高中数学第一章计数原理第9课时二项式定理同步测试新人教A版选修2_3201810303148
- 格式:doc
- 大小:452.70 KB
- 文档页数:5
1.3 二项式定理 1.3.1
课时达标训练
1.的展开式共有11项,则n等于( )
A.9
B.10
C.11
D.8
【解析】选B.的展开式共有n+1项,所以n+1=11,故n=10.
2.(y-2x)8展开式中的第6项的二项式系数为( )
A. B.(-2)5
C. D.(-2)6
【解析】选C.第6项的二项式系数为.
3.(x+2)6的展开式中x3的系数是( )
A.20
B.40
C.80
D.160
【解析】选D.设含x3的为第r+1,则T r+1=x6-r·2r,
令6-r=3,得r=3,故展开式中x3的系数为·23=160.
4.若的展开式中x3的系数是-84,则a的值为________.
【解析】展开式的通项为T r+1=x9-r(-a)r
=·(-a)r x9-2r(0≤r≤9,r∈N),
当9-2r=3时,解得r=3,代入得x3的系数,
根据题意得(-a)3=-84,解得a=1.
答案:1
5.(1+)7展开式中有理项的项数有________个.
【解析】通项T k+1=()k=,当k=0,2,4,6时,均为有理项,故有理项的项数为4个.
答案:4
6.求的展开式中的常数项.
【解析】展开式的通项
T r+1=(r=0,1,2,…,9)=··(-1)r··由9-r=,得r=6,所以展开式的常数项为第7项.
T6+1==.。
第一章测评(时间:120分钟满分:150分)一、选择题(本题共12小题,每小题5分,共60分)1.若A m4=18C m3,则m等于()A.9B.8C.7D.6,得m-3=3,m=6.A m4=m(m-1)(m-2)(m-3)=18·m(m-1)(m-2)3×2×12.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息.若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.15:分有两个对应位置、有一个对应位置及没有对应位置上的数字相同,可得N=C42+C41+1=11.3.若实数a=2-√2,则a10-2C101a9+22C102a8-…+210等于()A.32B.-32C.1 024D.512,得a10-2C101a9+22C102a8-…+210=C100(-2)0a10+C101(-2)1a9+C102(-2)2a8+…+C10(-2)10=(a-2)10=(-√2)10=25=32.104.分配4名水暖工去3户不同的居民家里检查暖气管道.要求4名水暖工都分配出去,且每户居民家都要有人去检查,那么分配的方案共有( ) A.A 43种B .A 33A 31种C .C 42A 33种D .C 41C 31A 33种4名水暖工选出2人分成一组,然后将三组水暖工分配到3户不同的居民家,故有C 42A 33种.5.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,则在直角坐标系中,位于第一、第二象限不同点的个数是( ) A.18B.16C.14D.10N 1=2×2+2×2=8(个),第二象限的不同点有N 2=1×2+2×2=6(个), 故N=N 1+N 2=14(个). 故答案为C .6.将A,B,C,D 四个小球放入编号为1,2,3的三个盒子中,若每个盒子中至少放一个球,且A,B 不能放入同一个盒子中,则不同的放法有( ) A.15种B.18种C.30种D.36种A,B 放入不同盒中,有3×2=6(种)放法,再放C,D,若C,D 在同一盒中,有1种放法;若C,D 在不同盒中,则有2×2=4(种)放法. 故共有6×(1+4)=30(种)放法.故答案为C .7.为支持地震灾区的灾后重建工作,某公司决定分四天每天各运送一批物资到A,B,C,D,E 五个受灾地点.由于A 地距离该公司较近,安排在第一天或最后一天送达;B,C 两地相邻,安排在同一天上午、下午分别送达(B 在上午、C 在下午与B 在下午、C 在上午为不同的运送顺序),且运往这两地的物资算作一批;D,E 两地可随意安排在其余两天送达.则安排这四天运送物资到五个受灾地点的不同运送顺序的种数为( ) A.72B.18C.36D.24.第1步,安排运送物资到受灾地点A,有C 21种方法;第2步,在余下的3天中任选1天,安排运送物资到受灾地点B,C,有C 31A 22种方法;第3步,在余下的2天中安排运送物资到受灾地点D,E,有A 22种方法.由分步乘法计数原理得,不同的运送顺序共有C 21·(C 31A 22)·A 22=24(种).8.将数字1,2,3,4,5,6排成一列,记第i 个数为a i (i=1,2,…,6),若a 1≠1,a 3≠3,a 5≠5,a 1<a 3<a 5,则不同的排列方法种数为( )A.30B.18C.36D.48a 1,a 3,a 5的大小顺序已定,且a 1≠1,a 3≠3,a 5≠5,所以a 1可取2,3,4,若a 1=2或3,则a 3可取4,5,当a 3=4时,a 5=6,当a 3=5时,a 5=6;若a 1=4,则a 3=5,a 5=6.而其他的三个数字可以任意排列,因而不同的排列方法共有(2×2+1)A 33=30(种).9.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排(这样就成为前排6人,后排6人),若其他人的相对顺序不变,则不同调整方法的总数是()A.6C82 B.720C82C.30C82 D.20C822人有C82种方法,再插空.由题意知先在4人形成的5个空当中插入1人,有5种方法,余下的1人要插入前排5人形成的6个空当中,有6种方法,即为30种方法.故共有30C82种调整方法.10.设(2-x)5=a0+a1x+a2x2+…+a5x5,那么a0+a2+a4a1+a3的值为()A.-122121B.-6160C.-244241D.-1x=1,可得a0+a1+a2+a3+a4+a5=1,再令x=-1可得a0-a1+a2-a3+a4-a5=35.两式相加除以2求得a0+a2+a4=122,两式相减除以2可得a1+a3+a5=-121.又由条件可知a5=-1,故a0+a2+a4a1+a3=-6160.11.形如45 132的数称为“波浪数”,即十位数字、千位数字均比与它们各自相邻的数字大,则由1,2,3,4,5可构成不重复的五位“波浪数”的个数为()A.20B.18C.16D.11,十位和千位数字只能是4,5或3,5,若十位和千位排4,5,则其他位置任意排1,2,3,这样的数有A 22A 33=12(个);若十位和千位排5,3,这时4只能排在5的一边且不能和其他数字相邻,1,2在其余位置上任意排列,这样的数有A 22A 22=4(个).综上,共有16个.故答案为C .12.若自然数n 使得竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n 为“可连数”.例如:32是“可连数”,因32+33+34不产生进位现象;23不是“可连数”,因23+24+25产生进位现象.则小于1 000的“可连数”的个数为( ) A.27 B.36C.39D.48,要构造小于1000的“可连数”,个位上的数字的最大值只能为2,即个位数字只能在0,1,2中取.十位数字只能在0,1,2,3中取;百位数字只能在1,2,3中取.当“可连数”为一位数时,有C 31=3(个);当“可连数”为两位数时,个位上的数字有0,1,2三种取法,十位上的数字有1,2,3三种取法,即有C 31C 31=9(个);当“可连数”为三位数时,有C 31C 41C 31=36(个);故共有3+9+36=48(个).二、填空题(本题共4小题,每小题5分,共20分)13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是 .(用数字作答).第1类,每级台阶只站一人,则有A 73种站法;第2类,若有一级台阶有2人,另一级有1人,则有C 31A 72种站法,因此共有不同的站法种数是A 73+C 31A 72=336.14.若(x +√x3)8的展开式中x 4的系数为7,则实数a= .(x √x 3)8的通项为C 8rx 8-r a r(x -13)r=C 8r a r x8-r x -r3=C 8r a r x8-43r,令8-43r=4,解得r=3. ∴C 83a 3=7,得a=12.15.6个人排成一行,其中甲、乙两人不相邻的不同排法共有 种.(用数字作答)个人排成一行,其中甲、乙两人不相邻的不同排法:先排列好除甲、乙两人外的4人,有A 44种方法,再把甲、乙两人插入4个人的5个空当,有A 52种方法,所以共有A 44·A 52=480(种).16.(1+sin x )6的二项展开式中,二项式系数最大的一项的值为52,则x 在[0,2π]内的值为 .,得T 4=C 63sin 3x=20sin 3x=52,∴sin x=12.∵x ∈[0,2π], ∴x=π6或x=5π6.5π6三、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)有6个除颜色外完全相同的球,其中3个黑球,红、白、蓝球各1个,现从中取出4个球排成一列,共有多少种不同的排法?.(1)若取1个黑球,和另外3个球排成一列,不同的排法种数为A 44=24;(2)若取2个黑球,和从另外3个球中选的2个排成一列,2个黑球是相同的,所以不同的排法种数为C 32C 42A 22=36;(3)若取3个黑球,和从另外3个球中选的1个排成一列,不同的排法种数为C 31C 41=12.综上,不同的排法种数为24+36+12=72.18.(12分)一个口袋内有4个不同的红球,6个不同的白球. (1)从中任取4个球,红球的个数不比白球少的取法有多少种?(2)若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种?将取出的4个球分成三类:①取4个红球,没有白球,有C 44种;②取3个红球1个白球,有C 43C 61种;③取2个红球2个白球,有C 42C 62种,故有C 44+C 43C 61+C 42C 62=115(种).(2)设取x 个红球,y 个白球,则{x +y =5,2x +y ≥7,0≤x ≤4,0≤y ≤6,故{x =2,y =3或{x =3,y =2或{x =4,y =1.因此,符合题意的取法种数有C 42C 63+C 43C 62+C 44C 61=186(种).19.(12分)已知(x +2√x )n展开式中的前三项的系数成等差数列. (1)求n 的值;(2)求展开式中系数最大的项.由题意,得C n 0+14C n 2=2×12C n 1, 即n 2-9n+8=0,解得n=8或n=1(舍去).故n=8. (2)设第r+1项的系数最大,则{12r C 8r ≥12r+1C 8r+1,12r C 8r ≥12r -1C 8r -1, 即{18-r≥12(r+1),12r≥19-r.解得2≤r ≤3.∵r ∈N *,∴r=2或r=3.∴系数最大的项为T 3=7x 5,T 4=7x 72.20.(12分)设1+12x m =a 0+a 1x+a 2x 2+a 3x 3+…+a m x m,若a 0,a 1,a 2成等差数列. (1)求1+12x m 展开式的中间项;(2)求1+12x m展开式中所有含x 的奇次幂的系数和. 解(1)依题意a 0=1,a 1=m 2,a 2=C m2122.由2a 1=a 0+a 2,求得m=8或m=1(应舍去),所以1+12x m展开式的中间项是第五项, T 5=C 8412x 4=358x 4.(2)因为1+12x m =a 0+a 1x+a 2x 2+…+a m x m, 即1+12x 8=a 0+a 1x+a 2x 2+…+a 8x 8. 令x=1,则a 0+a 1+a 2+a 3+…+a 8=328, 令x=-1,则a 0-a 1+a 2-a 3+…+a 8=128,所以a 1+a 3+a 5+a 7=38-129=20516,所以展开式中所有含x 的奇次幂的系数和为20516.21.(12分)把n 个正整数全排列后得到的数叫做“再生数”,“再生数”中最大的数叫做最大再生数,最小的数叫做最小再生数.(1)求1,2,3,4的再生数的个数,以及其中的最大再生数和最小再生数; (2)试求任意5个正整数(可相同)的再生数的个数.的再生数的个数为A 44=24,其中最大再生数为4321,最小再生数为1234.(2)需要考查5个数中相同数的个数. 若5个数各不相同,有A 55=120(个);若有2个数相同,则有A 55A 22=60(个);若有3个数相同,则有A 55A 33=20(个);若有4个数相同,则有A 55A 44=5(个);若5个数全相同,则有1个.22.(12分)已知m ,n 是正整数,f (x )=(1+x )m +(1+x )n 的展开式中x 的系数为7. (1)对于使f (x )的x 2的系数为最小的m ,n ,求出此时x 3的系数; (2)利用上述结果,求f (0.003)的近似值;(精确到0.01)(3)已知(1+2x )8展开式的二项式系数的最大值为a ,系数的最大值为b ,求ba .根据题意得C m 1+C n 1=7,即m+n=7,①f (x )中的x 2的系数为C m 2+C n 2=m (m -1)2+n (n -1)2=m 2+n 2-m -n2.将①变形为n=7-m 代入上式得x 2的系数为m 2-7m+21=m-722+354, 故当m=3或m=4时,x 2的系数的最小值为9.当m=3,n=4时,x 3的系数为C 33+C 43=5;当m=4,n=3时,x 3的系数为C 43+C 33=5.(2)f (0.003)=(1+0.003)4+(1+0.003)3≈C 40+C 41×0.003+C 30+C 31×0.003≈2.02.(3)由题意可得a=C 84=70,再根据{C 8k ·2k≥C 8k+1·2k+1,C 8k ·2k ≥C 8k -1·2k -1,即{k ≥5,k ≤6, 求得k=5或6,此时,b=7×28,∴b a =1285.2021-2022学年高中数学第一章计数原理测评(含解析)新人教A版选修2-311 / 1111。
1.3.1 二项式定理课后作业提升1.的展开式中倒数第三项的系数是( )A.·2B.·26C.·25D.·22解析:的展开式中倒数第三项为正数第6项,而T6=·(2x)2··22·x-8.该项的系数为·22.答案:D2.在的展开式中常数项为-220,则a的值为( )A.1B.-1C.2D.-2解析:T r+1=··a r,∵T r+1为常数项,∴-r=0,∴r=3.∴·a3=-220,∴a=-1.答案:B3.对任意实数x,有x3=a0+a1(x-2)+a2(x-2)2+a3(x-2)3,则a2的值是( )A.3B.6C.9D.21解析:由已知x3=[2+(x-2)]3=·23+·22·(x-2)+·2·(x-2)2+(x-2)3.所以a2=·2=6.答案:B4.的展开式中含x3项的二项式系数为( )A.-10B.10C.-5D.5解析:T r+1=·x5-r=(-1)r·x5-2r,令5-2r=3,则r=1.∴x3项的二项式系数为=5.答案:D5.若(1+)5=a+b(a,b为有理数),则a+b等于( )A.45B.55C.70D.80解析:由二项式定理得(1+)5=1+··()2+·()3+·()4+·()5=1+5+20+20+20+4=41+29,即a=41,b=29,所以a+b=70.答案:C6.若x>0,设的展开式中的第三项为M,第四项为N,则M+N的最小值为.解析:T3=·x,T4=··,故M+N=≥2.当且仅当,即x=时,等号成立.答案:7.二项式的展开式中,常数项的值为.答案:8.已知(ax+1)n=a n x n+a n-1x n-1+…+a2x2+a1x+a0(x∈N*),点A i(i,a i)(i=0,1,2,…,n)的部分图象如图,则a=.解析:由展开式得T r+1=(ax)n-r=a n-r·x n-r,由图可知a1=3,a2=4,即a=3且a2=4,化简得na=3,且=4,解得a=.答案:9.求证:32n+2-8n-9(n∈N*)能被64整除.证明:32n+2-8n-9=(8+1)n+1-8n-9=8n+1+8n+…+-8n-9=8n+1+8n+…+·82+8(n+1)+1-8n-9=8n+1+8n+ (82)该式每一项都含因式82,故能被64整除.10.(1)求(1+x)2·(1-x)5的展开式中x3的系数.(2)已知展开式的前三项系数的和为129,这个展开式中是否含有常数项?一次项?如果没有,请说明理由;如有,请求出来.解:(1)∵(1+x)2的通项为T r+1=·x r,(1-x)5的通项为T k+1=(-1)k·x k,其中r∈{0,1,2},k∈{0,1,2,3,4,5},令k+r=3,则有k=1,r=2;k=2,r=1;k=3,r=0.∴x3的系数为-=5. (2)展开式的通项为T k+1=(x)n-k·=·2k·(k=0,1,2,…,n);由题意,得20+2+22=129.所以1+2n+2n(n-1)=129,则n2=64,即n=8.故T k+1=·2k·(k=0,1,2,…,n); 若展开式存在常数项,则=0,解之得k=∉Z,所以展开式中没有常数项.若展开式中存在一次项,则=1,即72-11k=6,所以k=6.所以展开式中存在一次项,它是第7项,T7=26x=1792 x.。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
1.3.1 二项式定理, [A 基础达标]1.(x +2)n的展开式共有11项,则n 等于( ) A .9 B .10 C .11D .8解析:选B.因为(a +b )n的展开式共有n +1项,而(x +2)n的展开式共有11项,所以n =10.故选B.2.(x 2+2x3)5展开式中的常数项为( )A .80B .-80C .40D .-40解析:选C.T k +1=C k5(x 2)5-k(2x3)k=C k 52k x10-5k,令10-5k =0得k =2. 所以常数项为T 3=C 2522=40.3.在⎝⎛⎭⎪⎫2x 3+1x 2n(n ∈N *)的展开式中,若存在常数项,则n 的最小值是( )A .3B .5C .8D .10解析:选B.T k +1=C kn(2x 3)n -k⎝ ⎛⎭⎪⎫1x 2k=2n -k C k n x 3n -5k,令3n -5k =0,则n =53k ,又n ∈N *,k ∈N ,所以n 的最小值为5.4.(2018·浙江宁波北仑中学高二下学期期中)二项式⎝⎛⎭⎪⎫x 2+2x 10的展开式中的有理项共有( ) A .4项 B .5项 C .6项D .7项解析:选C.二项式⎝ ⎛⎭⎪⎫x 2+2x 10的展开式中,通项公式为T r +1=C r 10·2r·x 20-5r 2.令20-5r 2为整数,可得r =0,2,4,6,8,10,共6项.故选C.5.二项式⎝ ⎛⎭⎪⎫ax +366的展开式的第二项的系数为-3,则⎠⎛-2a x 2d x 的值为( )A.73 B .3 C .3或73D .3或-103解析:选A .因为T r +1=C r 6(ax )6-r⎝ ⎛⎭⎪⎫36r =C r 6a 6-r ⎝ ⎛⎭⎪⎫36r x 6-r,因为展开式的第二项的系数为-3,所以C 16a536=-3,所以a =-1, 因为⎠⎛-2a x 2d x =⎠⎛-2-1x 2d x =13x 3⎪⎪⎪-1-2=⎝ ⎛⎭⎪⎫-13-⎝ ⎛⎭⎪⎫-83=73,所以选A .6.在⎝⎛⎭⎪⎫2x 2-1x 6的展开式中,中间项是________.解析:由n =6知,中间项是第4项,T 4=C 36(2x 2)3·⎝ ⎛⎭⎪⎫-1x 3=C 36(-1)3·23·x 3=-160x 3.答案:-160x 37.(2016·高考山东卷)若(ax 2+1x)5的展开式中x 5的系数是-80,则实数a =________.解析:(ax 2+1x)5的展开式的通项T r +1=C r5(ax 2)5-r·(1x)r =C r 5a5-rx 10-5r 2,令10-52r =5,得r =2,所以C 25a 3=-80, 解得a =-2. 答案:-28.(1+x )2·(1-x )5的展开式中含x 3的项是________.解析:法一:(1+x )2·(1-x )5=(1-x 2)2(1-x )3=(1-2x 2+x 4)·(1-3x +3x 2-x 3),所以x 3的系数为1×(-1)+(-2)×(-3)=5.故含x 3的项为5x 3.法二:因为(1+x )2的通项:T r +1=C r2·x r, (1-x )5的通项:T k +1=(-1)k ·C k 5·x k, 所以(1+x )2·(1-x )5的通项:(-1)k ·C r 2·C k 5·x k +r(其中r ∈{0,1,2},k ∈{0,1,2,3,4,5}). 令k +r =3,则有⎩⎪⎨⎪⎧k =1,r =2或⎩⎪⎨⎪⎧k =2,r =1或⎩⎪⎨⎪⎧k =3,r =0. 所以x 3的系数为-C 15+C 12·C 25-C 35=5,故含x 3的项为5x 3.答案:5x 39.已知(3x -23x )10,求:(1)展开式第四项的二项式系数; (2)展开式中第四项的系数; (3)第四项.解:(3x -23x)10的展开式的通项是:T k +1=C k 10(3x )10-k (-23x)k=(-23)k ·C k 10·310-k·x 5-32k .(1)展开式第四项的二项式系数为当k =3时,C 310=120. (2)展开式中第四项的系数为 (-23)3·C 310·37=-77 760. (3)展开式中的第四项为:T 4=(-23)3·C 310·37·x 5-32×3=-77 760x .10.设(x -2)n 的展开式中第二项与第四项的系数之比为1∶2,求含x 2的项. 解:(x -2)n的展开式中第二项与第四项分别为:T 2=C 1n ·x n -1·(-2)=-2nx n -1, T 4=C 3n ·xn -3·(-2)3=-22C 3n x n -3. 根据题意得到-2n -22C 3n =12, 整理得n 2-3n -4=0,解得n =4或n =-1(没有意义,舍去). 设(x -2)4的展开式中含x 2的项为第(r +1)项, 则T r +1=C r4·x4-r ·(-2)r(r =0,1,2,3,4),根据题意有4-r =2,解得r =2,所以(x -2)4的展开式中含x 2的项为T 3=C 24·x 2·(-2)2=12x 2.[B 能力提升]11.(2018·沈阳高二检测)若对于任意实数x ,有x 3=a 0+a 1(x -2)+a 2(x -2)2+a 3(x -2)3,则a 2的值为( ) A .3B .6C .9D .12解析:选B.x 3=[2+(x -2)]3,a 2=C 23×2=6.12.(2018·合肥高二检测)已知C 0n +2C 1n +22C 2n +…+2n C n n =729,则C 1n +C 3n +C 5n 的值为( ) A .64 B .32 C .63D .31解析:选B .C 0n +2C 1n +…+2n C nn =(1+2)n=3n=729, 所以n =6,所以C 16+C 36+C 56=32.13.已知在(12x 2-1x )n的展开式中,第9项为常数项.求:(1)n 的值;(2)展开式中x 5的系数; (3)含x 的整数次幂的项的个数.解:二项展开式的通项为T k +1=C k n (12x 2)n -k·(-1x)k =(-1)k (12)n -k C kn x 2n -52k .(1)因为第9项为常数项,即当k =8时,2n -52k =0,即2n -20=0,解得n =10.(2)令2n -52k =5,得k =25(2n -5)=6,所以x 5的系数为(-1)6(12)4C 610=1058.(3)要使2n -52k ,即40-5k2为整数,只需k 为偶数,由于k =0,1,2,3,…,9,10,故符合要求的有6项,分别为展开式的第1,3,5,7,9,11项.14.(选做题)求⎝ ⎛⎭⎪⎫x 2+1x +25的展开式中整理后的常数项. 解:法一:(x 2+1x +2)5在x >0时可化为(x 2+1x )10,因而通项T r +1=C r 10(12)10-r (x )10-2r,则r =5时为常数项, 即C 510·(12)5=6322. 法二:(化三项式为二项式)原式=(x 2+22x +22x )5=132x 5·[(x +2)2]5=132x5·(x +2)10.求原展开式中的常数项,转化为求(x +2)10的展开式中含x 5的项的系数, 即C 510·(2)5.所以所求的常数项为C 510·(2)532=6322.。
—————————— 新学期 新成绩 新目标 新方向 ——————————1.3.1 二项式定理[课时作业] [A 组 基础巩固]1.二项式(a +b )2n的展开式的项数是( ) A .2n B .2n +1 C .2n -1D .2(n +1)解析:根据二项式定理可知,展开式共有2n +1项. 答案:B2.化简多项式(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1的结果是( ) A .(2x +2)5B .2x 5C .(2x -1)5D .32x 5解析:原式=[(2x +1)-1]5=(2x )5=32x 5. 答案:D3.已知(1+ax )(1+x )5的展开式中x 2的系数为5,则a =( ) A .-4 B .-3 C .-2D .-1解析:先求出(1+x )5含有x 与x 2的项的系数,从而得到展开式中x 2的系数.(1+x )5中含有x 与x 2的项为T 2=C 15x =5x ,T 3=C 25x 2=10x 2,∴x 2的系数为10+5a =5,∴a =-1,故选D. 答案:D 4.使⎝⎛⎭⎪⎫3x +1x x n(n ∈N *)的展开式中含有常数项的最小的n 为( )A .4B .5C .6D .7解析:T r +1=C r n(3x )n -r⎝ ⎛⎭⎪⎫1x x r =C r n 3n -r x5r2n -,当T r +1是常数项时,n -52r =0,当r =2,n =5时成立. 答案:B5.(x 2+2)(1x2-1)5的展开式的常数项是( )A .-3B .-2C .2D .3解析:(1x 2-1)5的展开式的通项为T r +1=C r 5(1x2)5-r ·(-1)r,r =0,1,2,3,4,5.当因式(x 2+2)提供x 2时,则取r =4;当因式(x 2+2)提供2时,则取r =5. 所以(x 2+2)(1x2-1)5的展开式的常数项是5-2=3.答案:D6.(x -y )(x +y )8的展开式中x 2y 7的系数为________.(用数字填写答案) 解析:利用二项展开式的通项公式求解.x 2y 7=x ·(xy 7),其系数为C 78, x 2y 7=y ·(x 2y 6),其系数为-C 68,∴x 2y 7的系数为C 78-C 68=8-28=-20. 答案:-207.在(x +43y )20的展开式中,系数为有理数的项共有________项. 解析:二项展开式的通项公式T k +1=C k20x20-k·(43y )k =C k20(43)k x 20-k y k (0≤k ≤20).要使系数为有理数,则k 必为4的倍数,所以k 可为0,4,8,12,16,20共6项,故系数为有理数的项共有6项. 答案:68.已知⎝ ⎛⎭⎪⎫x +2x 2n 的展开式中第5项的二项式系数与第3项的二项式系数的比为14∶3,则展开式中的常数项为________.解析:由已知条件得:C 4n ∶C 2n =14∶3,整理得:n 2-5n -50=0, 所以n =10,所以展开式的通项为:T k +1=C k 10(x )10-k ·⎝ ⎛⎭⎪⎫2x 2k=C k 10·2k·x1052k -,令10-5k 2=0,得k =2,所以常数项为第三项T 3=22C 210=180. 答案:1809.用二项式定理证明1110-1能被100整除.证明:∵1110-1=(10+1)10-1=(1010+C 110×109+…+C 910×10+1)-1 =1010+C 110×109+C 210×108+…+102=100×(108+C 110×107+C 210×106+…+1), ∴1110-1能被100整除.10.⎝⎛⎭⎪⎪⎫x +23x n 展开式第9项与第10项二项式系数相等,求x 的一次项系数. 解析:由题意知C 8n =C 9n , ∴n =17,T r +1=C r17x 172r-·2r·x3r -,∴17-r 2-r3=1,∴r =9,∴T r +1=C 917·x 4·29·x -3, ∴T 10=C 917·29·x , 其一次项系数为C 91729.[B 组 能力提升]1.若二项式⎝ ⎛⎭⎪⎫2x +a x 7的展开式中1x3的系数是84,则实数a =( )A .2 B.54 C .1D.24解析:T r +1=C r7·(2x )7-r·⎝ ⎛⎭⎪⎫a x r =27-r C r 7a r·1x2r -7.令2r -7=3,则r =5.由22·C 57a 5=84得a=1.故选C. 答案:C2.(1+3x )n (其中n ∈N 且n ≥6)的展开式中,若x 5与x 6的系数相等,则n =( ) A .6 B .7 C .8D .9解析:二项式(1+3x )n的展开式的通项是T r +1=C r n 1n -r·(3x )r =C r n ·3r ·x r .依题意得C 5n ·35=C6n·36,即n n -n -n -n -5!=3×n n -n -n -n -n -6!(n ≥6),得n =7.答案:B3.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3, ∴10xa 3=10a 2(a >0),∴x =1a.答案:1a4.(2015年高考福建卷)(x +2)5的展开式中,x 2的系数等于________(用数字作答). 解析:T r +1=C r 5x 5-r·2r ,令5-r =2,得r =3,所以x 2的系数为C 35×23=80.答案:80 5.若二项式⎝⎛⎭⎪⎫x -a x 6(a >0)的展开式中x 3的系数为A ,常数项为B ,若B =4A ,求a 的值. 解析:∵T r +1=C r 6x 6-r⎝⎛⎭⎪⎫-a x r =(-a )r C r6x 362r -,令r =2,得A =C 26·a 2=15a 2; 令r =4,得B =C 46·a 4=15a 4. 由B =4A 可得a 2=4,又a >0, 所以a =2.6.在二项式⎝⎛⎭⎪⎪⎫3x -123x n 的展开式中,前三项系数的绝对值成等差数列. (1)求展开式的第四项; (2)求展开式的常数项.解析:T r +1=C rn(3x )n -r⎝⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 1233n r -. 由前三项系数的绝对值成等差数列, 得C 0n +⎝ ⎛⎭⎪⎫-122C 2n =2×12C 1n ,解这个方程得n =8或n =1(舍去). (1)展开式的第4项为:T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2.(2)当83-23r =0,即r =4时,常数项为⎝ ⎛⎭⎪⎫-124C 48=358.。
. 二项式定理一、选择题:本大题共 个小题,每小题 分,共 分.在每小题给出的四个选项中,只有一项是符合题目要求的 .在()103x -的展开式中,6x 的系数为✌.610C 27-.410C 27.610C 9-.410C 9. 已知a 4b ,0b a =>+, ()n b a +的展开式按♋的降幂排列,其中第⏹ 项与第⏹项相等,那么正整数⏹等于✌... . .已知(n a a )132+的展开式的第三项与第二项的系数的比为∶ ,则⏹是 ( ) ✌. . . . . 被 除的余数是✌..... ☎✆ 的计算结果精确到 的近似值是✌. . . . .二项式n4x 1x 2⎪⎭⎫ ⎝⎛+ ☎⏹∈☠✆的展开式中,前三项的系数依次成等差数列,则此展开式有理项的项数是✌. ....设☎⌧31⌧21✆n 展开式的各项系数之和为♦,其二项式系数之和为♒,若♦♒,则展开式的⌧2项的系数是✌.21....在62)1(x x -+的展开式中5x 的系数为✌. . . ..n xx )(5131+展开式中所有奇数项系数之和等于 ,则所有项的系数中最大的值是✌. . . . .54)1()1(-+x x 的展开式中,4x 的系数为✌.- .. . .二项式☎♦♓⏹⌧✆⏹的展开式中,末尾两项的系数之和为 ,且系数最大的一项的值为25,则⌧在☯, π 内的值为✌.6π或3π .6π或65π .3π或32π.3π或65π.在☎⌧✆ ☎⌧✆ ☎⌧✆ 的展开式中 含⌧ 项的系数是等差数列 ♋⏹ ⏹- 的 ( ) ✌.第 项 .第 项 .第 项.第 项二、填空题:本大题满分 分,每小题 分,各题只要求直接写出结果 .92)21(xx -展开式中9x 的系数是.若()44104x a x a a 3x 2+⋅⋅⋅++=+,则()()2312420a a a a a +-++的值为♉♉♉♉♉♉♉♉♉♉.若 32()n x x -+的展开式中只有第 项的系数最大,则展开式中的常数项是∙∙∙∙∙∙ ∙ .对于二项式☎⌧✆1999,有下列四个命题: ①展开式中❆1000 - 19991000⌧999; ②展开式中非常数项的系数和是 ;③展开式中系数最大的项是第 项和第 项; ④当⌧时,☎⌧✆1999除以 的余数是 . 其中正确命题的序号是♉♉♉♉♉♉♉♉♉♉.(把你认为正确的命题序号都填上)三、解答题:本大题满分 分.( 分)若n x x )1(66+展开式中第二、三、四项的二项式系数成等差数列. (1)求⏹的值;(2)此展开式中是否有常数项,为什么?.( 分)已知☎124x +✆⏹的展开式中前三项的二项式系数的和等于 ,求展式中二项式系数最大的项的系数..( 分)是否存在等差数列{}n a ,使nn n1n 2n 31n 20n 12n C a C a C a C a ⋅=+⋅⋅⋅++++对任意*N n ∈都成立?若存在,求出数列{}n a 的通项公式;若不存在,请说明理由..( 分)某地现有耕地 亩,规划 年后粮食单产比现在增加 ,人均粮食占有量比现在提高 。
1.3二项式定理1.二项式定理 (1)二项式定理011()C C C C ()n n n k n k kn n n n n n a b a ab ab b n --*+=+++++∈N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有____________项,其中各项的系数_____________叫做二项式系数.说明:二项式定理中的,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.在二项式定理中,如果设1,a b x ==,则得到公式:0122(1)C C C C C n k kn nn n n n n x x x x x +=++++++.(2)二项展开式的通项二项展开式中的C k n k kn a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第__________项:1C k n k k k n T a b -+=.2.“杨辉三角”与二项式系数的性质 (1)杨辉三角当n 依次取1,2,3,…时,()na b +展开式的二项式系数可以表示成如下形式:该表称为“杨辉三角”,它蕴含着许多规律:例如:在同一行中,每行两端都是1,与这两个1等距离的项的系数相等;在相邻的两行中,除1以外的其余各数都等于它“肩上”两个数字之_______. (2)二项式系数的性质①对称性.与首末两端“等距离”的两个二项式系数_________.事实上,这一性质可直接由公式C C m n m n n-=得到.②增减性与最大值.当12n k +<时,二项式系数是逐渐增大的;当12n k +>时,二项式系数是逐渐减小的,因此二项式系数在中间取得最大值.当n 是偶数时,中间的一项的二项式系数_________最大;当n是奇数时,中间的两项的二项式系数_________相等且最大.③各二项式系数的和.已知0122(1)C C C C C n k kn nn n n n n x x x x x +=++++++.令1x =,则0122C C C C n nn n n n=++++.也就是说,()n a b +的展开式的各个二项式系数的和为_________. 参考答案:1.(1)n +1C ({0,1,2,,})k n k n ∈(2)1k +2.(1)和(2)①相等②2C n n1122C ,Cn n nn-+③2nK —重点 二项式定理及二项展开式的通项公式K —难点 用二项式定理解决与二项展开式有关的简单问题 K —易错容易混淆项与项的系数,项的系数与项的二项式系数一、二项展开式中特定项(项的系数)的计算求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n =).一定要记准二项式的展开式,对于较复杂的二项式,有时先化简再展开更简捷. 【例1】已知在的展开式中,第6项为常数项.(1)求含的项的系数; (2)求展开式中所有的有理项. 【解析】(1)由通项公式得,因为第6项为常数项,所以时,有,解得,令,得, 故所求系数为.(2)根据通项公式,由题意得1023010rr r -∈≤≤∈⎧⎪⎪⎨⎪⎪⎩Z Z ,令,则,即,因为,所以应为偶数,所以可以取,即可以取2,5,8,所以第3项、第6项、第9项为有理项,它们分别为,,,即22456345,,48256x x . 【名师点睛】第m 项是令1k m +=;常数项是该项中不含“变元”,即“变元”的幂指数为0;有理项是通项中“变元”的幂指数为整数.【例2】(2015陕西)二项式(1)()n x n *+∈N 的展开式中2x 的系数为15,则n = A .4 B .5 C .6 D .7 【答案】C【解析】二项式()1nx +的展开式的通项是1C r r r n Τx +=,令2r =得2x 的系数是2C n ,因为2x 的系数为15,所以2C 15n =,即2300n n --=,解得6n =或5n =-,因为n *∈N ,所以6n =,故选C . 二、与二项式定理有关的求和问题二项式定理011()C C C C ()n n n k n k kn n n n n n a b a ab ab b n --*+=+++++∈N 中,,a b 既可以取任意实数,也可以取任意的代数式,还可以是别的.我们在求和时,要根据具体问题灵活选取,a b 的值. 【例3】在的展开式中,求:(1)二项式系数的和; (2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和; (4)奇数项的系数和与偶数项的系数和; (5)x 的奇次项系数和与x 的偶次项系数和. 【解析】设,各项系数和即为,奇数项系数和为,偶数项系数和为,x 的奇次项系数和为,x 的偶数项系数和为.由于(*)是恒等式,故可用“赋值法”求出相关的系数和. (1)二项式系数的和为.(2)令x=y=1,得各项系数和为.(3)奇数项的二项式系数和为.偶数项的二项式系数和为.(4)令x=y=1,得①.令x=1,y=-1(或x=-1,y=1),得②.①+②得,故奇数项的系数和为.①-②得,故偶数项的系数和为.(5)x的奇次项系数和为;x的偶次项系数和为.【名师点睛】二项式定理是一个恒等式,即对,a b的一切值都成立,在做题时,,a b的值一般取1-,1或0.三、整除、求余问题有关整除、求余问题是二项式定理的应用之一,关键在于如何把问题转化为一个二项式问题,注意结合二项式定理和整除、求余的有关知识来解决.【例4】利用二项式定理证明2n+2·3n+5n-4(n*∈N)能被25整除.【解析】因为2n+2·3n=4×(1+5)n,所以2n+2·3n+5n-4,则n≥2时,2n+2·3n+5n-4能被25整除,当n=1时,2n+2·3n+5n-4=25.所以,当n*∈N时,2n+2·3n+5n-4能被25整除.四、混淆项的系数与项的二项式系数【例5】若28()axx-的展开式中常数项为1120,则展开式中各项系数之和为.【错解】28()a x x-的展开式中各项系数之和为012888888C C C C 2++++=.【错因分析】错解中误把求展开式中各项系数之和理解为求展开式中二项式系数的和,二者是不同的概念.【正解】28()a x x-的展开式的通项为82282188C ()C ()r r r r r r rr T x a x a x ---+=-=-,令8-2r =0,解得r =4,则·(-a 2)4=1120,解得a 2=2,故2882()()a x x x x-=-,令x =1,则展开式中各项系数之和为(1-2)8=1. 【名师点睛】一个二项展开式的第1k +项的二项式系数是C kn ,所有的二项式系数是一组仅与二项式的次数n 有关的1n +个组合数,与,a b 的取值无关,且是正数;而第1k +项的系数则是二项式系数C kn 与数字系数的积,可能为负数.只有当数字系数为1时,二项式系数恰好就是项的系数.1.10(1)x +的二项展开式中的一项是 A .45B .290x C .3120x D .4252x2.二项式1021x x ⎛⎫- ⎪⎝⎭的展开式的二项式系数和为A .1B .1- C .102D .0 3.化简得A .B .C .D .4.二项式的展开式中只有一项的系数为有理数,则的可能取值为A .6B .7C .8D .95.的展开式中,各项系数之和为,各项的二项式系数之和为,且,则展开式中的常数项为 A .6B .9 C .12D .186.设a ∈Z ,且0≤a <13,若512012+a 能被13整除,则a =A .0B .1C .11D .127.()73x -的展开式中,x 5的系数是_________.(用数字填写答案)8.已知,则. 9.已知,在的展开式中,第二项系数是第三项系数的.(1)求的值;(2)求展开式中二项式系数最大的项; (3)若+,求的值.10.设,求下列各式的值: (1)a 0.(2)a 1+a 2+a 3+a 4+…+a 100. (3)a 1+a 3+a 5+…+a 99.(4)(a 0+a 2+…+a 100)2-(a 1+a 3+…+a 99)2. (5)|a 0|+|a 1|+…+|a 100|.11.若()332d a x x x -=+⎰,则在的展开式中,的幂函数不是整数的项共有A .13项B . 14项C .15项D . 16项12.若26()b ax x+的展开式中3x 项的系数为20,则22b a +的最小值 .13.设n a ,0≠是大于1的自然数,na x ⎪⎭⎫ ⎝⎛+1的展开式为nn x a x a x a a ++++ 2210.若点)2,1,0)(,(=i a i A i i 的位置如图所示,则______=a .14.程序框图如图所示,若输入0s =, 10n =, 0i =,则输出的s 为__________.15.已知展开式的二项式系数之和为256,展开式中含项的系数为112.(1)求的值;(2)求展开式中含项的系数.16.(2016四川)设i 为虚数单位,则6(i)x +的展开式中含x 4的项为A .-15x 4B .15x 4C .-20i x 4D .20i x 417.(2016新课标全国Ⅰ)5(2)x x +的展开式中,x 3的系数是.(用数字填写答案)18.(2016山东)若(ax 2+51)x的展开式中x 5的系数是—80,则实数a =_______.1.C 【解析】由通项公式110C k k k T x +=可知,当3k =时,有34120T x =.2.C 【解析】展开式的二项式系数和为012101010101010C C C C 2++++=.故选C.3.B 【解析】根据题意,可知,故选4.B 【解析】展开式的通项为=,而展开式中只有一项的系数为有理数,则为有理数,即为有理数,即为3的倍数,为2的倍数.若,则的可能取值为7.选B.5.B 【解析】由题意可得,令x=1,则,又各项的二项式系数之和为,所以,解得.所以该二项式展开式的通项为.令,得该二项式展开式的常数项为.故选B.6.D 【解析】201220120201212011201112012201220122012201251(521)C 52C 52C 52C a a a =-=-+-++++,由于020*******20111201220122012C 52C 52C 52-+-含有公因数52,故能被52整除,即能被13整除,要使512012+a 能被13整除,又a ∈Z ,且0≤a <13,则113a +=,故12a =.故选D.7.-189 【解析】由二项式定理得()71713C rr r rr T x -+=-,令r = 5得x 5的系数是2573C 189-=-.8.-5 【解析】,由二项式定理得,故,所以.9.【解析】(1)由题意得,解得.(2)由(1)知,二项式系数最大的值为,二项式系数最大的项为第四项,则.(3)=,令,得.10.【解析】(1)令x =0,则展开式为a 0=2100.(2)令x =1,可得(*),所以.(3)令x =-1,可得.与(2)中(*)式联立相减得.(4)原式=[(a 0+a 2+…+a 100)+(a 1+a 3+…+a 99)][(a 0+a 2+…+a 100)-(a 1+a 3+…+a 99)]. (5)因为,所以a 2k -1<0(k ∈N *).所以|a 0|+|a 1|+|a 2|+…+|a 100|=a 0-a 1+a 2-a 3+…+a 100.11.C 【解析】,由得,当时,的幂函数不是整数,即共有15项,选C.12.2【解析】26()bax x +展开式的通项为266123166C ()()C r r r r r r rr b T ax a b x x---+==,令1233,r -=得3r =,所以,由63336C 20a b -=得1ab =,从而2222a b ab +≥=,当且仅当a b =时,22a b +的最小值为2. 13.3【解析】由图易知0121,3,4a a a ===,则1221211C 3,C ()4n n a a a a ====,即23(1)42na n n a ⎧=⎪⎪⎨-⎪=⎪⎩,解得3a=.14.1024 【解析】由程序框图可知,该程序执行的是求0121010101010C C C C ++++的和,易知012101010101010C C C C 21024++++==.15.【解析】(1)由二项式系数之和为,可得, 设含的项为第项,则,故,即,则,解得,,. (2)由(1)知,故含项的系数为.16.A 【解析】二项式6(i)x +的展开式的通项为616C i r r rr T x -+=,令64r -=,则2r =,故展开式中含4x 的项为24246C i 15x x =-,故选A.17.10【解析】5(2)x x 的展开式的通项为555255C (2)()2C r rrr rr x x x---=(0r =,1,2,…,5),令532r -=得4r =,所以3x 的系数是452C 10=.18.2-【解析】因为5102552155C ()C rrrrr rr T ax ax x---+==,所以由510522r r -=⇒=,因此2525C 80 2.a a -=-⇒=-。
学 习 资 料 专 题1.3 二项式定理1.3.1 二项式定理A 级 基础巩固一、选择题1.化简多项式(2x +1)5-5(2x +1)4+10(2x +1)3-10(2x +1)2+5(2x +1)-1的结果是( )A .(2x +2)5B .2x 5C .(2x -1)5D .32x 5 解析:原式=[(2x +1)-1]5=(2x )5=32x 5.答案:D2.在⎝ ⎛⎭⎪⎪⎫x +13x 24的展开式中,x 的幂指数是整数的项共有( ) A .3项B .4项C .5项D .6项 解析:T r +1=C r 24x 24-r 2·x -r 3=C r 24·x 12-56r ,则r 分别取0,6,12,18,24时,x 的幂指数为整数,所以x 的幂指数有5项是整数项.答案:C3.若⎝⎛⎭⎪⎪⎫x -123x n的展开式中第四项为常数项,则n =( ) A .4B .5C .6D .7 解析:由二项展开式可得T r +1=C rn (x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =(-1)r 2-r C r n x n -r 2·x -r 3,从而T 4=T 3+1=(-1)32-3C 3n x n -52,由题意可知n -52=0,n =5.答案:B4.在(1-x 3)(1+x )10的展开式中,x 5的系数是( )A .-297B .-252C .297D .207 解析:(1-x 3)(1+x )10=(1+x )10-x 3(x +1)10展开式中含x 5的项的系数为:C 510-C 210=207.答案:D5.若C 1n x +C 2n x 2+…+C n n x n 能被7整除,则x ,n 的值可能为( )A .x =5,n =5B .x =5,n =4C .x =4,n =4D .x =4,n =3 解析:C 1n x +C 2n x 2+…+C n n x n =(1+x )n -1,检验得B 正确.答案:B二、填空题6.(2016·北京卷)在(1-2x )6的展开式中,x 2的系数为________(用数字作答). 解析:T r +1=C r 6·16-r ·(-2x )r =(-2)r C r 6·x r ,令r =2, 得T 3=(-2)2C 26x 2=60x 2.故x 2的系数为60.答案:607.⎝ ⎛⎭⎪⎪⎫2-13x 6的展开式中的第四项是________. 解析:T 4=C 3623⎝⎛⎭⎪⎪⎫-13x 3=-160x . 答案:-160x8.如果⎝⎛⎭⎪⎫3x 2+1x n 的展开式中,x 2项为第三项,则自然数n =________. 解析:T r +1=C rn (3x 2)n -r ⎝ ⎛⎭⎪⎫1x r =C r n x 2n -5r 3,由题意知r =2时,2n -5r 3=2,所以n =8. 答案:8三、解答题9.在⎝ ⎛⎭⎪⎫2x -1x 6的展开式中,求: (1)第3项的二项式系数及系数;(2)含x 2的项及项数.解:(1)第3项的二项式系数为C 26=15,又T 3=C 6(2x )⎝ ⎭⎪x =2C 6x , 所以第3项的系数为24C 26=240.(2)T k +1=C k n (2x )6-k ⎝ ⎛⎭⎪⎫-1x k =(-1)k 26-k C r 6x 3-k , 令3-k =2,得k =1.所以含x 2的项为第2项,且T 2=-192x 2. 10.在二项式⎝ ⎛⎭⎪⎪⎫3x -123x n 的展开式中,前三项系数的绝对值成等差数列. (1)求展开式的第四项;(2)求展开式的常数项.解:T r +1=C r n (3x )n -r ⎝ ⎛⎭⎪⎪⎫-123x r =⎝ ⎛⎭⎪⎫-12r C r n x 13n -23r . 由前三项系数的绝对值成等差数列,得C 0n +⎝ ⎛⎭⎪⎫-122C 2n =2×12C 1n , 解得n =8或n =1(舍去).(1)展开式的第四项为: T 4=⎝ ⎛⎭⎪⎫-123C 38x 23=-73x 2. (2)当83-23r =0,即r =4时, 常数项为⎝ ⎛⎭⎪⎫-124C 48=358. B 级 能力提升1.如果⎝ ⎛⎭⎪⎫3x 2-2x 3n 的展开式中含有非零常数项,则正整数n 的最小值为( ) A .3B .5C .6D .10 解析:⎝ ⎛⎭⎪⎫3x 2-2x 3n 展开式的通项表达式为C r n (3x 2)n -r ·⎝ ⎛⎭⎪⎫-2x 3r=C r n 3n -r (-2)r x 2n -5r ,若C r n 3n -r (-2)r x 2n -5r 为非零常数项,必有2n -5r =0,得n =52r ,所以正整数n 的最小值为5. 答案:B2.设二项式⎝⎭⎪x (a >0)的展开式中,x 的系数为A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4,由B =4A 知,C 26(-a )2=C 46(-a )4,解得a =2(舍去a =-2).答案:23.如果f (x )=(1+x )m +(1+x )n (m ,n ∈N *)中,x 项的系数为19,求f (x )中x 2项系数的最小值.解:x 项的系数为C 1m +C 1n =19,即m +n =19,当m ,n 都不为1时,x 2项的系数为C 2m +C 2n =m (m -1)2+(19-m )(18-m )2 =m 2-19m +171=⎝ ⎛⎭⎪⎫m -1922+171-1924, 因为m ∈N *,所以当m =9或10时,x 2项的系数最小,为81.当m 为1或n 为1时,x 2项的系数为C 218=153>81,所以f (x )中x 2项系数的最小值为81.。
湖北省宜昌市高中数学第一章计数原理1.3 二项式定理练习(无答案)新人教A版选修2-3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖北省宜昌市高中数学第一章计数原理1.3 二项式定理练习(无答案)新人教A版选修2-3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖北省宜昌市高中数学第一章计数原理1.3 二项式定理练习(无答案)新人教A版选修2-3的全部内容。
1。
3 二项式定理1。
()ny x +的二项展开式中,第r 项的二项式系数为 ( )A 。
r n C B.1+r n C C 。
1-r n C D.()111---r n r C2。
()nb a 2+的二项展开式的项数是( )A 。
n 2 B.12+n C.12-n D.()12+n3. 7312⎪⎪⎭⎫ ⎝⎛-x x 的展开式中常数项是( )A.14B.-14C.42D. -424. ()42x x +的展开式中3x 的系数是( ) A.6 B 。
12 C 。
24 D.485. ()72b a -的展开式中的第5项的二项式系数是 _______,第5项的系数是_______,第5项是___________.6. 61⎪⎭⎫ ⎝⎛-x x 的展开式中含4x 的项是_______,常数项是_________.7. (教材1。
3例1的变式)化简:(1)nn n n n C C C 242121+⋅⋅⋅+++;(2)()()()+-+-+-345110151x x x ()()151102-+-x x 。
8。
(教材1。
3例2的变式)求()()4611x x +-的展开式中3x 的系数.9.若在()51ax+的展开式中3x的系数为80-,求a的值。
第9课时二项式定理
基础达标(水平一)
1.已知展开式中的第4项等于5,则x等于().
A.B.- C.7D.-7
【解析】∵T4=x4=5,∴x=-.
【答案】B
2.若(1+2x)n展开式中含x3的项的系数等于含x的项的系数的8倍,则n等于().
A.5
B.7
C.9
D.11
【解析】展开式中含x3的项的系数为·23,含x项的系数为·2,依题意有
=2,即n2-3n-10=0,即n=5.
【答案】A
3.(x-1)的展开式中的一次项系数是().
A.5
B.14
C.20
D.35
【解析】展开式的通项公式为T r+1=·x r=x2r-6.令2r-6=0,得r=3.令2r-6=1,此时r无解,故展开式中的常数项为=20,无一次项,所以
(x-1)的展开式中的一次项系数为20,故选C.
【答案】C
4.(x2+x+y)5的展开式中,x5y2的系数为().
A.10
B.20
C.30
D.60
【解析】在(x2+x+y)5的5个因式中,2个因式中取x2,剩余的3个因式中1个取x,其余因式取y,故x5y2的系数为=30.故选C.
【答案】C
5.若(x2+ax+1)6(a>0)的展开式中含x2的项的系数是66,则a的值为.
【解析】由题意得(x2+ax+1)6的展开式中含x2的项的系数为+a2,故
+a2=66,又a>0,解得a=2.
【答案】2
6.若(x+a)10的展开式中x7的系数为15,则a= .
【解析】设通项为T r+1=x10-r a r,令10-r=7,∴r=3,∴x7的系数为
a3=15,∴a3=,∴a=.
【答案】
7.已知(-)n的二项展开式中所有奇数项的系数之和为512.求展开式的所有有理项.
【解析】由题意2n-1=512=29,
∴n-1=9,n=10,
∴T r+1=()10-r(-)r=(-1)r
=(-1)r(r=0,1,…,10).
∵5-∈Z,∴r=0,6.
有理项为T1=x5=x5,T7=x4=210x4.
拓展提升(水平二)
8.设复数x=(i是虚数单位),则x+x2+·x3+…+x2019=().
A.i
B.-i
C.-1+i
D.-1-i
【解析】x==-1+i,
x+x2+x3+…+x2019
=(1+x)2019-1=i2019-1=-1-i.
【答案】D
9.在(1+3x)n(其中n∈N且n≥6)的展开式中,若x5与x6的系数相等,则n=().
A.6
B.7
C.8
D.9
【解析】二项式(1+3x)n的展开式的通项是T r+1=1n-r·(3x)r=·3r·x r.
依题意得·35=·36,即
=3×(n≥6),解得n=7.
【答案】B
10.若(+)5展开式的第三项为10,则y关于x的函数图象大致为().
【解析】因为T3=()3()2=10xy=10,所以xy=1,即函数解析式为y=.
又x>0,所以y关于x的函数图象大致为D选项中的图象.
【答案】D
11.设a>0,若(1+a)n的展开式中x2的系数等于x的系数的9倍,且展开式中第3项等于135x,求a的值.
【解析】展开式的通项为T r+1=(a)r=a r.
若含x2的项,则r=4,此时的系数为a4;
若含x的项,则r=2,此时的系数为a2.
根据题意,有a4=9a2,
即a2=9. ①
又T3=135x,即有a2=135. ②
由①②两式相除,得==.
结合组合数公式,整理可得3n2-23n+30=0,解得n=6,或n=(舍去).
将n=6代入②中,得15a2=135,
所以a2=9.又a>0,故a=3.
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。
精美句子
1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,
花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了
6、朋友是什么?
朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
7、一粒种子,可以无声无息地在泥土里腐烂掉,也可以长成参天的大树。
一块铀块,可以平庸无奇地在石头里沉睡下去,也可以产生惊天动地的力量。
一个人,可以碌碌无为地在世上厮混日子,也可以让生命发出耀眼的光芒。
8、青春是一首歌,她拨动着我们年轻的心弦;青春是一团火,她点燃了我们沸腾的热血;青春是一面旗帜,她召唤着我们勇敢前行;青春是一本教科书,她启迪着我们的智慧和心灵。