g(b) = g(a) — g( — b),•①成立.又••• g(b) — g( — a) = g(b) — g(a),•③成立解析 由条件知f( — x) + f(x) = 0,2 “ax +1=0, • c = 0. c — bx又 f(1) = 2,「. a + 1= 2b.4a + 1 4a +1 A H亠••• f(2)<3 ,•<3,「. <3,解得—1<a<2,「. a = 0 或 1. 2b a + 1b = j 或 1,由于 b € Z ,「. a = 1, b = 1,c = 0.1.已知f(x)是定义在[—2, 0) U (0 , 2]上的奇函数,f(x)的部分图像如图所示,那么f(x)的值域是 ___________答案 {y| — 3< y<— 2 或 2<y W 3}2.下面四个结论:①偶函数的图像一定与 y 轴相交;②奇函数的图像一定通过原点; ③偶函数的图像关于 y 轴对称;④既是奇函数,又是偶函数的函数一定是 f(x) = 0(x € R ).其中正确命题的个数是()B.2C.3答案 A14.设函数f(x) 2 “ax+1 是 bx + c奇函数(a , b , c € Z),且 f(1) = 2, f(2)<3,求a , b , c 的值.2 “ax + 1bx + c A.1 D.43.若对一切实数 x , y 都有 f(x + y) = f(x) + f(y).⑴求f(0),并证明:f(x)为奇函数; ⑵若 f(1) = 3,求 f( — 3).解析 ⑴令 x = y = 0 ,••• f(0) = 2f(0) ,••• f(0) = 0. 令 y =— x , f(0) = f(x) + f( — x) , • f( — x) =— f(x). • f(x)为奇函数.⑵•/f(1) = 3,令 x = y = 1,得 f(2) = 2f(1) = 6. • f(3) = f(1) + f(2) = 9.由①得f(x)为奇函数,• f( — 3) =— f(3) =— 9.24. 已知函数f(x) = p3x^是奇函数,且f(2) = 3,求实数p , q 的值.解析 ••• f(x)是奇函数,• f( — x) =— f(x),/ 、 2 2 2 2即p (— X )+ 2 = _ px + 2 即 px + 2 = px + 2 3 (— x ) + q 3x + q ' — 3x + q — 3x — q .…—3x + q = — 3x — q ,解得 q = 0,…f(x)又f(2) = |, 4p + 2 I 6 = 3 • 4p + 2= 10,得 p = 2. px 2+ 2 3x。
Unit 2 the United Kingdom language points课时作业一、用所给动词的适当形式填空1.Would you mind ______(turn)down your radio a little,please?2.______(make)friends plays an important part in our life.3.It is no use ______(talk)with a person like him.4.I remember ______(be)taken to the zoo by my mother when I was a child.5.He succeeded in ______(persuade)her to take the job.6.This computer wants ______(repair).7.______(swim)is my favourite sport.8.Would you like ______(go)there with us?二、单项填空1.That is the only way we can imagine ______ the overuse of water in students' bathrooms.A.reducing B.to reduceC.decreasing D.to defeat2.I still remember ______ to the Tian'anmen Square and what I saw there.A.to take B.to be takeC.taking D.being taken3.The students are forbidden______,unless they have special passes(通行证) after 11 p.m.in the school.A.to stay out B.from staying outC.staying out D.not to staying out4.I will be away for at least one year and I'd appreciate ______ from you now and then.A.having heard B.hearingC.heard D.hear5.—You were brave enough to raise objections at the meeting.—Well,now I regret ______ that.A.to do B.to be doingC.to have done D.having done三、单句改错1.Now the young man regretted waste so much time when he was at school.________________________________________________________________________2.He is very busy write his papers.________________________________________________________________________3.No one can finish draw a picture in only two minutes.________________________________________________________________________4.They have decided visiting the Palace Museum.________________________________________________________________________5.Let's get down to do the work.________________________________________________________________________6.Walk in the morning does good to our health.________________________________________________________________________四、完形填空Years ago a farmer owned land along the Atlantic seacoast.He always advertised for hired hands.__1__ people were reluctant(不情愿的)to work on farms along the Atlantic.They feared the violent storms __2__ the ocean.As the __3__ interviewed applicants(申请者)for the job,he __4__ a steady stream of refusals(拒绝).Finally,a short,thin man,__5__ past middle age,came to the farmer.“Are you a good farmhand?” the farmer asked him.“Well,I can sleep __6__ the wind blows,” answered the little man.Although __7__ by this answer,the farmer,in great need of help,__8__ him.The little man worked well around the farm,busy from dawn to dusk,and the farmer felt __9__ with the man's work.Then one night the wind blew __10__ in from offshore.__11__ out of bed,the farmer rushed next door to the hired hand's sleeping room.He shook the little man and shouted,“__12__!A storm is coming!__13__ things down before they blow away!”The little man __14__ in bed and said firmly,“No sir.I told you,I can sleep when the wind blows.”Angry with the answer,the farmer meant to fire him on the spot.__15__,he hurried out to prepare for the storm.To his __16__,he discovered that all of the haystacks(草垛)had been covered with tarpaulins(帆布).The cows were in the barn,the chickens were in the coops,and the doors were barred.Everything was tied down.__17__ could blow away.The farmer then understood __18__ his hired hand meant,so he returned to his bed to also sleep while the wind blew.When you're __19__,spiritually,mentally,and physically,you have nothing to __20__.Can you sleep when the wind blows through your life?1.A.No B.Few C.Most D.All2.A.above B.across C.below D.through3.A.worker B.applicant C.farmer D.reporter4.A.received B.bought C.sold D.brought5.A.well B.too C.very D.pretty6.A.when B.before C.after D.because7.A.pleased B.puzzled C.surprised D.frightened8.A.fired B.scolded C.hired D.ordered9.A.disappointed B.satisfied C.excited D.tired10.A.loudly B.slightly C.hardly D.silently11.A.Jumping B.Rising C.Getting D.Falling12.A.Stand up B.Get up C.Sit down D.Lie down13.A.Let B.Put C.Lay D.Tie14.A.rolled over B.jumped over C.rolled up D.jumped up15.A.Therefore B.Otherwise C.Likewise D.Instead16.A.expectation B.imagination C.surprise D.sorrow17.A.Something B.Everything C.Anything D.Nothing18.A.how B.which C.that D.what19.A.prepared B.finished C.determined D.encouraged20.A.beat B.win C.desire D.fear五、短文改错I'm writing to invite you to visit China and spending the summer vacation with me.I have made wonderful plan for it.First,we can go to Qingdao,there it is cool and mild,and have funs at the seaside.Then we were to participate in a Taiji camp in the Wudang Mountains.You are curious about Chinese kung fu,but I believe this is a good chance to learn st of all,I have also been longed to take you to the countryside.We can stay there for a few days and visit to some relatives of me.I hope this plan suits you good and I am looking forward to your coming.参考答案一、1.答案:turning2.答案:Making3.答案:talking4.答案:being5.答案:persuading6.答案:repairing/to be repaired7.答案:Swimming8.答案:to go二、1.解析:本句中的we can imagine作定语修饰the only way;the only way后接of doing sth 或to do sth,由此可排除A项和C项;reduce “减少”;defeat “击败”。
[课时作业] [A 组 基础巩固]1.△ABC 中,a 2=bc ,则角A 是( ) A .锐角 B .钝角 C .直角D .60°解析:由余弦定理:cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc =(b -c )2+bc2bc >0,∴A <90°.答案:A2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .钝角三角形 B .直角三角形 C .锐角三角形D .不能确定解析:由正弦定理,a 2+b 2<c 2,∴a 2+b 2-c 22ab <0,即cos C <0,∴C >90°.答案:A3.若△ABC 的内角A ,B ,C 满足6sin A =4sin B =3sin C ,则cos B =( ) A.154B.34C.31516D.1116解析:由正弦定理:6a =4b =3c ,∴b =32a ,c =2a ,由余弦定理cos B =a 2+c 2-b 22ac =a 2+4a 2-94a 2(2a )2=1116. 答案:D4.在△ABC 中,B =π4,AB =2,BC =3,则sin A =( )A.1010B.103C.31010D.55解析:在△ABC 中,由余弦定理AC 2=AB 2+BC 2-2AB ·BC ·cos B =2+9-6=5, ∴AC =5, 由正弦定理BC sin A =AC sin B ,解得sin A =31010. 答案:C5.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为( ) A.518 B.34 C.32D.78解析:设三角形的底边长为a ,则周长为5a ,∴等腰三角形腰的长为2a .设顶角为α,由余弦定理,得cos α=(2a )2+(2a )2-a 22×2a ×2a =78.答案:D6.边长为5,7,8的三角形中,最大角与最小角之和为( ) A .90° B .120° C .135°D .150°解析:设边长为5,7,8的对角分别为A ,B ,C ,则A <B <C . ∴cos B =52+82-722×5×8=12.∴cos(A +C )=-cos B =-12,∴A +C =120°. 答案:B7.在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:∵b +c =7,∴c =7-b . 由余弦定理得b 2=a 2+c 2-2ac cos B , 即b 2=4+(7-b )2-2×2×(7-b )×⎝⎛⎭⎫-14, 解得b =4. 答案:48.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a ,b ,c 满足b 2=ac ,且c =2a ,则cos B =________. 解析:因为b 2=ac ,且c =2a ,所以cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =34.答案:349.在△ABC 中,A +C =2B ,a +c =8,ac =15,求b .解析:在△ABC 中,由A +C =2B ,A +B +C =180°,知B =60°. a +c =8,ac =15,则a ,c 是方程x 2-8x +15=0的两根. 解得a =5,c =3或a =3,c =5. 由余弦定理,得b 2=a 2+c 2-2ac cos B =9+25-2×3×5×12=19.∴b =19.10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =3,b =4,c =6,求bc cos A +ac cos B +ab cos C 的值.解析:∵cos A =b 2+c 2-a 22bc ,∴bc cos A =12(b 2+c 2-a 2).同理ac cos B =12(a 2+c 2-b 2),ab cos C =12(a 2+b 2-c 2).∴bc cos A +ac cos B +ab cos C =12(a 2+b 2+c 2)=612.[B 组 能力提升]1.如果将直角三角形三边增加同样的长度,则新三角形形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .由增加长度决定解析:设直角三角形的三条边分别为a ,b ,c ,c 为直角边,设同时增加长度k ,则三边长变为a +k ,b +k ,c +k (k >0),最大角仍为角C ,由余弦定理 cos C =(a +k )2+(b +k )2-(c +k )22(a +k )(b +k )=a 2+2ak +k 2+b 2+2bk +k 2-c 2-2ck -k 22(a +k )(b +k )=2k (a +b -c )+k 22(a +k )(b +k )>0,∴新三角形为锐角三角形. 答案:A2.(2015·高考广东卷)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则b =( ) A. 3 B .2 C .2 2D .3解析:由余弦定理a 2=b 2+c 2-2bc cos A ,所以22=b 2+()232-2×b ×23×32,即b 2-6b +8=0,解得:b =2或b =4,因为b <c ,所以b =2,故选B. 答案:B3.在△ABC 中,若(a -c )(a +c )=b (b +c ),则A =________. 解析:由已知:a 2-c 2=b 2+bc ,∴b 2+c 2-a 2=-bc , ∴b 2+c 2-a 22bc =-12,由余弦定理:cos A =-12,∴A =120°.答案:120°4.若2a +1,a,2a -1为钝角三角形的三边长,则实数a 的取值范围是________.解析:因为2a +1,a,2a -1是三角形的三边长,所以{ 2a +1>0 a >0 2a -1>0,解得a >12,此时2a +1最大,要使2a +1,a,2a -1是三角形的三边长,还需a +2a -1>2a +1,解得a >2.设最长边2a +1所对的角为θ,则θ>90°,所以cos θ=a 2+(2a -1)2-(2a +1)22a (2a -1)=a (a -8)2a (2a -1)<0,解得12<a <8.综上可知实数a 的取值范围是(2,8).答案:(2,8)5.如图所示,△ABC 中,AB =2,cos C =277,D 是AC 上一点,且cos ∠DBC =5714. 求∠BDA 的大小.解析:由已知得cos ∠DBC =5714,cos C =277, 从而sin ∠DBC =2114,sin C =217, ∴cos ∠BDA =cos(∠DBC +C ) =5714·277-2114·217=12, ∴∠BDA =60°.6.已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2A2+cos A =0.(1)求内角A 的大小;(2)若a =23,b =2,求c 的值. 解析:(1)∵cos A =2cos 2A2-1,又2cos 2A2+cos A =0,∴2cos A +1=0, ∴cos A =-12,∴A =120°.(2)由余弦定理知a 2=b 2+c 2-2bc cos A , 又a =23,b =2,cos A =-12.∴(23)2=22+c 2-2×2×c ×(-12),化简,得c 2+2c -8=0,解得c =2或c =-4(舍去).。
高中数学必修 5 课后习题答案[ 人教版]高中数学必修5 课后习题答案第1页共34 页2.1 数列的概念与简单表示法练习(P31)2、前5项分别是:1,0, 1,0, 1.I*(n 2m,m N )3、例 1(1)a n n1 *(n 2m 1,m N )说明:此题是通项公式不唯一的题目, 能的通项公式表达形式不唯一的例子.习题2.1 A 组(P33)1、 ( 1)2,3,5,7,11,13,17,19;(2) 2, .6,2、2,3, .10,2 •.3, . 14, . 15,4,3、2 ;(3) 1,1.7,1.73,1.732,…1.732050; 2,1.8,1.74,1.733,…,1.732051.1111 2、 (1) 1,1,1,1,1 ;(2) 2, 5,10, 17,26.4 9 16 253、 (1) (1), 4, 9, ( 16 ), 25, ( 36) , 49;a . ( 1)n 1 n 2 ;(2) 1,运,U3 ), 2, , U6 ),万; a n 蘇.4、 (1) ^,3,13,53,213 ;(2) 丄,5,4,丄,5.24545、 对应的答案分别是:(1) 16,21; a n 5n 4 ; (2) 10,13;可 3n 2 (3) 24,35; a . n 26、 15,21,28;a n a . 1 n .习题2.1 B 组(P34)1、前 5 项是 1,9,73,585,4681.第二章数列(2) a n2(n 2m,m N *)*0(n 2m 1,m N )鼓励学生14'(1)an丹 Z);⑵a n£(n(3) a nL (n2n .a 3 10 (1 0.72 罚3 10.217559 ;2 3 5 8 13厶, 55 52 3 5 82.2 等差数列练习(P39)1、 表格第一行依次应填:0.5,15.5,3.75;表格第二行依次应填:15, 11, 24.2、 a n 15 2(n 1) 2n 13, a 10 33.3、c n 4n4、 ( 1)是,首项是a m 1a 1md ,公差不变,仍为d ;(2)是,首项是耳,公差2d ;(3)仍然是等差数列;首项是a 7色6d ;公差为7d . 5、 ( 1)因为a 5 a 3 a 7a 5,所以2a 5a 3 a 7.同理有2a 5aa 9也成立;(2)2a n a . 1 a . 1(n 1)成立;2a . a n k a . k (n k 0)也成立.习题2.2 A 组(P40)1、( 1) a n 29 ; (2)n 10 ; (3) d 3 ; (4) a ! 10. 2、略. 3、60 .4、2C ;11C ; 37 C .5、( 1) s 9.8t ;(2) 588 cm , 5 s习题2.2 B 组(P40)1、 ( 1)从表中的数据看,基本上是一个等差数列,公差约为2000,a 2010 a 2002 8 d 0.26 105再加上原有的沙化面积9 105,答案为9.26 105 ; (2) 2021年底,沙化面积开始小于8 105 hm 2. 2、 略.该数列的递推公式是: 8“ 1a n 1 1 8a n ,印1.通项公式是:a n a 2 10 (1 0.72 罚2 10.144518;2、a 110 (1 0.72 罚 10.072 ; a n 10 (1 0.72 罚n .3、(1) 123,5,8;(2)2.3 等差数列的前n 项和1、(1) 88 ;59,n 2、a n126n !练习(P45) (2) 604.5.1125,n 13、元素个数是30,元素和为900.习题2.3 A 组(P46) 1、( 1) n(n 1) ; (2)n (3)180 个,和为 98550; (4)900个,和为 494550.2、( 1) 20,a n 54,S n999代入 S n n(a1 an) 并解得 27 ; 20,a n 54,n 27代入a n d (n 1)d 并解得(2)1 —,n 3 37,S n 629代入a n 印 (n 1)d S n n(a 1 17 13 . a n )a 1a n 得 37(a ,212 a n );解这个方程组,得 629a 1 11,a n 23. (3) 将a 1 将a t5,d6 5訐i ,Sn 1 6,n5代入S n 15代入a na 1 (n (4)2,n15,a n10代入a n(n 将a 138,a n 10, n 15 代入 S n43、4.55 1 04m.4、4.n (n 1)d ,并解得1)d 1)d n(an 15 ;得a n并解得 an),得S n25、这些数的通项公式:7(n 1) 2,项数是14,和为665. 习题2.3 B 组(P46)1、 ................................ 每个月的维修费实际上是呈等 ................. 共的维修费,即再加上购买费,除以天数即可 .2、 本题的解法有很多,可以直接代入公式化简, 现提供2个证明方法供参考.38;360.6、1472.等差数列的.代入等差数列前 答案:292元. 但是这种比较繁琐 n 项和公式,求出 5年内的总(1)由 S 6 6a t 15d , S 2 12a t 66d ,S 18 1可得S (S 18S12) 2(S 2 S 6). ⑵S 12 (印a 2 L a 12) (a 1 a 2 La 6)a 7 a 8 La12(印6d) (a 2 6d) L 包6d)(印a 2 La 6) 36d153dS 6 36d同样可得:S 18$2 S 6 72d ,因此 S 6 (S i8 02)2(S 2 閒•3、( 1)首先求出最后一辆车出发的时间 4时20分; 所以到下午6时,最后一辆车行驶了 1小时40分.(2)先求出15辆车总共的行驶时间,第一辆车共行驶 4小时,以后车辆行驶时间依次递减,最后一辆行驶1小时40分.各辆车的行驶时间呈等差数列分布, 代入前n 项和公式,这乘以车速60 km/h ,得行驶总路程为2550 km.4、数列1 的通项公式为 a n 1 1 1 n(n n(n 1) n n 11)所以S n(11111 -)( )(-1) .1 1 .. 1 n L() 1-1 22 3 3 4n n 1n 1 n 1类似地,我们可以求出通项公式为 a n11 (11)的数列的前n 项和n(n k) k n n k2.4 等比数列练习(P52)2、 由题意可知,每一轮被感染的计算机台数构成一个首项为 印80,公比为q 20的等比 数列,则第5轮被感染的计算机台数a 5为a 5 a ,q 4 80 204 1.28 107.3、 ( 1)将数列a n 中的前k 项去掉,剩余的数列为3「忌2丄.令b a —i 1,2丄,则数列 a k 1,a k 2,L 可视为 ddL .因为Lq(i > 1),所以,b n 是等比数列,即丄是等比数列.b ia k i(2) a n 中的所有奇数列是a !,a 3,a 5,L ,则 邑邑LL q 2(k > 1).a1a3a2k 1所以,数列q,a 3,a 5,L 是以耳为首项,q 2为公比的等比数列.个车队所有车的行驶时间为121585h.(3)a n中每隔10项取出一项组成的数列是a1,a12,a23丄,则空屯L电!L q11(k > 1)a i a12a11k 10所以,数列Q,a12,a23丄是以3为首项,q11为公比的等比数列.猜想:在数列a n中每隔m ( m是一个正整数)取出一项,组成一个新的数列,这个数列是以a1为首项,q m1为公比的等比数列.4、( 1)设a n 的公比为q,则a;(aq4)2a:q8,而a3 a? aq2ag6 a:q8所以a;a3 a?,同理a f 印a?(2)用上面的方法不难证明a2 a n 1 a n,n 1).由此得出,a.是a n 1和a n 1的等比中项• 同理:可证明,a:a n k a. k(n k 0).由此得出,a.是a. k和a. k的等比中项(n k 0).5、( 1)设n年后这辆车的价值为a.,则a. 13.5(1 10型.(2) a413.5(1 10写488573 (元).用满4年后卖掉这辆车,能得到约88573元.习题2.4 A 组(P53)2高中数学必修5课后习题答案[人教版]4,解得61、(1)可由 a 4a/,得a 11, a 7a 1q 6 ( 1) (3)6 729. 也可由a 76a 1q, a4a 1q,得a73a 4q27 3)3729⑵由ae 3ae188,解得8 27 2 327 2 3还可由a 5,a 7,a 9也成等比数列,即a 5a 9,得 a 92a7a57 9.(4)由4ag 3aga 15L L ① a 1q 6L L ②(3)由4 ae 6ae高中数学必修5课后习题答案[人教版]①的两边分别除以②的两边,得-,由此解得q -或q 2.q 22当 q -时,d 16.此时 a 3 a^q 24.当 q 2 时,a 1.此时 a 3 a^2 4.2、 设n 年后,需退耕a n ,贝V a n 是一个等比数列,其中d 8(1 10罚,q 0.1. 那么2005年需退耕a 5 a(1 q)5 8(1 10写5 13 (万公顷)3、 若a n 是各项均为正数的等比数列,则首项印和公比q 都是正数.n 11由 a n aq n 1,得..a ?..町.可 2,a ?(q 2)(n 1).1那么数列a n 是以、..乳为首项,q 2为公比的等比数列.4、 这张报纸的厚度为0.05 mm ,对折一次后厚度为0.05X 2 mm ,再对折后厚度为0.05X 22 mm ,再对折后厚度为0.05X 23 mm.设a 。
[课时作业] [A 组 基础巩固]1.在△ABC 中,A =60°,b =1,其面积为3,则asin A 等于( )A.2393B.2293C.2633D .3 3解析:由S △ABC =12bc sin A =3可知c =4.由余弦定理得a 2=b 2+c 2-2bc cos A =1+16-8cos60°=13,所以a =13.所以a sin A =13sin 60°=2393. 答案:A2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若c =2,b =6,B =120°,则△ABC 的面积等于( ) A.62 B .1 C.32D.22解析:由正弦定理得6sin 120°=2sin C ,∴sin C =12,∴C =30°或150°(舍去). ∵B =120°,∴A =30°,∴S △ABC =12bc sin A =12×6×2×sin 30°=32.答案:C3.△ABC 的三个内角A ,B ,C 所对边的长分别为a ,b ,c ,若S △ABC =14(b 2+c 2-a 2),则角A 的大小为( ) A.π6 B.π4 C.3π4D.5π6解析:∵S =12bc sin A =14(b 2+c 2-a 2),∴sin A =b 2+c 2-a 22bc =cos A ,又∵A ∈(0,π),∴A =π4.答案:B4.在锐角△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,3a =2c sin A ,c =7,且a +b =5,则△ABC 的面积为( ) A.332B.92C.532D.72解析:由3a =2c sin A 及正弦定理得a c =2sin A 3=sin Asin C ,∵sin A ≠0,∴sin C =32,故在锐角△ABC 中,C =π3. 再由a +b =5及余弦定理可得7=a 2+b 2-2ab cos π3=a 2+b 2-ab =(a +b )2-3ab =25-3ab ,解得ab =6,故△ABC 的面积为12ab ·sin C =332.答案:A5.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且3a cos C =4c sin A ,若△ABC 的面积S =10,b =4,则a 的值为( ) A.233 B.253 C.263D.283解析:由3a cos C =4c sin A ,得a sin A =4c 3cos C .又由正弦定理a sin A =c sin C ,得c sin C =4c3cos C ,∴tan C =34,∴sin C =35.又S =12bc sin A =10,b =4,∴c sin A =5.根据正弦定理,得a =c sin Asin C =535=253,故选B. 答案:B6.设△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,且b =3,c =2,△ABC 的面积为2,则sin A =________.解析:∵S △ABC =12bc sin A ,∴sin A =2S △ABC bc =223×2=23.答案:237.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于________.解析:在△ABC 中,由面积公式,得S =12BC ·AC ·sin C =32AC =3,∴AC =2,∴△ABC为等边三角形,∴AB =2.答案:28.锐角△ABC 的面积为33,BC =4,CA =3,则AB =________. 解析:由三角形面积公式得12×3×4·sin C =33,sin C =32.又∵△ABC 为锐角三角形,∴C =60°.根据余弦定理AB 2=16+9-2×4×3×12=13.AB =13.答案:139.已知△ABC 中,B =30°,AB =23,AC =2,求△ABC 的面积. 解析:由正弦定理,得sin C =AB sin B AC =23sin 30°2=32.∵AB >AC ,∴C =60°或C =120°.当C =60°时,A =90°,S △ABC =12AB ·AC =23;当C =120°时,A =30°,S △ABC =12AB ·AC sin A = 3.故△ABC 的面积为23或 3.10.已知△ABC 的三个内角A 、B 、C 满足2B =A +C ,且AB =1,BC =4,求边BC 上的中线AD 的长. 解析:∵2B =A +C ,∴A +B +C =3B =180°,∴B =60°,∵BC =4,D 为BC 中点,∴BD =2, 在△ABD 中,由余弦定理知: AD 2=AB 2+BD 2-2AB ·BD ·cos B =12+22-2×1×2·cos 60° =3, ∴AD = 3.[B 组 能力提升]1.如图,四边形ABCD 中,B =C =120°,AB =4,BC =CD =2,则该四边形的面积等于( )A. 3B .5 3C .6 3D .7 3解析:连接BD (图略),在△BCD 中,由已知条件,知∠DBC =180°-120°2=30°,∴∠ABD=90°.在△BCD 中,由余弦定理BD 2=BC 2+CD 2-2BC ·CD cos C ,知BD 2=22+22-2×2×2cos 120°=12,∴BD =23,∴S 四边形ABCD =S △ABD +S △BCD =12×4×23+12×2×2×sin120°=5 3. 答案:B2.已知△ABC 中,a 比b 大2,b 比c 大2,且最大角的正弦值为32,则△ABC 的面积为( ) A.1534B.154C.2134D.932解析:由题目条件,知a =c +4,b =c +2,故角A 为△ABC 中的最大角,即sin A =32,解得A =60°(舍去)或A =120°.由余弦定理,得cos A =cos 120°=c 2+(c +2)2-(c +4)22c (c +2)=-12,解得c =3,所以b =5,所以S △ABC =12bc sin A =1534.答案:A3.(2015·高考天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:因为0<A <π,所以sin A =1-cos 2A =154, 又S △ABC =12bc sin A =158bc =315,∴bc =24,解方程组{ b -c =bc =24得b =6,c =4,由余弦定理得a 2=b 2+c 2-2bc cos A =62+42-2×6×4×⎝⎛⎭⎫-14=64,所以a =8. 答案:84.在△ABC 中,若a =2,B =60°,b =7,则BC 边上的高等于________. 解析:由余弦定理b 2=a 2+c 2-2ac cos 60°, 即7=4+c 2-2×2c ×12,整理得c 2-2c -3=0,解得c =3.所以BC 边上的高为c sin B =3×sin 60°=332.答案:3325.(2016·高考全国Ⅰ卷)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c . (1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解析:(1)由已知及正弦定理得, 2cos C (sin A cos B +sin B cos A )=sin C ,即2cos C sin(A +B )=sin C .故2sin C cos C =sin C , 可得cos C =12,所以C =π3.(2)由已知得,12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得,a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25,所以a +b =5. 所以△ABC 的周长为5+7.6.已知圆内接四边形ABCD 的边长分别为AB =2,BC =6,CD =DA =4,求四边形ABCD 的面积.解析:如图,连接BD ,则四边形ABCD 的面积 S =S △ABD +S △BCD=12AB ·AD sin A +12BC ·CD sin C .∵A +C =180°, ∴sin A =sin C .∴S =12(AB ·AD +BC ·CD )·sin A=12(2×4+6×4)sin A =16sin A . 在△ABD 中,由余弦定理, BD 2=AB 2+AD 2-2AB ·AD cos A=22+42-2×2×4cos A =20-16cos A . 在△BCD 中,由余弦定理, BD 2=BC 2+CD 2-2BC ·CD cos C =62+42-2×6×4cos C =52-48cos C . ∴20-16cos A =52-48cos C . ∵A +C =180°, ∴cos A =-cos C , ∴64cos A =-32, ∴cos A =-12,∴A =120°.∴S =16sin 120°=8 3.。