山东省聊城市莘县俎店中学 八年级数学下学期第一次月考试题含解析含答案
- 格式:doc
- 大小:317.52 KB
- 文档页数:16
一、选择题1.如图,在△ABC 和△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接B ,D 和B ,E .下列四个结论:①BD =CE ,②BD ⊥CE ,③∠ACE +∠DBC=30°,④()2222BE AD AB =+.其中,正确的个数是( ) A .1 B .2C .3D .4 2.如图,在矩形纸片ABCD 中,AD =9,AB =3,将其折叠,使点D 与点B 重合,折痕为EF ,那么折痕EF 的长为( )A .3B .6C .10D .93.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )A .1个B .2个C .3个D .4个 4.将6个边长是1的正方形无缝隙铺成一个矩形,则这个矩形的对角线长等于( )A 37B 13C 3713D 37137 5.在平面直角坐标系内的机器人接受指令“[α,A]”(α≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A后,再向正前方沿直线行走α.若机器人的位置在原点,正前方为y轴的负半轴,则它完成一次指令[4,30°]后位置的坐标为( )A.(-2,23)B.(-2,-23)C.(-2,-2)D.(-2,2)6.如图,在△ABC中,∠ACB=90°,AB的中垂线交AC于D,P是BD的中点,若BC=4,AC=8,则S△PBC为()A.3 B.3.3 C.4 D.4.57.如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为()A.200m B.300m C.400m D.500m8.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒9.下列说法不能得到直角三角形的()A.三个角度之比为 1:2:3 的三角形B.三个边长之比为 3:4:5 的三角形C.三个边长之比为 8:16:17 的三角形D.三个角度之比为 1:1:2 的三角形10.如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则BC的长是()A .32B .2C .22D .10二、填空题11.如图,在矩形 ABCD 中,AB =10,BC =5,若点 M 、N 分别是线段 AC 、AB 上的两个动点,则 BM+MN 的最小值为_____________________.12.如图,现有一长方体的实心木块,有一蚂蚁从A 处出发沿长方体表面爬行到C '处,若长方体的长4cm AB =,宽2cm BC =,高1cm BB '=,则蚂蚁爬行的最短路径长是___________.13.如图,ACB △和ECD 都是等腰直角三角形,CA CB =,CE CD =,ABC 的顶点A 在ECD 的斜边上.若3AE =,7AD =,则AC 的长为_________14.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.15.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.16.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________17.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.18.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.19.在Rt ABC 中,90A ∠=︒,其中一个锐角为60︒,23BC =P 在直线AC 上(不与A ,C 两点重合),当30ABP ∠=︒时,CP 的长为__________.20.如图,直线423y x =+与x 轴、y 轴分别交于点B 和点A ,点C 是线段OA 上的一点,若将ABC ∆沿BC 折叠,点A 恰好落在x 轴上的'A 处,则点C 的坐标为______.三、解答题21.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.(1)当2t =秒时,求PQ 的长;(2)求出发时间为几秒时,PQB ∆是等腰三角形?(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.22.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE ,(1)求证:ABD ACE ≅;(2)若AF 平分DAE ∠交BC 于F ,①探究线段BD ,DF ,FC 之间的数量关系,并证明;②若3BD =,4CF =,求AD 的长,23.如图,在边长为2的等边三角形ABC 中,D 点在边BC 上运动(不与B ,C 重合),点E 在边AB 的延长线上,点F 在边AC 的延长线上,AD DE DF ==. (1)若30AED ∠=︒,则ADB =∠______.(2)求证:BED CDF △≌△.(3)试说明点D 在BC 边上从点B 至点C 的运动过程中,BED 的周长l 是否发生变化?若不变,请求出l 的值,若变,请求出l 的取值范围.24.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.25.如图1, △ABC 和△CDE 均为等腰三角形,AC=BC, CD=CE, AC>CD, ∠ACB=∠DCE=a ,且点A 、D 、E 在同一直线上,连结BE.(1)求证: AD=BE.(2)如图2,若a=90°,CM ⊥AE 于E.若CM=7, BE=10, 试求AB 的长.(3)如图3,若a=120°, CM ⊥AE 于E, BN ⊥AE 于N, BN=a, CM=b,直接写出AE 的值(用a, b 的代数式表示).26.(知识背景)据我国古代《周髀算经》记载,公元前1120年商高对周公说,将一根直尺折成一个直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦就等于5,后人概括为“勾三、股四、弦五”.像3、4、5这样为三边长能构成直角三角形的三个正整数,称为勾股数.(应用举例)观察3,4,5;5,12,13;7,24,25;…可以发现这些勾股数的勾都是奇数,且从3起就没有间断过,并且勾为3时,股14(91)2=-,弦15(91)2=+; 勾为5时,股112(251)2=-,弦113(251)2=+; 请仿照上面两组样例,用发现的规律填空:(1)如果勾为7,则股24= 弦25=(2)如果勾用n (3n ≥,且n 为奇数)表示时,请用含有n 的式子表示股和弦,则股= ,弦= .(解决问题)观察4,3,5;6,8,10;8,15,17;…根据应用举例获得的经验进行填空:(3)如果,,a b c 是符合同样规律的一组勾股数,2a m =(m 表示大于1的整数),则b = ,c = ,这就是古希腊的哲学家柏拉图提出的构造勾股数组的公式. (4)请你利用柏拉图公式,补全下面两组勾股数(数据从小到大排列)第一组: 、24、 :第二组: 、 、37.27.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG .ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).28.阅读下列材料,并解答其后的问题:我国古代南宋数学家秦九韶在其所著书《数学九章》中,利用“三斜求积术”十分巧妙的解决了已知三角形三边求其面积的问题,这与西方著名的“海伦公式”是完全等价的.我们也称这个公式为“海伦•秦九韶公式”,该公式是:设△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,△ABC的面积为S=()()()()4a b c a b c a c b b c a+++-+-+-.(1)(举例应用)已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,且a=4,b =5,c=7,则△ABC的面积为;(2)(实际应用)有一块四边形的草地如图所示,现测得AB=(26+42)m,BC=5m,CD=7m,AD=46m,∠A=60°,求该块草地的面积.29.在平面直角坐标系中,点A(0,4),B(m,0)在坐标轴上,点C,O关于直线AB 对称,点D在线段AB上.(1)如图1,若m=8,求AB的长;(2)如图2,若m=4,连接OD,在y轴上取一点E,使OD=DE,求证:CE=2DE;(3)如图3,若m=43,在射线AO上裁取AF,使AF=BD,当CD+CF的值最小时,请在图中画出点D的位置,并直接写出这个最小值.30.已知,矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证:四边形AFCE为菱形.(2)如图1,求AF的长.(3)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中,点P的速度为每秒1cm,设运动时间为t秒.①问在运动的过程中,以A、P、C、Q四点为顶点的四边形有可能是矩形吗?若有可能,请求出运动时间t和点Q的速度;若不可能,请说明理由.②若点Q的速度为每秒0.8cm,当A、P、C、Q四点为顶点的四边形是平行四边形时,求t 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD ,即∠BAD=∠CAE ,∵在△BAD 和△CAE 中,AB AC BAD CAE AD AE ⎧⎪∠∠⎨⎪⎩===∴△BAD ≌△CAE (SAS ),∴BD=CE ,故①正确;②∵△BAD ≌△CAE ,∴∠ABD=∠ACE ,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°, ∴∠BDC=90°,∴BD ⊥CE ,故②正确;③∵△ABC 为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD ⊥CE ,∴在Rt △BDE 中,利用勾股定理得BE 2=BD 2+DE 2,∵△ADE 为等腰直角三角形,∴AE=AD ,∴DE 2=2AD 2,∴BE 2=BD 2+DE 2=BD 2+2AD 2,在Rt △BDC 中,BD BC <,而BC 2=2AB 2,∴BD 2<2AB 2,∴()2222BE AD AB<+故④错误, 综上,正确的个数为2个.故选:B .【点睛】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.2.C解析:C【分析】做点F 做FH AD ⊥交AD 于点H ,因此要求出EF 的长,只要求出EH 和HF 即可;由折叠的性质可得BE=DE=9-AE ,在Rt ABE △中应用勾股定理求得AE 和BE ,同理在Rt BC F 'Rt ABE △中应用勾股定理求得BF ,在Rt EFH 中应用勾股定理即可求得EF .【详解】过点F 做FH AD ⊥交AD 于点H .∵四边形EFC B '是四边形EFCD 沿EF 折叠所得,∴ED=BE ,CF=C F ',3BC CD '==∵ED=BE ,DE=AD-AE=9-AE∴BE=9-AE∵Rt ABE △,AB=3,BE=9-AE∴()22293AE AE -=+∴AE=4∴DE=5∴9C F BC BF BF '=-=-∴Rt BC F ',3BC '=,9C F BF '=-∴()22293BF BF -+=∴BF=5,EH=1∵Rt EFH ,HF=3,EH=1 ∴22223110EF EH HF =+=+故选:C .【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.3.C解析:C【分析】根据AC=2AB ,点D 是AC 的中点求出AB=CD ,再根据△ADE 是等腰直角三角形求出AE=DE ,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE 和△DCE 全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC ,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC ,然后推出∠BEC=∠AED ,从而判断出③小题正确;倍,用DE 表示出AD ,然后得到AB 、AC ,再根据勾股定理用DE 与EC 表示出BC ,整理即可得解,从而判断出④小题错误.【详解】解:∵AC=2AB ,点D 是AC 的中点,∴CD=12AC=AB , ∵△ADE 是等腰直角三角形,∴AE=DE ,∠BAE=90°+45°=135°,∠CDE=180°-45°=135°,∴∠BAE=∠CDE ,在△ABE 和△DCE 中,AB CD BAE CDE AE DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DCE (SAS ),故①小题正确;∴BE=EC ,∠AEB=∠DEC ,故②小题正确;∵∠AEB+∠BED=90°,∴∠DEC+∠BED=90°,∴BE ⊥EC ,故③小题正确;∵△ADE 是等腰直角三角形,∴DE ,∵AC=2AB ,点D 是AC 的中点,∴DE ,DE ,在Rt △ABC 中,BC 2=AB 2+AC 2=DE )2+(DE )2=10DE 2,∵BE=EC ,BE ⊥EC ,∴BC 2=BE 2+EC 2=2EC 2,∴2EC 2=10DE 2,解得EC=5DE,故④小题错误,综上所述,判断正确的有①②③共3个.故选:C.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE是等腰直角三角形推出AE=DE,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.4.C解析:C【分析】如图1或图2所示,分类讨论,利用勾股定理可得结论.【详解】当如图1所示时,AB=2,BC=3,∴AC=22;23=13当如图2所示时,AB=1,BC=6,∴AC=221+6=37;故选C.【点睛】本题主要考查图形的拼接,数形结合,分类讨论是解答此题的关键.5.B解析:B【解析】根据题意,如图,∠AOB=30°,OA=4,则AB=2,OB=23,所以A(-2,-23),故选B.6.A解析:A【分析】根据线段垂直平分线的性质得到DA=DB,根据勾股定理求出BD,得到CD的长,根据三角形的面积公式计算,得到答案.【详解】解:∵点D在线段AB的垂直平分线上,∴DA=DB,在Rt△BCD中,BC2+CD2=BD2,即42+(8﹣BD)2=BD2,解得,BD=5,∴CD=8﹣5=3,∴△BCD的面积=12×CD×BC=12×3×4=6,∵P是BD的中点,∴S△PBC=12S△BCD=3,故选:A.【点睛】本题考查的是线段垂直平分线的性质、直角三角形的性质、勾股定理,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.7.D解析:D【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA=ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【详解】解:如图所示,∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,又∵AB=DE=400m,∴△ABC≌△DEA,∴EA=BC=300m,在Rt△ABC 中,500m =∴CE=AC -AE=200,从B 到E 有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m .故选D .【点睛】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC ≌△DEA ,并能比较从B 到E 有两种走法. 8.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.9.C解析:C【分析】三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.【详解】A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222345x x x +=,是直角三角形;C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形故选:C【点睛】本题考查直角三角形的判定,常见方法有2种;(1)有一个角是直角的三角形;(2)三边长满足勾股定理逆定理. 10.D解析:D【分析】根据条件可以得出∠E =∠ADC =90°,进而得出△CEB ≌△ADC ,就可以得出AD =CE ,再利用勾股定理就可以求出BC 的值.【详解】解:∵BE ⊥CE ,AD ⊥CE ,∴∠E =∠ADC =90°,∴∠EBC +∠BCE =90°.∵∠BCE +∠ACD =90°,∴∠EBC =∠DCA .在△CEB 和△ADC 中,E ADC EBC DCA BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CEB ≌△ADC (AAS ),∴CE =AD =3,在Rt △BEC 中,2222BC=BE +CE =1+3=10,故选D .【点睛】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解题的关键.二、填空题11.8【解析】如图作点B 关于AC 的对称点B ′,连接B ′A 交DC 于点E ,则BM+MN 的最小值等于的最小值作交于,则为所求; 设,,由,,h+5=8,即BM+MN的最小值是8.点睛:本题主要是利用轴对称求最短路线,题中应用了勾股定理与用不同方式表示三角形的面积从而求出某条边上的高,利用轴对称得出M点与N点的位置是解题的关键.12.5cm【分析】连接AC',分三种情况进行讨论:画出图形,用勾股定理计算出AC'长,再比较大小即可得出结果.【详解】解:如图展开成平面图,连接AC',分三种情况讨论:如图1,AB=4,BC'=1+2=3,∴在Rt△ABC'中,由勾股定理得AC'2243+(cm),如图2,AC=4+2=6,CC'=1∴在Rt△ACC'中,由勾股定理得AC'2261+37(cm),如图3,AD =2,DC'=1+4=5,∴在Rt△ADC'中,由勾股定理得AC'2225+29(cm)∵2937,∴蚂蚁爬行的最短路径长是5cm ,故答案为:5cm .【点睛】本题考查平面展开-最短路线问题和勾股定理,本题具有一定的代表性,是一道好题,注意要分类讨论.13.5【分析】由题意可知,AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,求出∠ACE =∠BCD 可证△ACE ≌△BCD ,可得AE =BD =3,∠ADB =90°,由勾股定理求出AB 即可得到AC 的长.【详解】解:如图所示,连接BD ,∵△ACB 和△ECD 都是等腰直角三角形,∴AC =BC ,DC =EC ,∠DCE =∠ACB =90°,∠D =∠E =45°,且∠ACE =∠BCD =90°-∠ACD ,在ACE 和BCD 中,AC=BC ACE=BCD CE=CD ⎧⎪∠∠⎨⎪⎩∴△ACE ≌△BCD (SAS ),∴AE =BD 3E =∠BDC =45°, ∴∠ADB =∠ADC+∠BDC =45°+45°=90°, ∴AB 22AD +BD =7+3=10,∵AB=2BC ,∴BC =2AB=525【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质以及勾股定理等知识,添加恰当的辅助线构造全等三角形是解题的关键.14.332 32n【分析】根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=ABC 113ABB BCB S S ==B 1B 2=4,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,B 3B 4=B 4B 5=,推出B n ﹣1B n =2n . 【详解】解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB SS ==⨯,12=×1×B 1B 2,B 1B 2,由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4=16,B 4B 5, …,B n ﹣1B n =2n .【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.15.【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出AE =.同理,在Rt DEC ∆中求出2CE CD ==12DE ==,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,AE ∴=.在Rt DEC ∆中,30E ∠=︒,CD =2CE CD ∴==12DE ∴=,∴142ABE S ∆=⨯⨯= 1122CDE S ∆=⨯=CDE ABE ABDC S S S ∆∆∴=-=四边形.故答案为:【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.16.53或203 【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH ∴EH=DH -DE=43设CP=PH=x,则EP=CE-CP=83-x在Rt△PEH中,EP2+EH2=PH2即(83-x)2+(43)2=x2解得:x=5 3即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203.【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.17.10 3.【分析】根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()23S NG NF =-,12310S S S ++=,即可得出答案.【详解】∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形∴CG=NG ,CF=DG=NF∴()2222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =()22232S NG NF NG NF NG NF =-=+-∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =故2103S = 故答案为103. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.18.2-【分析】根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.【详解】解:如图所示,在AB 上取AM=AC=2,∵90ACB ∠=,2AC BC ==,∴∠CAB=45°,又∵45EAD ∠=,∴∠EAC+∠CAD=∠DAB+∠CAD=45°,∴∠EAC =∠DAB ,∴在△EAC 与△DAB 中AE=AD ,∠EAF =∠DAB ,AC =AM ,∴△EAC ≌△DAM (SAS )∴CE=MD ,∴当MD ⊥BC 时,CE 的值最小,∵AC=BC=2,由勾股定理可得2222=+=,AB AC BC∴222BM,=-∵∠B=45°,∴△BDM为等腰直角三角形,∴DM=BD,由勾股定理可得222BD DM=BM+∴DM=BD=22-∴CE=DM=22-故答案为:22-【点睛】本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE最小时的状态,化动为静.19.23或2或4【分析】根据题意画出图形,分4种情况进行讨论,利用含30°角直角三角形与勾股定理解答.【详解】解:如图1:当∠C=60°时,∠ABC=30°,与∠ABP=30°矛盾;如图2:当∠C=60°时,∠ABC=30°,∵∠ABP=30°,∴∠CBP=60°,∴△PBC 是等边三角形, ∴23CP BC ==;如图3:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°-30°=30°,∴PC=PB , ∵23BC = ∴222213,(23)(3)32AB BC AC BC AB ===-=-=, 在Rt △APB 中,根据勾股定理222AP AB BP +=,即222()AC PC AB PC -+=,即222(3)3)PC PC -+=,解得2PC =,如图4:当∠ABC=60°时,∠C=30°,∵∠ABP=30°,∴∠PBC=60°+30°=90°, ∴12BP PC = 在Rt △BCP 中,根据勾股定理222BP BC PC +=, 即2221()(23)2PC PC +=,解得PC=4(已舍去负值).综上所述,CP 的长为232或4. 故答案为:32或4.【点睛】本题考查含30°角直角三角形,等边三角形的性质和判定,勾股定理.理解直角三角形30°角所对边是斜边的一半,并能通过勾股定理去求另外一个直角边是解决此题的关键.20.(0,34). 【分析】 由423y x =+求出点A 、B 的坐标,利用勾股定理求得AB 的长度,由此得到53122OA '=-=,设点C 的坐标为(0,m ),利用勾股定理解得m 的值即可得到答案. 【详解】 在423y x =+中,当x=0时,得y=2,∴A (0,2) 当y=0时,得4203x +=,∴32x =-,∴B(32-,0), 在Rt △AOB 中,∠AOB=90︒,OA=2,OB=32, ∴2222352()22AB OA OB =+=+=,∴53122OA '=-=, 设点C 的坐标为(0,m )由翻折得ABC A BC '≌,∴2A C AC m '==-,在Rt A OC '中, 222A C OC A O ''=+,∴222(2)1m m -=+,解得m=34, ∴点C 的坐标为(0,34). 故答案为:(0,34). 【点睛】此题考查勾股定理,翻折的性质,题中由翻折得ABC A BC '≌是解题的关键,得到OC 与A’C 的数量关系,利用勾股定理求出点C 的坐标. 三、解答题21.(1)2)83;(3)5.5秒或6秒或6.6秒【分析】(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;②当CQ BC =时(图2),则12BC CQ +=,易求得t ;③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .【详解】(1)解:(1)224BQ cm =⨯=,8216BP AB AP cm =-=-⨯=,90B ∠=︒,)PQ cm ==;(2)解:根据题意得:BQ BP =,即28t t =-, 解得:83t =;即出发时间为83秒时,PQB ∆是等腰三角形;(3)解:分三种情况:①当CQ BQ =时,如图1所示:则C CBQ ∠=∠,90ABC ∠=︒,90CBQ ABQ ∴∠+∠=︒,90A C ∠+∠=︒,A ABQ ∴∠=∠BQ AQ ∴=,5CQ AQ ∴==,11BC CQ ∴+=,112 5.5t ∴=÷=秒.②当CQ BC =时,如图2所示:则12BC CQ +=1226t ∴=÷=秒.③当BC BQ =时,如图3所示:过B 点作BE AC ⊥于点E ,则68 4.8()10AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,27.2CQ CE cm ∴==,13.2BC CQ cm ∴+=,13.22 6.6t ∴=÷=秒.由上可知,当t 为5.5秒或6秒或6.6秒时,BCQ ∆为等腰三角形.【点睛】本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.22.(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【分析】(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.【详解】解:(1)∵AE AD ⊥∴90DAC CAE ∠+∠=︒∵90BAC ∠=︒∴90DAC BAD ∠+∠=︒∴BAD CAE ∠=∠∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD △≌ACE △()SAS(2)①结论:222BD FC DF +=证明:连接EF ,如图:∵ABD △≌ACE △∴B ACE ∠=∠,BD CE =∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒∴222FC CE EF +=∴222FC BD EF +=∵AF 平分DAE ∠∴DAF EAF ∠=∠∴在DAF △和EAF △中AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴DAF △≌EAF △()SAS∴DF EF =∴222FC BD DF +=即222BD FC DF +=②过点A 作AG BC ⊥于点G ,如图:∵由①可知222223425DF BD FC =+=+=∴5DF =∴35412BC BD DF FC =++=++=∵AB AC =,AG BC ⊥ ∴1112622BG AG BC ===⨯= ∴633DG BG BD =-=-=∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.23.(1)90°;(2)证明见解析;(3)变化,234l +≤<.【分析】(1)由等边三角形的性质可得∠ABC=∠ACB=60°,由等腰三角形的性质可求DAE=∠DEA=30°,由三角形内角和定理可求解;(2)根据等腰三角形的性质,可证得∠CDF=∠DEA 和∠EDB=∠DFA ,由此可利用“ASA”证明全等;(3)根据全等三角形的性质可得l =2+AD ,根据AD 的取值范围即可得出l 的取值范围.解:(1)∵△ABC 是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∵AD=DE∴∠DAE=∠DEA=30°,∴∠ADB=180°-∠BAD-∠ABD=90°,故答案为:90°;(2)∵AD=DE=DF ,∴∠DAE=∠DEA ,∠DAF=∠DFA ,∵∠DAE+∠DAF=∠BAC=60°,∴∠DEA+∠DFA=60°,∵∠ABC=∠DEA+∠EDB=60°,∴∠EDB=∠DFA ,∵∠ACB=∠DFA+∠CDF=60°,∴∠CDF=∠DEA ,在△BDE 和△CFD 中∵CDF DEA DE DF EDB DFA ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△CFD (ASA )(3)∵△BDE ≌△CFD ,∴BE=CD ,∴l =BD+BE+DE=BD+CD+AD=BC+AD=2+AD ,当D 点在C 或B 点时,AD=AC=AB=2,此时B 、D 、E 三点在同一条直线上不构成三角形,2+AD=4;当D 点在BC 的中点时,∵AB=AC ,∴BD=112BC =,AD ==此时22l AD =+=综上可知24l +≤<.【点睛】本题考查全等三角形的性质和判定,勾股定理,等边三角形的性质,等腰三角形的性质,三角形内角和定理.(1)掌握等腰三角形等边对等角是解决此问的关键;(2)中注意角之间的转换;(3)中注意临界点是否可取.24.(1)CD=8;(2)t=4;(3)12-=t v t(26t ≤<)(1)作AE⊥BC于E,根据等腰三角形三线合一的性质可得BE=12BC,然后利用勾股定理求出AE,再用等面积法可求出CD的长;(2)①过B作BF⊥AC于F,易得BF=CD,分别讨论Q点在AF和FC之间时,根据△BQF≌△CPD,得到PD=QF,建立方程即可求出t的值;(3)同(2)建立等式关系即可得出关系式,再根据Q在FC之间求出t的取值范围即可.【详解】解:(1)如图,作AE⊥BC于E,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt △CPD ≌Rt △BQF (HL )∴PD=QF在Rt △ACD 中,CD=8,AC=AB=10 ∴22AD=AC CD =6-同理可得AF=6∴PD=AD=AP=6-t ,QF=AF-AQ=6-2t由PD=QF 得6-t=6-2t ,解得t=0,∵t >0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6,整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤<所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.25.(1)见解析;(2)26;(3)3a+ 【分析】 (1)由∠ACB=∠DCE 可得出∠ACD=∠BCE ,再利用SAS 判定△ACD ≌△BCE ,即可得到AD=BE ;(2)由等腰直角三角形的性质可得CM=12DE ,同(1)可证△ACD ≌△BCE ,得到AD=BE ,然后可求AE 的长,再判断∠AEB=90°,即可用勾股定理求出AB 的长;(3)由等腰三角形的性质易得∠CAB=∠CBA=∠CDE=∠CED=30°,根据30度所对的直角边是斜边的一半可求出,然后利用三角形外角性质推出∠BEN=60°,在Rt △BEN 中即可求出BE ,由于BE=AD ,所以利用AE=AD+DE 即可得出答案.【详解】证明:(1)∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE(2)∵∠DCE=90°,CD=CE ,∴△DCE 为等腰直角三角形,∵CM ⊥DE ,∴CM 平分DE ,即M 为DE 的中点∴CM=12DE , ∴DE=2CM=14,∵∠ACB=∠DCE∴∠ACB-∠BCD=∠DCE-∠BCD ,即∠ACD=∠BCE在△ACD 和△BCE 中,AC=BC ACD=BCE CD=CE ⎧⎪∠∠⎨⎪⎩∴△ACD ≌△BCE (SAS )∴AD=BE=10,∠CAD=∠CBE∴AE=AD+DE=24如图,设AE ,BC 交于点H ,在△ACH和△BEH中,∠CAH+∠ACH=∠EBH+∠BEH,而∠CAH=∠EBH,∴∠BEH=∠ACH=90°,∴△ABE为直角三角形由勾股定理得2222AB=AE BE=2410=26++(3)由(1)(2)可得△ACD≌△BCE,∴∠DAC=∠EBC,∵△ACB,△DCE都是等腰三角形,∠ACB=∠DCE=120°∴∠CAB=∠CBA=∠CDE=∠CED=30°,∵CM⊥DE,∴∠CMD=90°,DM=EM,∴CD=CE=2CM,3CM∴33∵∠BEN=∠BAE+∠ABE=∠BAE+∠EBC+∠CBA=∠BAE+∠DAC+∠CBA=30°+30°=60°,∴∠NBE=30°,∴BE=2EN,3EN∵BN=a∴23=AD∴2323+b【点睛】本题考查全等三角形的旋转模型,掌握此模型的特点得到全等三角形是关键,其中还需要用到等腰三角形三线合一与30度所对的直角边的性质,熟练掌握这些基本知识点是关键.26.(1)1(491)2-;1(491)2+;(2)21(1)2n-;21(1)2n+;(3)21m-;21m+;(4)10;26; 12;35;【解析】【分析】(1)依据规律可得,如果勾为7,则股24=1 (491)2-,弦25=1 (491)2+;。
八年级(下)学期 第一次月考数学试题含答案一、选择题1.下列计算正确的是( )A =B .2=C .(26=D==2.下列计算正确的是( )A 1BCD ±3. )A B .C .D .4.x 的取值可以是( )A B .0C .12-D .-15.下列各式中,运算正确的是( )A =﹣2B +C 4D .=26.下列式子中,属于最简二次根式的是( )A BC D 7.下列各式计算正确的是( )A =B 6=C .3+=D 2=-8.m 能取的最小整数值是( ) A .m = 0B .m = 1C .m = 2D .m = 3 9.下列运算正确的是( )A .52223-=y yB .428x x x ⋅=C .(-a-b )2=a 2-2ab+b 2D =10.已知m 、n m ,n )为( ) A .(2,5)B .(8,20)C .(2,5),(8,20)D .以上都不是11.已知226a b ab +=,且a>b>0,则a ba b+-的值为( )A B C .2D .±212.如果关于x的不等式组0,222 3x mxx-⎧>⎪⎪⎨-⎪-<-⎪⎩的解集为2x>,且式子3m-的值是整数,则符合条件的所有整数m的个数是().A.5 B.4 C.3 D.2二、填空题13.观察下列等式:第1个等式:a1=2112=-+,第2个等式:a2=3223=-+,第3个等式:a3=32+=2-3,第4个等式:a4=5225=-+,…按上述规律,回答以下问题:(1)请写出第n个等式:a n=__________.(2)a1+a2+a3+…+a n=_________14.对于任意实数a,b,定义一种运算“◇”如下:a◇b=a(a-b)+b(a+b),如:3◇2=3×(3-2)+2×(3+2)=13,那么3◇2=_____.15.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.16.11122323-=11113-23438⎛⎫=⎪⎝⎭11114-345415⎛⎫=⎪⎝⎭据上述各等式反映的规律,请写出第5个等式:___________________________.17.2m1-1343m--mn=________.18.2121=-+3232=+4343=+++……=___________.19.x 的取值范围是_____.20.x 的取值范围是_____三、解答题21.小明在解决问题:已知a2a 2-8a +1的值,他是这样分析与解答的:因为a=2,所以a -2所以(a -2)2=3,即a 2-4a +4=3. 所以a 2-4a =-1.所以2a 2-8a +1=2(a 2-4a)+1=2×(-1)+1=-1. 请你根据小明的分析过程,解决如下问题: (1)计算:= - . (2)… (3)若a,求4a 2-8a +1的值.【答案】 ,1;(2) 9;(3) 5 【分析】(11==;(2)根据例题可得:对每个式子的分子和分母中同时乘以与分母中的式子相乘符合平方差公式的根式,去掉分母,然后合并同类项二次根式即可求解; (3)首先化简a ,然后把所求的式子化成()2413a --代入求解即可. 【详解】(1)计算:1=; (2)原式)1...11019=++++==-=;(3)1a ===,则原式()()224213413a a a =-+-=--,当1a =时,原式2435=⨯-=.【点睛】本题考查了二次根式的化简求值,正确读懂例题,对根式进行化简是关键.22.计算:10099+【答案】910【解析】 【分析】先对代数式的每一部分分母有理化,然后再进行运算 【详解】10099++10099+++=991-++-=1- =1110- =910【点睛】本题看似计算繁杂,但只要找到分母有理化这个突破口,就会化难为易。
八年级(下)学期 第一次 月考检测数学试题含解析一、选择题1.下列计算,正确的是( )A . 235+=B . 2323+=C . 8220-=D . 510-=2.下列运算错误的是( )A .1832=B .322366⨯=C .()2516+=D .()()72723+-= 3.下列根式中,最简二次根式是( )A .13B .0.3C .3D .8 4.下列各式计算正确的是( ) A .1222= B .362÷= C .2(3)3= D .222()-=-5.下列各式中,无意义的是( )A .23-B .()333-C .()23-D .310- 6.若12x x +-有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠2 7.设,n k 为正整数,()()1314A n n =+-+,()2154A n A =++,()3274A n A =++,()4394A n A =++,…()1214k k A n k A -=+++,….,已知1002005A =,则n =( ). A .1806B .2005C .3612D .4011 8.若a =3235++,b =2+610-,则a b 的值为( ) A .12 B .14 C .321+ D .1610+ 9.下列计算正确的是( )A .366=±B .422222÷=C .83266-=D .•a b ab = (a≥0,b≥0)10.下列二次根式中,与3是同类二次根式的是( )A .18B .13 C 24D 0.311.32的结果是( )A .±3B .﹣3C .3D .912.下列属于最简二次根式的是( )A B C D 二、填空题13.若0a >化成最简二次根式为________.14.甲容器中装有浓度为a ,乙容器中装有浓度为b ,两个容器都倒出m kg ,把甲容器倒出的果汁混入乙容器,把乙容器倒出的果汁混入甲容器,混合后,两容器内的果汁浓度相同,则m 的值为_________.15.,则x+y=_______.16.已知1<x <2,171x x +=-_____.17.=_______.18.3y =,则2xy 的值为__________.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20. (a ≥0)的结果是_________.三、解答题21.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
山东省聊城市八年级下学期第一次月考数学试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)既是中心对称图形,又是轴对称图形的是()A . 平行四边形B . 正五边形C . 菱形D . 等腰梯形2. (2分) (2017九下·梁子湖期中) 下列说法正确的是()A . 若一组数据x1 , x2 , x3的方差为1,则另一组数据2x1 , 2x2 , 2x3的方差为4B . 调查某批次汽车的抗撞击能力,应选择全面调查C . 中位数就是一组数据中最中间的一个数D . 8,9,9,10,10,11这组数据的众数是103. (2分) (2019七下·长宁期末) 下列所叙述的图形中,全等的两个三角形是()A . 含角的两个直角三角形B . 腰对应相等的两个等腰三角形C . 边长均为5厘米的两个等边三角形D . 一个钝角对应相等的两个等腰三角形4. (2分)(2014·河南) 下列说法中,正确的是()A . “打开电视,正在播放河南新闻节目”是必然事件B . 某种彩票中奖概率为10%是指买十张一定有一张中奖C . 神舟飞船发射前需要对零部件进行抽样调查D . 了解某种节能灯的使用寿命适合抽样调查5. (2分)正方形具有而菱形不一定具有的性质是()A . 四条边相等B . 对角线互相垂直平分C . 对角线平分一组对角D . 对角线相等6. (2分)(2017·陵城模拟) 已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A . 两人都对B . 两人都不对C . 甲对,乙不对D . 甲不对,乙对7. (2分)某棵果树前x年的总产量y与x之间的关系如图所示,从目前记录的结果看,前x年的年平均产量最高,则x的值为()A . 3B . 5C . 7D . 98. (2分)下列调查的样本具有代表性的是()A . 了解全校同学喜欢课程情况,对某班男生进行调查B . 了解某小区居民的防火意识,从每幢居民随机抽若干人进行调查C . 了解商场的平均日营业额,选在周末进行调查D . 了解杭州城区空气质量,在江干区设点调查9. (2分)(2018·达州) 下列说法正确的是()A . “打开电视机,正在播放《达州新闻》”是必然事件B . 天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C . 甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D . 数据6,6,7,7,8的中位数与众数均为710. (2分) (2017八下·钦州港期末) 菱形具有而矩形不具有的性质是()A . 对角相等B . 四边相等C . 对角线互相平分D . 四角相等二、填空题 (共10题;共14分)11. (1分) (2016七上·昌邑期末) 漳州市某校在开展庆“六•一”活动前夕,从该校七年级共400名学生中,随机抽取40名学生进行“你最喜欢的活动”问卷调查,调查结果如下表:你最喜欢的活动猜谜唱歌投篮跳绳其它人数681682请你估计该校七年级学生中,最喜欢“投篮”这项活动的约有________人.12. (1分)为了考察我校八年级同学的视力情况,从八年级的30个班共2200名学生中,每班随机抽取了5名同学进行调查,在这个问题中,样本的容量是________.13. (1分) (2018九上·丹江口期末) 如图为测量平地上一块不规则区域(图中的阴影部分)的面积,画一个边长为5m的正方形,使不规则区域落在正方形内,现向正方形内随机投掷小石子(假设小石子落在正方形内每一点都是等可能的),经过大量重复投掷试验,发现小石子落在不规则区域的频率稳定在常数0.2附近,由此可估计不规则区域的面积是________m2.14. (1分)(2020·徐州) 在中,若,,则的面积的最大值为________.15. (1分) (2015八下·金乡期中) 如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3,P是AC上一动点,则PB+PE的最小值是________.16. (1分) (2017八下·港南期中) 如图,在△ABC中,CD是高,CE是中线,CE=CB,点A、D关于点F对称,过点F作FG∥CD,交AC边于点G,连接GE.若AC=18,BC=12,则△CEG的周长为________.17. (5分)为了解九年级学生每周的课外阅读情况,某校语文组调查了该校九年级部分学生某周的课外阅读量(精确到千字),将调查数据经过统计整理后,得到如下频数分布直方图.请根据该频数分布直方图,回答下列问题:(1)填空:①该校语文组调查了________ 名学生的课外阅读量;②左边第一组的频数=________ ,频率=________ .(2)求阅读量在14千字及以上的人数________ .(3)估计被调查学生这一周的平均阅读量(精确到千字)________ .18. (1分) (2018九上·渠县期中) 如图已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF 折叠,则图中阴影部分的周长________。
山东省八年级(下)月考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+33.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠04.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2021 B.2008 C.202X D.20125.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.15 C.12或15 D.不能确定6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+17.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣8.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是()A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=09.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣1110.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)11.若函数y=(m﹣3)是二次函数,则m=.12.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是.14.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的图象的顶点坐标是.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.16.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.用配方法解方程:x2﹣4x+1=018.解方程:(y﹣1)2+2y(1﹣y)=0.19.用12米长的木料,做成如图的矩形窗框,则当长和宽各多少米时,矩形窗框的面积最大?最大面积是多少?四、解答题(二)(本大题共4小题,9+10+10+12分)20.如图所示,要在20米宽,32米长的矩形耕地上修筑同样宽的三条小路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块花田,要使花田面积为570m2,则道路应修多宽?21.(10分)(2002•鄂州)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?22.(10分)(2010•青海)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?23.(12分)(202X春•广饶县校级月考)已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.山东省八年级(下)月考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定考点:根的判别式;一次函数图象与系数的关系.分析:先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,即可得出答案.解答:解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.点评:此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.2.把二次函数y=﹣x2﹣x+3用配方法化成y=a(x﹣h)2+k的形式()A.y=﹣(x﹣2)2+2 B.y=(x﹣2)2+4 C.y=﹣(x+2)2+4 D.y=2+3考点:二次函数的三种形式.专题:配方法.分析:利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.解答:解:y=﹣x2﹣x+3=﹣(x2+4x+4)+1+3=﹣(x+2)2+4故选C.点评:二次函数的解析式有三种形式:(1)一般式:y=ax2+bx+c(a≠0,a、b、c为常数);(2)顶点式:y=a(x﹣h)2+k;(3)交点式(与x轴):y=a(x﹣x1)(x﹣x2).3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0 C.k<1 D.k<1且k≠0考点:根的判别式.专题:计算题.分析:方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.注意考虑“一元二次方程二次项系数不为0”这一条件.解答:解:因为方程kx2﹣2x﹣1=0有两个不相等的实数根,则b2﹣4ac>0,即(﹣2)2﹣4k×(﹣1)>0,解得k>﹣1.又结合一元二次方程可知k≠0,故选:B.点评:总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.本题容易出现的错误是忽视k≠0这一条件.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是()A.2021 B.2008 C.202X D.2012考点:一元二次方程的解.分析:将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.解答:解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2013﹣a﹣b=2013﹣(a+b)=2013﹣(﹣5)=2021.故选:A.点评:此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.12 B.15 C.12或15 D.不能确定考点:解一元二次方程-因式分解法;三角形三边关系;等腰三角形的性质.专题:计算题.分析:利用因式分解法求出方程的解得到x的值,分类讨论腰与底,利用三角形边角关系判断即可确定出周长.解答:解:方程变形得:(x﹣3)(x﹣6)=0,解得:当x=3或x=6,当3为腰,6为底时,三角形三边为3,3,6,不能构成三角形,舍去;当3为底,6为腰时,三角形三边为6,6,3,周长为6+6+3=15,故选B点评:此题考查了解一元二次方程﹣因式分解法,熟练掌握分解因式的方法是解本题的关键.6.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A.y=3(x﹣2)2﹣1 B.y=3(x﹣2)2+1 C.y=3(x+2)2﹣1 D.y=3(x+2)2+1考点:二次函数图象与几何变换.分析:先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.解答:解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(﹣2,﹣1),所得抛物线为y=3(x+2)2﹣1.故选C.点评:本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确的是()A.a<0 B.b2﹣4ac<0C.当﹣1<x<3时,y>0 D.﹣考点:二次函数图象与系数的关系.专题:存在型.分析:根据二次函数的图象与系数的关系对各选项进行逐一分析即可.解答:解:A、∵抛物线的开口向上,∴a>0,故选项A错误;B、∵抛物线与x轴有两个不同的交点,∴△=b2﹣4ac>0,故选项B错误;C、由函数图象可知,当﹣1<x<3时,y<0,故选项C错误;D、∵抛物线与x轴的两个交点分别是(﹣1,0),(3,0),∴对称轴x=﹣==1,故选项D正确.故选D.点评:本题考查的是二次函数的图象与系数的关系,能利用数形结合求解是解答此题的关键.8.如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,且∠OBC=45°,则下列各式成立的是()A.b﹣c﹣1=0 B.b+c﹣1=0 C.b﹣c+1=0 D.b+c+1=0考点:二次函数图象与系数的关系.分析:根据∠OBC=45°,有OB=OC,可设点C,B的坐标为(0,c),(c,0),把点B(c,0)代入二次函数y=x2+bx+c,得c2+bc+c=0,从而求出关系式.解答:解:∵∠OBC=45°,∴OB=OC,∴点C,B的坐标为(0,c),(c,0);把点B(c,0)代入二次函数y=x2+bx+c,得c2+bc+c=0,即c(c+b+1)=0,∵c≠0,∴b+c+1=0.故选D.点评:此题考查了学生的综合应用能力,考查了二次函数的点与函数的关系,考查了直角三角形的性质,考查了数形结合思想.9.已知实数a,b分别满足a2﹣6a+4=0,b2﹣6b+4=0,且a≠b,则的值是()A.7 B.﹣7 C.11 D.﹣11考点:根与系数的关系.专题:计算题.分析:根据已知两等式得到a与b为方程x2﹣6x+4=0的两根,利用根与系数的关系求出a+b与ab的值,所求式子通分并利用同分母分式的加法法则计算,再利用完全平方公式变形,将a+b与ab的值代入计算即可求出值.解答:解:根据题意得:a与b为方程x2﹣6x+4=0的两根,∴a+b=6,ab=4,则原式===7.故选A点评:此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键.10.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.考点:二次函数的图象;一次函数的图象.分析:令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.解答:解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.点评:本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.二、填空题(本大题共6小题,每小题4分,共24分)11.若函数y=(m﹣3)是二次函数,则m=﹣5.考点:二次函数的定义.分析:根据二次函数的定义解答.解答:解:∵y=(m﹣3)是二次函数,∴,解得m=﹣5.故答案为﹣5.点评:本题考查了二次函数的定义,要知道,形如x+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c 是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.12.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则b的值为4.考点:二次函数的性质.分析:已知抛物线的对称轴,利用对称轴公式可求b的值.解答:解:∵y=2x2﹣bx+3,对称轴是直线x=1,∴=1,即﹣=1,解得b=4.点评:主要考查了求抛物线的顶点坐标的方法:公式法:y=ax2+bx+c的顶点坐标为(,),对称轴是x=.13.已知2是关于x的一元二次方程x2+4x﹣p=0的一个根,则该方程的另一个根是﹣6.考点:根与系数的关系;一元二次方程的解.分析:根据根与系数的关系:x1+x2=﹣,x1•x2=,此题选择两根和即可求得.解答:解:∵2是关于x的一元二次方程x2+4x﹣p=0的一个根,∴2+x1=﹣4,∴x1=﹣6,∴该方程的另一个根是﹣6.点评:此题主要考查了一元二次方程的根与系数的关系.14.如图,已知二次函数y=ax2+bx+c的图象与x轴交于A(1,0),B(3,0)两点,与y 轴交于点C(0,3),则二次函数的图象的顶点坐标是(2,﹣1).考点:待定系数法求二次函数解析式;二次函数的性质.分析:已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.解答:解:设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a(x﹣1)(x﹣3)把点C(0,3),代入得a=1.则y=(x﹣1)(x﹣3)=x2﹣4x+3.所以图象的顶点坐标是(2,﹣1).点评:主要考查了用待定系数法求二次函数的解析式.15.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是k≤4且k≠0.考点:根的判别式;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:首先根据非负数的性质求得a、b的值,再由二次函数的根的判别式来求k的取值范围.解答:解:∵|b﹣1|+=0,∴b﹣1=0,=0,解得,b=1,a=4;又∵一元二次方程kx2+ax+b=0有两个实数根,∴△=a2﹣4kb≥0且k≠0,即16﹣4k≥0,且k≠0,解得,k≤4且k≠0;故答案为:k≤4且k≠0.点评:本题主要考查了非负数的性质、根的判别式.在解答此题时,注意关于x的一元二次方程的二次项系数不为零.16.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.考点:二次函数图象与系数的关系;一次函数图象与系数的关系.专题:计算题.分析:由抛物线的对称轴在y轴右侧,得到a与b异号,根据抛物线开口向下得到a小于0,故b大于0,再利用抛物线与y轴交点在y轴正半轴,得到c大于0,利用一次函数的性质即可判断出一次函数y=bx+c不经过的象限.解答:解:根据图象得:a<0,b>0,c>0,故一次函数y=bx+c的图象不经过第四象限.故答案为:四.点评:此题考查了二次函数图象与系数的关系,以及一次函数图象与系数的关系,熟练掌握一次、二次函数的图象与性质是解本题的关键.三、解答题(一)(本大题共3小题,每小题5分,共15分)17.用配方法解方程:x2﹣4x+1=0考点:解一元二次方程-配方法.专题:配方法.分析:首先把方程移项变形为x2﹣4x=﹣1的形式,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.解答:解:移项,得:x2﹣4x=﹣1,配方,得:x2﹣4x+(﹣2)2=﹣1+(﹣2)2,即(x﹣2)2=3,解这个方程,得:x﹣2=±;即x1=2+,x2=2﹣.点评:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.18.解方程:(y﹣1)2+2y(1﹣y)=0.考点:解一元二次方程-因式分解法.分析:先变形,再分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:变形得:(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0,y﹣1﹣2y=0,y1=1,y2=﹣1.点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程.19.用12米长的木料,做成如图的矩形窗框,则当长和宽各多少米时,矩形窗框的面积最大?最大面积是多少?考点:二次函数的应用.分析:设长为xm,表示出宽,然后根据矩形的面积公式列式并整理成顶点式形式,再根据二次函数的最值问题求解.解答:解:设长为xm,则宽为:(12﹣3x)=(4﹣x)m,面积=x(4﹣x)=﹣x2+4x=﹣(x﹣2)2+4,所以,当x=2m时,窗框有最大面积4m2.点评:本题考查了二次函数的应用,矩形的面积,主要利用了二次函数的最值问题,难点在于用长表示出宽.四、解答题(二)(本大题共4小题,9+10+10+12分)20.如图所示,要在20米宽,32米长的矩形耕地上修筑同样宽的三条小路(两条纵向,一条横向,横向与纵向互相垂直),把耕地分成大小不等的六块花田,要使花田面积为570m2,则道路应修多宽?考点:一元二次方程的应用.专题:几何图形问题.分析:本题中,试验地的面积=矩形耕地的面积﹣三条道路的面积+道路重叠部分的两个小正方形的面积.如果设道路宽x,可根据此关系列出方程求出x的值,然后将不合题意的舍去即可.解答:解:设道路为x米宽,由题意得:20×32﹣20x×2﹣32x+2x2=570,整理得:x2﹣36x+35=0,解得:x=1,x=35,经检验是原方程的解,但是x=35>20,因此不合题意舍去.答:道路为1m宽.点评:本题考查了一元二次方程的应用,对于面积问题应熟记各种图形的面积公式.另外,整体面积=各部分面积之和;剩余面积=原面积﹣截去的面积.21.(10分)(2002•鄂州)某工厂大门是一抛物线形水泥建筑物(如图),大门地面宽AB=4米,顶部C离地面高度为4.4米.现有一辆满载货物的汽车欲通过大门,货物顶部距地面2.8米,装货宽度为2.4米.请通过计算,判断这辆汽车能否顺利通过大门?考点:二次函数的应用.专题:压轴题.分析:本题只要计算大门顶部宽2.4米的部分离地面是否超过2.8米即可.如果设C点是原点,那么A的坐标就是(﹣2,﹣4.4),B的坐标是(2,﹣4.4),可设这个函数为y=kx2,那么将A的坐标代入后即可得出y=﹣1.1x2,那么大门顶部宽2.4m的部分的两点的横坐标就应该是﹣1.2和1.2,因此将x=1.2代入函数式中可得y≈﹣1.6,因此大门顶部宽2.4m部分离地面的高度是4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.解答:解:根据题意知,A(﹣2,﹣4.4),B(2,﹣4.4),设这个函数为y=kx2.将A的坐标代入,得y=﹣1.1x2,∴E、F两点的横坐标就应该是﹣1.2和1.2,∴将x=1.2代入函数式,得y≈﹣1.6,∴GH=CH﹣CG=4.4﹣1.6=2.8m,因此这辆汽车正好可以通过大门.点评:本题主要结合实际问题考查了二次函数的应用,得出二次函数式进而求出大门顶部宽2.4m部分离地面的高度是解题的关键.22.(10分)(2010•青海)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)现该商场要保证每天盈利6 000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2)若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?考点:二次函数的应用;二次函数的最值.专题:应用题.分析:本题的关键是根据题意列出一元二次方程,再求其最值.解答:解:(1)设每千克应涨价x元,则(10+x)(500﹣20x)=6 000(4分)解得x=5或x=10,为了使顾客得到实惠,所以x=5.(6分)(2)设涨价z元时总利润为y,则y=(10+z)(500﹣20z)=﹣20z2+300z+5 000=﹣20(z2﹣15z)+5000=﹣20(z2﹣15z+﹣)+5000=﹣20(z﹣7.5)2+6125当z=7.5时,y取得最大值,最大值为6 125.(8分)答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多.(10分)点评:求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.23.(12分)(202X春•广饶县校级月考)已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.考点:二次函数的性质;待定系数法求二次函数解析式.分析:(1)已知了B点坐标,易求得OB、OC的长,进而可将B、C的坐标代入抛物线中,求出待定系数的值,即可得出抛物线的解析式.(2)根据A、C的坐标,易求得直线AC的解析式.由于AB、OC都是定值,则△ABC的面积不变,若四边形ABCD面积最大,则△ADC的面积最大;可过D作x轴的垂线,交AC于M,x轴于N;易得△ADC的面积是DM与OA积的一半,可设出N点的坐标,分别代入直线AC和抛物线的解析式中,即可求出DM的长,进而可得出四边形ABCD的面积与N点横坐标间的函数关系式,根据所得函数的性质即可求出四边形ABCD的最大面积.解答:解:(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3);(1分)∵y=ax2+3ax+c过B(1,0)、C(0,﹣3),∴;解这个方程组,得,∴抛物线的解析式为:y=x2+x﹣3;(2)过点D作DM∥y轴分别交线段AC和x轴于点M、N在y=x2+x﹣3中,令y=0,得方程x2+x﹣3=0解这个方程,得x1=﹣4,x2=1∴A(﹣4,0)设直线AC的解析式为y=kx+b∴,解这个方程组,得,∴AC的解析式为:y=﹣x﹣3,∵S四边形ABCD=S△ABC+S△ADC=+•DM•(AN+ON)=+2•DM设D(x,x2+x﹣3),M(x,﹣x﹣3),DM=﹣x﹣3﹣(x2+x﹣3)=﹣(x+2)2+3,当x=﹣2时,DM有最大值3此时四边形ABCD面积有最大值.点评:此题考查了二次函数解析式的确定、图形面积的求法、平行四边形的判定和性质、二次函数的应用等知识,综合性强,难度较大.。
一、选择题1.已知2a =,2b =的值为( ) A .4B .5C .6D .72的倒数是( ) AB.2C. D.2-3.a b =--则( ) A .0a b +=B .0a b -=C .0ab =D .220a b +=4.下列说法错误的个数是( )a =;④数轴上的点都表示有理数 A .1个B .2个C .3个D .4个5.设ab21b a-的值为() A1+B1+C1D16.当4x =-的值为( )A .1BC .2D .37.下列计算或判断:(1)±3是27的立方根;(2;(32;(4;(5) A .1个B .2个C .3个D .4个8.下列各组二次根式中,能合并的一组是() AB和CD9.如果实数x ,y=-(),x y 在( ) A .第一象限 B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上10.的值应在( ) A .1和2之间B .3和4之间C .4和5之间D .5和6之间二、填空题11.已知实数,x y 满足()()22200820082008x x y y ----=,则2232332007x y x y -+--的值为______.12.能力拓展:1:2121A -=+;2:3232A -=+;3:4343A -=+;4:54A -=________.…n A :________.()1请观察1A ,2A ,3A 的规律,按照规律完成填空.()2比较大小1A 和2A∵32+________21+∴32+________21+ ∴32-________21-()3同理,我们可以比较出以下代数式的大小:43-________32-;76-________54-;1n n +-________1n n --13.已知x=3+1,y=3-1,则x 2+xy +y 2=_____.14.实数a 、b 满足22a -4a 436-12a a 10-b 4-b-2+++=+,则22a b +的最大值为_________.15.已知120654010144152118+++可写成235a b c ++的形式(,,a b c 为正整数),则abc =______.16.若613-的整数部分为x ,小数部分为y ,则(213)x y +的值是___.17.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.18.2,26,210,…,51若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______. 19.计算:200820092+323⋅-=_________.20.4102541025-+++=_______.三、解答题21.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2()()()S p p a p b p c =---2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积. (2)请证明:12S S【答案】(11572) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭(2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入2222221122a b c S a b ⎛⎫+-=- ⎪⎝⎭得: 222222145615745224S ⎛⎫+--=⎪⎝⎭⨯= (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+=2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.22.阅读下列材料,然后回答问题:1== . 以上这种化简过程叫做分母有理化.1===. (1)请用其中一种方法化简;(2+99+【答案】(2) 3 1. 【分析】(1)运用了第二种方法求解,即将4(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案.【详解】 (1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.23.1524-45-656 【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】 151024-45-6552526-35-6 525-3526-6 6. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.24.先观察下列等式,再回答下列问题: 2211111111121112++=+-=+; 2211111111232216++=+-=+ 22111111113433112++=+-=+ (1)2211145++ (2)请你按照上面各等式反映的规律,用含n 的等式表示(n 为正整数).【答案】(1)1120(2)()111n n++(n为正整数)【解析】试题分析:(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.试题解析:(1)=1+14−141+=1120,1 1 20(2)1n−1n1+=1+()1n n1+ (n为正整数).a=,也考查了二次根式的运算.此题是一道阅读题目,通过阅读找出题目隐含的条件.总结:找规律的题目,都要通过仔细观察找出和数之间的关系,并用关系式表示出来.25.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n个等式:(n为正整数).(2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小.【详解】解:(1)根据题意得:第n个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.26.2020(1)- 【答案】1 【分析】先计算乘方,再化简二次根式求解即可. 【详解】2020(1)-=1 =1. 【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.(1)计算)(2201113-⎛⎫--•- ⎪⎝⎭(2)已知,,a b c为实数且2c =2c ab-的值【答案】(1)13;(2)12-【分析】(1)利用完全平方公式、负整数指数幂、零指数幂分别计算再合并即可; (2)先依据二次根式有意义的条件,求得a 、b 、c 的值,然后再代入计算即可. 【详解】(1))(2201113-⎛⎫--•- ⎪⎝⎭31=+⨯=4+9=13;(2)根据二次根式有意义的条件可得:∵()2303010a a b ⎧-≥⎪⎪-≥⎨⎪-+≥⎪⎩, ∴3a =,1b =-, ∴2c =∴(()2223112c ab -=-⨯-=-【点睛】本题主要考查了二次根式的混合运算,二次根式有意义的条件以及二次根式的化简求值,熟练掌握二次根式有意义的条件是解题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B解析:B 【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果. 【详解】解:∵2a =,2b =, ∴227a b ++2252527 55454745425=∴255故选:B . 【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键2.B解析:B 【分析】根据倒数的定义,即可得到答案. 【详解】2,; 故选:B. 【点睛】本题考查了倒数的定义和化为最简二次根式,解题的关键是熟记倒数的定义进行解题.3.C解析:C 【分析】直接利用二次根式的性质 ,将已知等式左边化简,可以得到a 与b 中至少有一个为0,进而分析得出答案即可. 【详解】解:∵a b =--, ∴a-b=-a-b , 或b-a=-a-b∴a= -a ,或b=-b, ∴a=0,或b=0, ∴ab=0, ∴0ab =. 故选:C . 【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.C解析:C【分析】根据无理数定义判断①;根据平方根的算法判断②;利用二次根式的性质化简判断③;根据数轴的特点,判断④.【详解】无限不循环小数才是无理数,①错误;=,3的平方根是②正确;3=,③错误;a数轴上的点可以表示所有有理数和无理数,④错误故选:C.【点睛】本题考查无理数的定义、平方根的计算、二次根式的性质以及数轴表示数,紧抓相关定义是解题关键.5.B解析:B【分析】首先分别化简所给的两个二次根式,分别求出a、b对应的小数部分,然后化简、运算、求值,即可解决问题.【详解】∴a,∴b,∴21b a-,故选:B.【点睛】该题主要考查了二次根式的化简与求值问题;解题的关键是灵活运用二次根式的运算法则来分析、判断、解答.6.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式2223232323x xx x112323x x将4x=代入得,原式11423423221113133113133131131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.7.B解析:B【解析】根据立方根的意义,可知27的立方根是3,故(1a=正确,故(2)正=8,可知其平方根为±,故(3)不正确;根据算术平方根的意义,可知=,故=,故(48(5)正确.故选B.8.B解析:B【分析】先化简,再根据同类二次根式的定义解答即可.【详解】解:A、是最简二次根式,被开方数不同,不是同类二次根式;B是同类二次根式;3CD故选B.【点睛】本题考查的知识点是同类二次根式的定义,解题关键是熟记同类二次根式的定义.9.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.,x y在第二象限或坐标轴上.∴那么点()故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.10.B解析:B【分析】原式利用多项式除以单项式法则计算,估算确定出范围即可.【详解】=∵1<2<4,∴1<2,即3<<4,则原式的值应在3和4之间.故选:B.【点睛】本题考查了二次根式的混合运算,以及无理数的估算,解题的关键是熟练掌握运算法则进行解题.二、填空题11.1【分析】设a=,b=,得出x,y及a,b的关系,再代入代数式求值.【详解】解:设a=,b=,则x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……解析:1【分析】设x,y及a,b的关系,再代入代数式求值.【详解】解:设x2−a2=y2−b2=2008,∴(x+a)(x−a)=(y+b)(y−b)=2008……①∵(x−a)(y−b)=2008……②∴由①②得:x+a=y−b,x−a=y+b∴x=y,a+b=0,∴,∴x2=y2=2008,∴3x2﹣2y2+3x﹣3y﹣2007=3×2008−2×2008+3(x−y)−2007=2008+3×0−2007=1.故答案为1.【点睛】本题主要考查了二次根式的化简求值,解题的关键是求出x,y及a,b的关系. 12.(1)、;(2);(3)【解析】【分析】(1)观察A1,A2,A3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等解析:(1)=;(2),,><<;(3) ,,<<< 【解析】【分析】(1)观察A 1,A 2,A 3的规律可知将等式的右边乘以分母的有理化分式,即可得到左边的代数式;(2)先根据不等式的性质等式的两边同时加上或減去一个数,等式仍成立,求得>1)的结论解答;(3)利用(2)的结论进行填空.【详解】解:(1)观察A 1,A 2,A 3的规律可知,将等式右边的分式分母有理化,即得等式左边的代数式,所以=,(2>1>>,<<(3)由(1)、(2<,故答案为:=;(2),,><<;(3),,<<< 【点睛】 主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.13.10【解析】根据完全平方式的特点,可得x2+xy+y2=(x+y )2﹣xy=(2)2﹣(+1)(﹣1)=12﹣2=10.故答案为10.解析:10【解析】根据完全平方式的特点,可得x 2+xy+y 2=(x+y )2﹣xy=(2﹣1)=12﹣2=10.故答案为10.14.【分析】首先化简,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出的最大值.【详解】解析:【分析】10-b 4-b-2=+,可得|a-2|+|a-6|+|b+4|+|b-2|=10,然后根据|a-2|+|a-6|≥4,|b+4|+|b-2|≥6,判断出a ,b 的取值范围,即可求出22a b +的最大值.【详解】10-b 4-b-2=+,1042b b =-+--, ∴261042a a b b -+-=-+--, ∴264210a a b b -+-+++-=,∵264a a -+-≥,426b b ++-≥,∴ 264a a -+-=,42=6b b ++-,∴2≤a≤6,-4≤b≤2,∴22a b +的最大值为()226452+-=,故答案为52.【点睛】本题考查了二次根式的性质与化简,绝对值的意义,算术平方根的性质.解题的关键是要明确化简二次根式的步骤:①把被开方数分解因式;②利用算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2. 15.【解析】【分析】根据题意,可得到=,利用平方关系把根号去掉,根据、、的系数相等的关系得到关于a ,b ,c 的三元方程组,解方程组即可.【详解】∵=∴,即.解得.【点睛】本题考查了解析:【解析】【分析】a ,b ,c 的三元方程组,解方程组即可.【详解】∴(22118=,即2222118235a b c =+++++. 2222352118,2120,2540,2144,a b c ab ac bc ⎧++=⎪=⎪∴⎨=⎪⎪=⎩ 解得15,4,18.a b c =⎧⎪=⎨⎪=⎩154181080abc ∴=⨯⨯=.【点睛】本题考查了二次根式的加减,解本题的关键是将等式平方去根号,利用等量关系中等式左、.16.3【分析】先估算,再估算,根据6-的整数部分为x,小数部分为y,可得: x=2, y=,然后再代入计算即可求解.【详解】因为,所以,因为6-的整数部分为x,小数部分为y,所以x=2,解析:3【分析】先估算34<<,再估算263<<,根据6x ,小数部分为y ,可得: x =2, y=4然后再代入计算即可求解.【详解】因为34<,所以263<-<,因为6x ,小数部分为y ,所以x =2, y=4-,所以(2x y =(4416133=-=, 故答案为:3.【点睛】本题主要考查无理数整数部分和小数部分,解决本题的关键是要熟练掌握无理数估算方法和无理数整数和小数部分的求解方法. 17.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1, 第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为18.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数: ∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.19.【解析】原式==20.【分析】设,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】解:设,由算术平方根的非负性可得t≥0,则.故答案为:.【点睛】此题考查的是二【分析】t =,将等式的两边平方,然后根据完全平方公式和二次根式的性质化简即可得出结论.【详解】t=,由算术平方根的非负性可得t≥0,则244t=+=+8=+8=+81)=+62=1)∴=.1t.【点睛】此题考查的是二次根式的化简,掌握完全平方公式和二次根式的性质是解题关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
八年级第二学期 第一次 月考检测数学试题含答案一、选择题1.若2a <3=( )A .5a -B .5a -C .1a -D .1a --2.下列运算结果正确的是( )A 9=-B 3=C .(22= D 5=-3.下列各式计算正确的是( )A =B .2=C =D =4.对于所有实数a ,b ,下列等式总能成立的是( )A .2a b =+ B 22a b =+C a b =+D a b =+5.下列运算正确的是( )A 2=B 5=-C 2=D 012=6.下列二次根式中,是最简二次根式的是( )ABC .D 7.下列运算正确的是( )A =B . 3C =﹣2D =8.下列各式是二次根式的是( )A B C D9.a =-成立,那么a 的取值范围是( ) A .0a ≤B .0a ≥C .0a <D .0a >10.若|x 2﹣4x+4|x+y 的值为( ) A .3B .4C .6D .911.m 的值为( ) A .7B .11C .2D .112.已知实数x 、y 满足2y =,则yx 值是( )A .﹣2B .4C .﹣4D .无法确定二、填空题13.设4 a,小数部分为 b.则1a b- = __________________________.14.=___________.15.==________. 16.定义:对非负实数x “四舍五入”到个位的值记为()f x z , 即:当n 为非负整数时,如果1122n x n -<+≤,则()f x n =z .如:(0)(0.48)0f f ==z z ,(0.64)(1.49)1f f ==z z ,(4)(3.68)4f f ==z z ,试解决下列问题:①f =z __________;②f =z __________;+=__________.17.计算(π-3)0-21-2()的结果为_____.18.若a ,b ,c 是实数,且10a b c ++=,则2b c +=________.19的最小值是______.20.=_______.三、解答题21.解:设x222x =++2334x =+,x 2=10 ∴x =10.0.【分析】根据题意给出的解法即可求出答案即可. 【详解】设x两边平方得:x 2=2+2+即x 2=4+4+6, x 2=14 ∴x =.0,∴x. 【点睛】本题考查了二次根式的运算,解题的关键是正确理解题意给出的解法,本题属于中等题型.22.)÷)(a ≠b ).【答案】【解析】试题分析:先计算括号内的,然后把除法转化为乘法,约分即可得出结论.试题解析:解:原式=()()a b a b --+-222223.计算:(1(041--;(2⎛-⎝【答案】(1;(2)【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(041--(2⎛- ⎝-0-=24.-10 【分析】先根据二次根式的性质和平方差公式化简,然后再进行计算即可 【详解】=(22⎡⎤--⎢⎥⎣⎦=()212--10+.10. 【点睛】本题主要考查了二次根式的性质、平方差公式,灵活运用二次根式的性质化简是解答本题的关键.25.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:=== 【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.26.观察下列一组等式,然后解答后面的问题1)1=,1=,1=,1=⋯⋯(1)观察以上规律,请写出第n 个等式: (n 为正整数). (2(3【答案】(1)1=;(2)9;(3【分析】(1)根据规律直接写出,(2)先找出规律,分母有理化,再化简计算.(3)先对两个式子变形,分子有理化,变为分子为1,再比大小. 【详解】解:(1)根据题意得:第n 个等式为1=;故答案为1=;(2)原式111019==-=;(3-==,<∴>.【点睛】本题是一道利用规律进行求解的题目,解题的关键是掌握平方差公式.27.先化简,再求值:221()a ba b a b b a-÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案. 【详解】 解:原式1()()a b a b aa b a b b a b b--=⨯-⨯+-+ ()()a b a b a b b a b -=--++()b bb a =-+1a b=-+,当a =2b =原式12==-.【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.28.已知x²+2xy+y²的值. 【答案】16 【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算. 本题解析: ∵x² +2xy+y² =(x+y)²,∴当x∴x²+2xy+y²=(x+y)²=(2−=16.29.计算:(1)()22131)()2---+(2【答案】(1)12;(2) 【分析】(1)按照负整数指数幂、0指数幂、乘方的运算法则计算即可; (2)根据二次根式的加减乘除运算法则计算即可. 【详解】(1)解:原式= 9-1+4=12(2) 【点睛】本题考查负整数指数幂、0指数幂、乘方以及二次根式的运算法则,熟练掌握二次根式的化简是关键.30.02020((1)π-.【答案】 【分析】本题根据零次幂,最简二次根式,整数次幂的运算规则求解即可. 【详解】原式11=-= 【点睛】本题考查幂的运算与二次根式的综合,需牢记非零常数的零次幂为1,二次根式运算时需化为最简二次根式,其次注意计算仔细.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】||a =,然后再根据a 的范围去掉绝对值后即可求解. 【详解】|2|=-a ,且2a <,∴|2|2=-=-+a a ,原式|2|3231=--=-+-=--a a a , 故选:D . 【点睛】||a =这个公式是解决本题的关键.2.C解析:C 【分析】根据二次根式的性质及除法法则逐一判断即可得答案. 【详解】9=,故该选项计算错误,不符合题意,=C.(22=,故该选项计算正确,符合题意,5=,故该选项计算错误,不符合题意, 故选:C .本题考查二次根式的性质及运算,理解二次根式的性质并熟练掌握二次根式除法法则是解题关键.3.C解析:C 【分析】计算出各个选项中的正确结果,即可得到哪个选项是正确 【详解】A 错误;∵2+B 错误;=,故选项C 正确;=2,故选项D 错误. 故选C. 【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.4.B解析:B 【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD =|a +b |,其结果a+b 的符号不能确定. 故选B .5.C解析:C 【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案. 【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误; 故选:C .本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.6.D解析:D【分析】根据最简二次根式的特点解答即可.【详解】A,故该选项不符合题意;B=C、D不能化简,即为最简二次根式,故选:D.【点睛】此题考查最简二次根式,掌握最简二次根式的特点:①被开方数中不含分母;②被开方数中不含能再开方的因式或因数,牢记特点是解题的关键.7.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB、=,故此选项错误;C2,故此选项错误;D,正确;故选:D.【点睛】本题考查二次根式的混合运算,熟练掌握计算法则是关键.8.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.9.A解析:A【分析】由根号可知等号左边的式子为正,所以右边的式子也为正,所以可得答案.【详解】得-a≥0,所以a≤0,所以答案选择A项.【点睛】本题考查了求解数的取值范围,等号两边的值相等是解答本题的关键.10.A解析:A【解析】根据题意得:|x2–4x,所以|x2–4x+4|=0,即(x–2)2=0,2x–y–3=0,所以x=2,y=1,所以x+y=3.故选A.11.C解析:C【分析】几个二次根式化为最简二次根式后,如果被开方数相同,则这几个二次根式即为同类二次根式.【详解】解=m=7时==,故A错误;当m=11时==B错误;当m=1时=故D错误;当m=2时=故C正确;故选择C.【点睛】本题考查了同类二次根式的定义.12.C解析:C【分析】依据二次根式中的被开方数是非负数求得x的值,然后可得到y的值,最后代入计算即可.【详解】∵实数x 、y 满足2y =,∴x =2,y =﹣2,∴yx =22-⨯=-4.故选:C .【点睛】 本题主要考查的是二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.二、填空题13.【分析】根据实数的估算求出a,b ,再代入即可求解.【详解】∵1<<2,∴-2<-<-1,∴2<<3∴整数部分a=2,小数部分为-2=2-,∴==故填:.【点睛】此题主要考查无理解析:12-【分析】根据实数的估算求出a,b ,再代入1a b -即可求解. 【详解】∵1<2,∴-2<<-1,∴2<43∴整数部分a=2,小数部分为4,∴1ab -=22==1故填:12-. 【点睛】此题主要考查无理数的估算,分母有理化等,解题的关键熟知实数的性质.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解. 15.3【解析】设,则 可化为:,∴,两边同时平方得:,即:,∴,解得:,∴.故答案为:.点睛:本题的解题要点是:设原式中的,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形解析:【解析】设24x a -====两边同时平方得:128a a +=++4=,∴3216a =,解得:12a =,===故答案为: 点睛:本题的解题要点是:设原式中的24x a -=,从而使原式结构变得简单,这样应用二次根式的相关运算法则化简变形即可求得a 的值,使问题得到解决.16.3【解析】1、;2、根据题意,先推导出等于什么,(1)∵,∴,(2)再比较与的大小关系,①当n=0时,;②当为正整数时,∵,∴,∴,综合(1)、(2)可得:,解析:320172018【解析】1、(1.732)2z z f f ==;2、根据题意,先推导出f 等于什么,(1)∵2221142n n n n n ⎛⎫+<++=+ ⎪⎝⎭,12n <+,(2)12n -的大小关系,①当n=012n >-; ②当n 为正整数时,∵2212n n n ⎛⎫+-- ⎪⎝⎭1204n =->,∴2212n n n ⎛⎫+>- ⎪⎝⎭,12n >-,综合(1)、(2)可得:1122n n -<+,∴f n =z ,∴3f =z .3、∵f n =z ,∴(2017z f +111112233420172018=++++⨯⨯-⨯ 111111112233420172018=-+-+-++- 112018=-20172018=. 故答案为(1)2;(2)3;(3)20172018. 点睛:(1)解第②小题的关键是应用“完全平方公式”和“作差的方法”分别证明到当n 为非负整数时,1122n n -<+,从而得到f n =z ;(2)解题③的要点是:当n 为正整数时,111(1)1n n n n =-++. 17.﹣6【解析】根据零指数幂的性质,二次根式的性质,负整指数幂的性质,可知(π-3)0=1﹣(3﹣2)﹣4×﹣4=1﹣3+2﹣2﹣4=﹣6.故答案为﹣6.解析:﹣6【解析】 根据零指数幂的性质01(0)a a =≠,二次根式的性质,负整指数幂的性质1(0)pp a a a -=≠,可知(π-3)0-21-2()=1﹣(3﹣)﹣4×2﹣4=1﹣﹣﹣4=﹣6. 故答案为﹣6.18.21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得,,的值,从而得到答案.【详解】∵∴∴∴∴∴∴∴.【点睛】本题考查了二次根式、完全平方公式的知识;解题的解析:21【分析】结合态,根据完全平方公式的性质,将代数式变形,即可计算得a ,b ,c 的值,从而得到答案.【详解】∵10a b c ++=∴100a b c ---=∴2221490⎡⎤⎡⎤⎡⎤-+-+-=⎣⎦⎣⎦⎣⎦∴2221)2)3)0++=∴123=== ∴111429a b c -=⎧⎪-=⎨⎪-=⎩∴2511a b c =⎧⎪=⎨⎪=⎩∴2251121b c +=⨯+=.【点睛】本题考查了二次根式、完全平方公式的知识;解题的关键是熟练掌握二次根式、完全平方公式、一元一次方程的性质,从而完成求解.19.0【解析】【分析】先将化简为就能确定其最小值为1,再和1作差,即可求解。
一、选择题1.如图,在RtΔABC 中,∠ACB =90°,AC =9,BC =12,AD 是∠BAC 的平分线,若点P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .245B .365C .12D .152.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为12cm ,在容器内壁离容器底部4 cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,且离容器上沿4 cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为15 cm ,则该圆柱底面周长为( )cm .A .9B .10C .18D .203.如图,等边ABC ∆的边长为1cm ,D ,E 分别是AB ,AC 上的两点,将ADE ∆沿直线DE 折叠,点A 落在点'A 处,且点'A 在ABC ∆外部,则阴影部分图形的周长为( )A .1cmB .1.5cmC .2cmD .3cm4.棱长分别为86cm cm ,的两个正方体如图放置,点A ,B ,E 在同一直线上,顶点G 在棱BC 上,点P 是棱11E F 的中点.一只蚂蚁要沿着正方体的表面从点A 爬到点P ,它爬行的最短距离是( )A .(3510)cm +B .513cmC .277cmD .(2583)cm +5.如图所示,用四个全等的直角三角形和一个小正方形拼成一个大正方形已知大正方形的面积为49,小正方形的面积为4.用,表示直角三角形的两直角边(),请仔细观察图案.下列关系式中不正确的是( )A .B .C .D .6.在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,交AC 于点D ,若CD=1,则AB 的长是( ) A .2B . 23C . 43D .47.如图,在等腰Rt △ABC 中,∠C =90°,AC =7,∠BAC 的角平分线AD 交BC 于点D ,则点D 到AB 的距离是( )A .3B .4C .7(21)-D .7(21)+ 8.在△ABC 中,AB =10,BC =12,BC 边上的中线AD =8,则△ABC 边AB 上的高为( ) A .8 B .9.6C .10D .129.以下列各组数为边长,不能构成直角三角形的是( )A .3,4,5B .1,1,2C .8,12,13D .2、3、510.如图,是一张直角三角形的纸片,两直角边6,8AC BC ==,现将ABC 折叠,使点B 点A 重合,折痕为DE ,则BD 的长为( )A .7B .254C .6D .112二、填空题11.如图,∠MON =90°,△ABC 的顶点A 、B 分别在OM 、ON 上,当A 点从O 点出发沿着OM 向右运动时,同时点B 在ON 上运动,连接OC .若AC =4,BC =3,AB =5,则OC 的长度的最大值是________.12.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.13.等腰三角形的腰长为5,一腰上的高为3,则这个等腰三角形底边的长为________ 14.如图,四边形ABDC 中,∠ABD =120°,AB ⊥AC ,BD ⊥CD ,AB =4,CD =43,则该四边形的面积是______.15.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,13CD BC =,13CE AC =,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________16.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形.如果AB =13,EF =7,那么AH 等于_____.17.如图,O 为坐标原点,四边形OABC 为矩形,()20,0A ,()0,8C ,点D 是OA 的中点,点P 在边BC 上运动,当ODP ∆是以OD 为腰的等腰三角形时,则P 点的坐标为______.18.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.19.如图,Rt△ABC 中,∠BCA =90°,AB =5,AC =2,D 为斜边AB 上一动点(不与点A ,B 重合),DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,连接EF ,则EF 的最小值是_____.20.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.三、解答题21.(1)计算:1312248233⎛÷ ⎝(2)已知a 、b 、c 满足2|2332(30)0a b c -+-=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.如图,在等腰直角三角形ABC 中,∠ACB =90°,AC=BC ,AD 平分∠BAC ,BD ⊥AD 于点D ,E 是AB 的中点,连接CE 交AD 于点F ,BD =3,求BF 的长.23.阅读与理解:折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点C '处,即AC AC '=,据以上操作,易证明ACD AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.感悟与应用:(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断AC 和AD 、BC 之间的数量关系,并说明理由;(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,12DC BC ==,①求证:180B D ∠+∠=︒; ②求AB 的长.24.在等腰Rt △ABC 中,AB =AC ,∠BAC =90°(1)如图1,D ,E 是等腰Rt △ABC 斜边BC 上两动点,且∠DAE =45°,将△ABE 绕点A 逆时针旋转90后,得到△AFC ,连接DF ①求证:△AED ≌△AFD ;②当BE =3,CE =7时,求DE 的长;(2)如图2,点D 是等腰Rt △ABC 斜边BC 所在直线上的一动点,连接AD ,以点A 为直角顶点作等腰Rt △ADE ,当BD =3,BC =9时,求DE 的长.25.如图,△ACB 和△ECD 都是等腰直角三角形,∠ACB =∠ECD =90°,点D 在边AB 上,点E 在边AC 的左侧,连接AE .(1)求证:AE =BD ;(2)试探究线段AD 、BD 与CD 之间的数量关系;(3)过点C 作CF ⊥DE 交AB 于点F ,若BD :AF =1:22,CD =36+,求线段AB 的长.26.已知a ,b ,c 满足88a a -+-=|c ﹣17|+b 2﹣30b +225,(1)求a ,b ,c 的值;(2)试问以a ,b ,c 为边能否构成三角形?若能构成三角形,求出三角形的周长和面积;若不能构成三角形,请说明理由.27.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动23秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.设点E 的运动时间为t :(秒)(1)OE =_________,OF =___________(用含t 的代数式表示)(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设MBN ∆的面积为S ,求S 与b 之间的函数关系式.28.我国古代数学家赵爽曾用图1证明了勾股定理,这个图形被称为“弦图”.2002年在北京召开的国际数学家大会(ICM 2002)的会标(图2),其图案正是由“弦图”演变而来.“弦图”是由4个全等的直角三角形与一个小正方形组成,恰好拼成一个大正方形请你根据图1解答下列问题:(1)叙述勾股定理(用文字及符号语言叙述); (2)证明勾股定理;(3)若大正方形的面积是13,小正方形的面积是1,求()2a b +的值.29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .(1)求证:∠ABE =∠CAD ;(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F .①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,根据勾股定理可求出AB 的长度,再根据EQ ⊥AC 、∠ACB=90°即可得出EQ ∥BC ,进而可得出AE EQAB BC=,代入数据即可得出EQ 的长度,此题得解. 【详解】解:如图所示,过点D 作DE ⊥AB 于点E ,过点E 作EQ ⊥AC 于点Q ,EQ 交AD 于点P ,连接CP ,此时PC+PQ=EQ 是最小值,在Rt △ABC 中,∠ACB=90°,AC=9,BC=12, ∴2215AB AC BC +=,∵AD 是∠BAC 的平分线, ∴∠CAD=∠EAD ,在△ACD 和△AED 中,90CAD EAD ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ), ∴AE=AC=9.∵EQ ⊥AC ,∠ACB=90°, ∴EQ ∥BC ,AE EQAB BC ∴=, ∴91512EQ =, 653EQ ∴=. 故选B.【点睛】本题考查了勾股定理、轴对称中的最短路线问题以及平行线的性质,找出点C 的对称点E ,及通过点E 找到点P 、Q 的位置是解题的关键.2.C解析:C 【分析】将容器侧面展开,建立A 关于上边沿的对称点A’,根据两点之间线段最短可知A’B 的长度为最短路径15,构造直角三角形,依据勾股定理可以求出底面周长的一半,乘以2即为所求. 【详解】 解:如图,将容器侧面展开,作A 关于EF 的对称点'A ,连接'A B ,则'A B 即为最短距离, 根据题意:'15A B cm =,12412BD AE cm =-+=,2222'15129A D A B BD ∴--'==.所以底面圆的周长为9×2=18cm. 故选:C .【点睛】本题考查了平面展开——最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.3.D解析:D 【分析】根据折叠的性质可得AD=A'D ,AE=A'E ,易得阴影部分图形的周长为=AB+BC+AC ,则可求得答案. 【详解】解:因为等边三角形ABC 的边长为1cm ,所以AB=BC=AC=1cm , 因为△ADE 沿直线DE 折叠,点A 落在点A'处,所以AD=A'D ,AE=A'E ,所以阴影部分图形的周长=BD+A'D+BC+A'E+EC=BD+AD+BC+AE+EC=AB+BC+AC =1+1+1=3(cm ). 故选:D . 【点睛】此题考查了折叠的性质与等边三角形的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用以及折叠前后图形的对应关系.4.C解析:C 【分析】当E 1F 1在直线EE 1上时,,得到AE=14,PE=9,由勾股定理求得AP 的长;当E 1F 1在直线B 2E 1上时,两直角边分别为17和6,再利用勾股定理求AP 的长,两者进行比较即可确定答案 【详解】① 当展开方法如图1时,AE=8+6=14cm ,PE=6+3=9cm , 由勾股定理得2222149277AP AE PE cm =+=+=② 当展开方法如图2时,AP 1=8+6+3=17cm ,PP 1=6cm , 由勾股定理得222211176325AP AP PP cm =+=+=∵277<325∴蚂蚁爬行的最短距离是277cm,【点睛】此题考察正方体的展开图及最短路径,注意将正方体沿着不同棱线剪开时得到不同的平面图形,路径结果是不同的5.D解析:D【解析】【分析】利用勾股定理和正方形的面积公式,对公式进行合适的变形即可判断各个选项是否争取.【详解】A中,根据勾股定理等于大正方形边长的平方,它就是正方形的面积,故正确;B中,根据小正方形的边长是2它等于三角形较长的直角边减较短的直角边即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A可得,C可得,结合完全平方公式可以求得,错误.故选D.【点睛】本题考查勾股定理.在A、B、C选项的等式中需理解等式的各个部分表示的几何意义,对于D选项是由A、C选项联立得出的.6.B解析:B【分析】根据30°直角三角形的性质,求出∠ABC的度数,然后根据角平分线的性质求出∠CBD=30°,再根据30°角所对的直角三角形性质,30°角所对的直角边等于斜边的一半,求解即可.【详解】如图∵∠C=90°,∠A=30°,∴∠ABC=90°-30°=60°,∵BD平分∠ABC,∴∠ABD=12∠ABC=12×60°=30°,∵CD=1,∠CDB=30°∴BD=2根据勾股定理可得2222=21=3BD CD--∵∠A=30°∴3故选B.【点睛】此题主要考查了30°角直角三角形的性质的应用,关键是根据题意画出图形,再利用30°角所对直角边等于斜边的一半求解.7.C解析:C【分析】过点D 作DE ⊥AB 于点E ,根据角平分线的性质定理,可得:DE =DC =x ,则BE =72-x ,进而可得到AE =AC =7,在Rt △BDE 中,应用勾股定理即可求解.【详解】过点D 作DE ⊥AB 于点E ,则∠AED =90°,AE =AC =7,∵△ABC 是等腰直角三角形,∴BC =AC =7,AB =22AC +BC =72,在Rt △AED 和Rt △ACD 中,AE =AC ,DE =DC ,∴Rt △AED ≌Rt △ACD ,∴AE =AC =7,设DE =DC =x ,则BD =7-x ,在Rt △BDE 中,222BE +DE =BD ,即:()()22272-77-x x +=, 解得: 7(21)x =-,故选:C .【点睛】本题考查角平分线的性质定理,全等三角形的判定与性质,勾股定理等,运用方程思想是解题的关键.8.B解析:B如图,作CE AB ⊥与E,利用勾股定理的逆定理证明AD BC ⊥,再利用面积法求出EC 即可.【详解】如图,作CE AB ⊥与E.AD 是ABC ∆的中线,BC =12,∴BD=6,10,8,6,AB AD BD ===∴ 222AB AD BD =+,90,ADB ∴∠=,AD BC ∴⊥ 11,22ABC S BC AD AB CE ∆== 1289.6.10CE ⨯∴== 故选B.【点睛】 本题主要考查勾股定理的逆定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,学会面积法求三角形的高.9.C解析:C【分析】根据勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可作出判断.【详解】A. 32+42=52,能构成直角三角形,故不符合题意;B. 12+12=2)2,能构成直角三角形,故不符合题意;C. 82+122≠132,不能构成直角三角形,故符合题意;D.2)2+32=52,能构成直角三角形,故不符合题意,故选C.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.B【分析】由折叠的性质得出AD=BD,设BD=x,则CD=8-x,在Rt△ACD中根据勾股定理列方程即可得出答案.【详解】解:∵将△ABC折叠,使点B与点A重合,折痕为DE,∴AD=BD,设BD=x,则CD=8-x,在Rt△ACD中,∵AC2+CD2=AD2,∴62+(8-x)2=x2,解得x= 25 4∴BD=254.故选:B.【点睛】本题考查了翻折变换的性质、勾股定理等知识,熟练掌握方程的思想方法是解题的关键.二、填空题11.5【解析】试题分析:取AB中点E,连接OE、CE,在直角三角形AOB中,OE=AB,利用勾股定理的逆定理可得△ACB是直角三角形,所以CE=AB,利用OE+CE≥OC,所以OC的最大值为OE+CE,即OC的最大值=AB=5.考点:勾股定理的逆定理,127【分析】连接AC交BD于点O,由题意可证AC垂直平分BD,△ABD是等边三角形,可得∠BAO=∠DAO=30°,AB=AD=BD,BO=OD,通过证明△EDF是等边三角形,可得DE=EF=DF,由勾股定理可求OC,BC的长.连接AC,交BD于点O,∵AB=AD,BC=DC,∠A=60°,∴AC垂直平分BD,△ABD是等边三角形,∴∠BAO=∠DAO=30°,AB=AD=BD=4,BO=OD=2,∵CE∥AB,∴∠BAO=∠ACE=30°,∠CED=∠BAD=60°,∴∠DAO=∠ACE=30°,∴AE=CE=3,∴DE=AD−AE=1,∵∠CED=∠ADB=60°,∴△EDF是等边三角形,∴DE=EF=DF=1,∴CF=CE−EF=2,OF=OD−DF=1,22∴=-=,OC CF OF322∴,BC=OB+OC=7故答案为:7.【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.13.310或10【详解】分两种情况:(1)顶角是钝角时,如图1所示:在Rt△ACO中,由勾股定理,得AO2=AC2-OC2=52-32=16,∴AO=4,OB=AB+AO=5+4=9,在Rt △BCO 中,由勾股定理,得BC 2=OB 2+OC 2=92+32=90,∴BC=310;(2)顶角是锐角时,如图2所示:在Rt △ACD 中,由勾股定理,得AD 2=AC 2-DC 2=52-32=16,∴AD=4,DB=AB-AD=5-4=1.在Rt △BCD 中,由勾股定理,得BC 2=DB 2+DC 2=12+32=10,∴10 ;综上可知,这个等腰三角形的底的长度为1010. 【点睛】本题考查了勾股定理及等腰三角形的性质,难度适中,分情况讨论是解题的关键.14.163【分析】延长CA 、DB 交于点E ,则60C ∠=°,30E ∠=︒,在Rt ABE ∆中,利用含30角的直角三角形的性质求出28BE AB ==,根据勾股定理求出43AE =.同理,在Rt DEC ∆中求出283CE CD ==2212DE CE CD =-=,然后根据CDE ABE ABDC S S S ∆∆=-四边形,计算即可求解.【详解】解:如图,延长CA 、DB 交于点E ,∵四边形ABDC 中,120ABD ∠=︒,AB AC ⊥,BD CD ⊥,∴60C ∠=°,∴30E ∠=︒,在Rt ABE ∆中,4AB =,30E ∠=︒,∴28BE AB ==,2243AE BE AB ∴-=. 在Rt DEC ∆中,30E ∠=︒,43CD =283CE CD ∴==2212DE CE CD ∴=-, ∴1443832ABE S ∆=⨯⨯=143122432CDE S ∆=⨯⨯=, 24383=163CDE ABE ABDC S S S ∆∆∴=-=-四边形. 故答案为:163.【点睛】本题考查了勾股定理,含30角的直角三角形的性质,图形的面积,准确作出辅助线构造直角三角形是解题的关键.15.53或203【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.【详解】解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,根据勾股定理可得2210AB AC += ∵13CD BC =,13CE AC =, ∴13CD BC ==103,13CE AC ==83 ∵DE AC ⊥根据勾股定理可得222CD CE -=由折叠的性质可得:DH=CD=103,CP=PH∴EH=DH-DE=4 3设CP=PH=x,则EP=CE-CP=83-x在Rt△PEH中,EP2+EH2=PH2即(83-x)2+(43)2=x2解得:x=5 3即此时CP=53;②当折叠后点C的对应点H在AC的上方时,如下图所示根据折叠的性质可得DH=CD=103,CP=PH∴EH=DH+DE=16 3设CP=PH=y,则EP= CP-CE =y-8 3在Rt△PEH中,EP2+EH2=PH2即(y-83)2+(163)2=y2解得:y=20 3即此时CP=203.综上所述:CP=53或203.故答案为:53或203.【点睛】此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.16.【分析】根据面积的差得出a+b 的值,再利用a-b=7,解得a ,b 的值代入即可.【详解】∵AB =13,EF =7,∴大正方形的面积是169,小正方形的面积是49,∴四个直角三角形面积和为169﹣49=120,设AE 为a ,DE 为b ,即141202ab ⨯=, ∴2ab =120,a 2+b 2=169,∴(a +b )2=a 2+b 2+2ab =169+120=289,∴a +b =17,∵a ﹣b =7,解得:a =12,b =5,∴AE =12,DE =5,∴AH =12﹣7=5.故答案为:5.【点睛】此题考查勾股定理的证明,关键是应用直角三角形中勾股定理的运用解得ab 的值.17.()4,8或()6,8或()16,8【分析】当ODP ∆是以OD 为腰的等腰三角形时,分为两种情况①点O 是顶角顶点时,②D 是顶角顶点时,根据勾股定理求出CP ,PM 即可.【详解】解:OD 是等腰三角形的一条腰时:①若点O 是顶角顶点时,P 点就是以点O 为圆心,以10为半径的弧与CB 的交点, 在直角△OPC 中,CP=22221086OP OC -=-=,则P 的坐标是(6,8). ②若D 是顶角顶点时,P 点就是以点D 为圆心,以10为半径的弧与CB 的交点, 过D 作DM ⊥BC 于点M ,在直角△PDM 中,22221086PD DM -=-= ,当P 在M 的左边时,CP=10-6=4,则P 的坐标是(4,8);当P 在M 的右侧时,CP=10+6=16,则P 的坐标是(16,8).故P 的坐标为:(6,8)或(4,8)或(16,8).故答案为:(6,8)或(4,8)或(16,8).【点睛】本题主要考查等腰三角形的性质及勾股定理的运用,注意正确地进行分类,考虑到所有的可能情况是解题的关键.18.4或【分析】分三种情况讨论:①以A为直角顶点,向外作等腰直角三角形DAC;②以C为直角顶点,向外作等腰直角三角形ACD;③以AC为斜边,向外作等腰直角三角形ADC.分别画图,并求出BD.【详解】①以A为直角顶点,向外作等腰直角三角形DAC,如图1.∵∠DAC=90°,且AD=AC,∴BD=BA+AD=2+2=4;②以C为直角顶点,向外作等腰直角三角形ACD,如图2.连接BD,过点D作DE⊥BC,交BC的延长线于E.∵△ABC是等腰直角三角形,∠ACD=90°,∴∠DCE=45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=2=在Rt△BAC中,BC==BD===③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,=∴AD=DC=AC sin45°=22又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC==∴BD==故BD 的长等于4或510.故答案为4或510.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,1925 【解析】试题分析:根据勾股定理可求出BC=1,然后根据∠BCA =90°,DE ⊥AC ,DF ⊥BC ,证得四边形CEDF 是矩形,连接CD ,则CD=EF ,当CD⊥AB 时,CD 最短,即25. 25 点睛:本题考查了勾股定理的运用,矩形的判定和性质以及垂线段最短的性质,同时也考查了学生综合运用性质进行推理和计算的能力.20.39或639【分析】通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG SS S =-即可求解.【详解】①当点D 在H 点上方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒ .30,6A AE ∠=︒=,132EH AE ∴== , 22226333AH AE EH ∴=-=-=. 32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,333AD AH DH =-=,45EDH ∴∠=︒,15AED EDH A ∴∠=∠-∠=︒ .由折叠的性质可知,15DEF AED ∠=∠=︒,230AEG AED ∴∠=∠=︒ ,AEG A ∴∠=∠,AG GE ∴= . 又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒ ,12GQ AG ∴=. 222GQ AQ AG += , 即2223(2)GQ GQ +=, 3GQ ∴= .2DGF AED AEG S S S =- ,112(333)36363922DGF S ∴=⨯⨯-⨯-⨯⨯=-; ②当点D 在H 点下方时,过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,12AB = ,点E 是AB 中点,162AE AB ∴== . ∵EH AC ⊥,90AHE ∴∠=︒.30,6A AE ∠=︒= ,132EH AE ∴== , 22226333AH AE EH ∴=-=-=.32DE =,2222(32)33DH DE EH ∴=-=-= ,DH EH ∴=,3AD AH DH =+=,45DEH ∴∠=︒ ,90105AED A DEH ∴∠=︒-∠+∠=︒ .由折叠的性质可知,105DEF AED ∠=∠=︒,218030AEG AED ∴∠=∠-︒=︒ ,AEG A ∴∠=∠,AG GE ∴= .又GQ AE ⊥ ,132AQ AE ∴== . 30A ∠=︒,12GQ AG ∴= . 222GQ AQ AG += , 即2223(2)GQ GQ +=,GQ ∴= .2DGF AED AEG S S S =- ,1123)36922DGF S ∴=⨯⨯⨯-⨯=,综上所述,DGF △的面积为9或9.故答案为:9或9.【点睛】本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.三、解答题21.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.22.BF 的长为【分析】先连接BF ,由E 为中点及AC=BC ,利用三线合一可得CE ⊥AB ,进而可证△AFE ≌△BFE ,再利用AD 为角平分线以及三角形外角定理,即可得到∠BFD 为45°,△BFD 为等腰直角三角形,利用勾股定理即可解得BF .【详解】解:连接BF .∵CA=CB ,E 为AB 中点∴AE=BE ,CE ⊥AB ,∠FEB=∠FEA=90°在Rt △FEB 与Rt △FEA 中,BE AE BEF AEF FE FE =⎧⎪∠=∠⎨⎪=⎩∴Rt △FEB ≌Rt △FEA又∵AD 平分∠BAC ,在等腰直角三角形ABC 中∠CAB=45°∴∠FBE=∠FAE=12∠CAB=22.5° 在△BFD 中,∠BFD=∠FBE+∠FAE=45°又∵BD ⊥AD ,∠D=90°∴△BFD 为等腰直角三角形,BD=FD=3 ∴222232BF BD FD BD =+==【点睛】本题主要考查等腰直角三角形的性质及判定、三角形全等的性质及判定、三角形外角、角平分线,解题关键在于熟练掌握等腰直角三角形的性质.23.(1)BC−AC =AD ;理由详见解析;(2)①详见解析;②AB=14【分析】(1)在CB 上截取CE =CA ,连接DE ,证△ACD ≌△ECD 得DE =DA ,∠A =∠CED =60°,据此∠CED =2∠CBA ,结合∠CED =∠CBA +∠BDE 得出∠CBA =∠BDE ,即可得DE =BE ,进而得出答案;(2)①在AB 上截取AM =AD ,连接CM ,先证△ADC ≌△AMC ,得到∠D =∠AMC ,CD =CM ,结合CD =BC 知CM =CB ,据此得∠B =∠CMB ,根据∠CMB +∠CMA =180°可得;②设BN =a ,过点C 作CN ⊥AB 于点N ,由CB =CM 知BN =MN =a ,CN 2=BC 2−BN 2=AC 2−AN 2,可得关于a 的方程,解之可得答案.【详解】解:(1)BC−AC =AD .理由如下:如图(a ),在CB 上截取CE =CA ,连接DE ,∵CD 平分∠ACB ,∴∠ACD =∠ECD ,又CD =CD ,∴△ACD ≌△ECD (SAS ),∴DE =DA ,∠A =∠CED =60°,∴∠CED =2∠CBA ,∵∠CED =∠CBA +∠BDE ,∴∠CBA =∠BDE ,∴DE =BE ,∴AD =BE ,∵BE =BC−CE =BC−AC ,∴BC−AC =AD .(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,∵AC 平分∠DAB ,∴∠DAC =∠MAC ,∵AC =AC ,∴△ADC ≌△AMC (SAS ),∴∠D =∠AMC ,CD =CM =12,∵CD =BC =12,∴CM =CB ,∴∠B =∠CMB ,∵∠CMB +∠CMA =180°,∴∠B +∠D =180°;②设BN =a ,过点C 作CN ⊥AB 于点N ,∵CB =CM =12,∴BN =MN =a ,在Rt △BCN 中,2222212CN BC BN a --==,在Rt △ACN 中,2222216(8)CN AC AN a --+==, 则22221216(8)a a --+=,解得:a=3,即BN=MN=3,则AB=8+3+3=14,∴AB=14.【点睛】本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.24.(1)①见解析;②DE=297;(2)DE的值为517【分析】(1)①先证明∠DAE=∠DAF,结合DA=DA,AE=AF,即可证明;②如图1中,设DE=x,则CD=7﹣x.在Rt△DCF中,由DF2=CD2+CF2,CF=BE=3,可得x2=(7﹣x)2+32,解方程即可;(2)分两种情形:①当点E在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题;②当点D在CB的延长线上时,如图3中,同法可得DE2=153.【详解】(1)①如图1中,∵将△ABE绕点A逆时针旋转90°后,得到△AFC,∴△BAE≌△CAF,∴AE=AF,∠BAE=∠CAF,∵∠BAC=90°,∠EAD=45°,∴∠CAD+∠BAE=∠CAD+∠CAF=45°,∴∠DAE=∠DAF,∵DA=DA,AE=AF,∴△AED≌△AFD(SAS);②如图1中,设DE=x,则CD=7﹣x.∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°,∵∠ABE=∠ACF=45°,∴∠DCF=90°,∵△AED≌△AFD(SAS),∴DE=DF=x,∵在Rt△DCF中, DF2=CD2+CF2,CF=BE=3,∴x2=(7﹣x)2+32,∴x=297,∴DE=297;(2)∵BD=3,BC=9,∴分两种情况如下:①当点E在线段BC上时,如图2中,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△DAC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=9-3=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35;②当点D在CB的延长线上时,如图3中,连接BE.同理可证△DBE是直角三角形,EB=CD=3+9=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,综上所述,DE的值为35或317.【点睛】本题主要考查旋转变换的性质,三角形全等的判定和性质以及勾股定理,添加辅助线,构造旋转全等模型,是解题的关键.25.(1)见解析;(2)BD2+AD2=2CD2;(3)AB=2+4.【分析】(1)根据等腰直角三角形的性质证明△ACE≌△BCD即可得到结论;(2)利用全等三角形的性质及勾股定理即可证得结论;(3)连接EF ,设BD =x ,利用(1)、(2)求出EF=3x ,再利用勾股定理求出x ,即可得到答案.【详解】(1)证明:∵△ACB 和△ECD 都是等腰直角三角形∴AC =BC ,EC =DC ,∠ACB =∠ECD =90°∴∠ACB ﹣∠ACD =∠ECD ﹣∠ACD∴∠ACE =∠BCD ,∴△ACE ≌△BCD (SAS ),∴AE =BD .(2)解:由(1)得△ACE ≌△BCD ,∴∠CAE =∠CBD ,又∵△ABC 是等腰直角三角形,∴∠CAB =∠CBA =∠CAE =45°,∴∠EAD =90°,在Rt △ADE 中,AE 2+AD 2=ED 2,且AE =BD ,∴BD 2+AD 2=ED 2,∵ED =2CD ,∴BD 2+AD 2=2CD 2,(3)解:连接EF ,设BD =x ,∵BD :AF =1:2AF =2x ,∵△ECD 都是等腰直角三角形,CF ⊥DE ,∴DF =EF ,由 (1)、(2)可得,在Rt △FAE 中,EF 22AF AE +22(22)x x +3x , ∵AE 2+AD 2=2CD 2,∴222(223)2(36)x x x ++=,解得x =1,∴AB =2+4.【点睛】此题考查三角形全等的判定及性质,等腰直角三角形的性质,勾股定理.26.(1)a =8,b =15,c =17;(2)能,60【分析】(1)根据算术平方根,绝对值,平方的非负性即可求出a 、b 、c 的值;(2)根据勾股定理的逆定理即可求出此三角形是直角三角形,由此得到面积和周长【详解】解:(1)∵a ,b ,c|c ﹣17|+b 2﹣30b +225,21||7(15)c b +-﹣,∴a ﹣8=0,b ﹣15=0,c ﹣17=0,∴a =8,b =15,c =17;(2)能.∵由(1)知a =8,b =15,c =17,∴82+152=172.∴a 2+c 2=b 2,∴此三角形是直角三角形,∴三角形的周长=8+15+17=40; 三角形的面积=12×8×15=60. 【点睛】此题考查算术平方根,绝对值,平方的非负性,勾股定理的逆定理判断三角形的形状. 27.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩【分析】(1)根据点E ,F 的运动轨迹和速度,即可得到答案;(2)由题意得:DF=OF=53,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案; (3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.【详解】∵(0,0)O ,(6,0)A ,(0,3)C ,∴OA=6,OC=3,∵AE=t×1= t , ∴OE =6-t ,OF =(t+23)×1=t+23, 故答案是:6-t ,t+23;(2)当1t =时,OE =6-t=5,OF =t+23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,∴DF=OF=53,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,∴4=,∴CD=CG-DG=5-4=1,∴D(1,3),设直线DE 的解析式为:y=kx+b ,把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,∴直线直线MN 的解析式为:34y x b =-+, 令y=3,代入34y x b =-+,解得:x=443b -, ∴M(443b -,3). ①当点M 在线段DB 上时,BM=6-(443b -)=4103b -+, ∴1143(10)223S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=443b --6=4103b -, ∴1143(10)223S BM AB b =⋅=⨯⨯-=215b -, 综上所述:1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩.【点睛】本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.28.(1)见解析;(2)证明见解析;(3)25.【分析】(1)直接叙述勾股定理的内容,并用字母表明三边关系;(2)利用大正方形面积、小正方形面积和4个直角三角形的面积和之间的关系列式整理即可证明;(3)将原式利用完全平方公式展开,由勾股定理的内容可得出()2a b +为大正方形面积和4个直角三角形的面积和,根据已知条件即可求得.【详解】解:(1)勾股定理:直角三角形两直角边的平方和等于斜边的平方.在直角三角形中,两条直角边分别为 a 、b ,斜边为 c ,a 2+b 2= c 2.(2)∵ S 大正方形=c 2,S 小正方形=(b-a)2,4 S Rt △=4×12ab=2ab , ∴ c 2=2ab+(b-a)2=2ab+b 2-2ab+a 2=a 2+b 2,即 a 2+b 2= c 2.(3)∵ 4 S Rt △= S 大正方形- S 小正方形=13-1=12,∴ 2ab=12.∴ (a+b)2= a 2+b 2+2ab=c 2+2ab=13+12=25.【点睛】本题考查勾股定理的内容及勾股定理的几何验证,利用等面积法证明勾股定理及运用勾股定理是解答此题的关键.29.(1)详见解析;(2)ⅰ)四边形AGBE 是平行四边形,证明详见解析;ⅱ)2221k k k +++. 【解析】【分析】(1)只要证明△BAE ≌△ACD ;(2)ⅰ)四边形AGBE 是平行四边形,只要证明BG=AE ,BG ∥AE 即可;ⅱ)求出四边形BGAE 的周长,△ABC 的周长即可;【详解】。
八年级数学第二学期 第一次月考检测测试卷及解析一、选择题1.计算32782-⨯的结果是( ) A .3B .3-C .23D .532.下列计算正确的为( ). A .2(5)5-=- B.257+=C .64322+=+D .3622=3.当0x =时,二次根式42x -的值是( ) A .4B .2C .2D .04.下列各式中,运算正确的是( )A .32222-=B .8383-=-C .2323+=D .()222-=-5.下列计算正确的是( ) A .2510⨯= B .623÷=C .12315+=D .241-=6.计算()21273632÷+⨯--的结果正确的是( ) A .3B .3C .6D .33-7.下列各式一定成立的是( ) A .2()a b a b +=+ B .222(1)1a a +=+ C .22(1)1a a -=-D .2()ab ab =8.下列各式中正确的是( ) A .36=±6 B .2(2)2--=-C .8=4D .2(7)-=79.当4x =时,22232343124312x x x x x x -+--+++的值为( )A .1B .3C .2D .310.将1、、、按图2所示的方式排列,若规定(m ,n )表示第m 排从左到右第n 个数,则(4,2)与(21,2)表示的两数的积是( )A .1B .2C .D .611.下列运算中错误的是( ) A .235+= B .236⨯=C .822÷=D .2 (3)3-=12.若3235a =++,2610b =+-,则a b 的值为( )A .12B .14C .23+D .610+二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.已知112a b +=,求535a ab b a ab b++=-+_____. 15.化简322+=___________.16.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去…….⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.17.已知72x =-,a 是x 的整数部分,b 是x 的小数部分,则a-b=_______ 18.若2x ﹣3x 2﹣x=_____.19.20n n 的最小值为___20.28n n 为________.三、解答题21.计算(1)2213113a a a a a a +--+-+-;(2)已知a 、b +b =0.求a 、b 的值 (3)已知abc =1,求111a b cab a bc b ac c ++++++++的值【答案】(1)22223a a a ----;(2)a =-3,b ;(3)1. 【分析】(1)先将式子进行变形得到()()113113a a a a a a +--+-+-,此时可以将其化简为1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭,然后根据异分母的加减法法则进行化简即可;(2)根据二次根式及绝对值的非负性得到2a +6=0,b =0,从而可求出a 、b ; (3)根据abc =1先将所求代数式转化:11b ab abbc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,然后再进行分式的加减计算即可.【详解】解:(1)原式=()()113113a a a a a a +--+-+- =1113a a a a ⎛⎫⎛⎫--+ ⎪ ⎪+-⎝⎭⎝⎭=1113a a --+- =()()()()3113a a a a -++-+-=22223a a a ----;(20b =,∴2a +6=0,b =0,∴a =-3,b ; (3)∵abc =1, ∴11b ab ab bc b abc ab a ab a ==++++++,2111c abc ac c a bc abc ab ab a ==++++++,∴原式=1111a ab ab a ab a ab a ++++++++=11a ab ab a ++++=1.【点睛】本题考查了分式的化简求值和二次根式、绝对值的非负性,分式中一些特殊求值题并非一味的化简,代入,求值,熟练掌握转化、整体思想等解题技巧是解答这类题目的关键.22.(112=3==;……写出④ ;⑤ ;(2)归纳与猜想.如果n 为正整数,用含n 的式子表示这个运算规律; (3)证明这个猜想.【答案】(12=55==;(2=3)证明见解析. 【解析】 【分析】(1)根据题目中的例子直接写出结果; (2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题. 【详解】解:(1)由例子可得,④5=25,6,(2)如果n 为正整数,用含nn, (3)证明:∵n 是正整数,故答案为=256;(3)证明见解析. 【点睛】本题考查了二次根式的混合运算、数字的变化类,解答本题的关键是明确题意,找出所求问题需要的条件.23.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+--= 42(2)(2)(2)(2)x x x x x +-+-+-=2(2)(2)xx x -+-=12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.24.先化简,再求值:a =1007.如图是小亮和小芳的解答过程.(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ; (3)先化简,再求值:269a a -+a =﹣2018. 【答案】(1)小亮(22a (a <0)(3)2013. 【解析】试题分析:(12a ,判断出小亮的计算是错误的; (22a 的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮 (22a (a <0) (3)原式=()23a -a+2(3-a )=6-a=6-(-2007)=2013.25.阅读下列材料,然后回答问题:33+153533333⨯⨯22(31)2(31)313+1(3+1)(31)(3)1⨯-⨯-==-- . 以上这种化简过程叫做分母有理化.3+122(3)(3+1)(3313+13+13+13+1===. (1)请用其中一种方法化简1511-;(2+3+15+37+599+97【答案】1511(2) 311 1. 【分析】(1)运用了第二种方法求解,即将41511-(2)先把每一个加数进行分母有理化,再找出规律,即后面的第二项可以和前面的第一项抵消,然后即可得出答案. 【详解】(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣1【点睛】本题主要考查了分母有理化,找准有理化的因式是解题的关键.26.计算:(1(0112441238--;(2326232423⎛- ⎝【答案】(12;(2)6-【解析】试题分析:根据二次根式的性质及分母有理化,化简二次根式,然后合并同类二次根式即可解答.试题解析:(1(0112441238-- 22 2 (2326232423⎛- ⎝666)26-6026- =627.计算:27812)6【答案】3243【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可. 【详解】解:(27812)6=(332223)6==【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.28.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键.29.计算:(1)-(2)【答案】(1)21【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的乘除法则运算,再合并即可.【详解】解:(1)原式==(2)原式3+21==.【点睛】本题考查二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质.30.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y)²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】先计算二次根式乘法,再合并同类二次根式即可.【详解】原式=故选:A.【点睛】本题考查二次根式的运算,熟练掌握运算法则是解题关键.2.D解析:D【分析】根据二次根式的性质、二次根式的加法以及混合运算的法则逐项进行判断即可.【详解】A5=,故A选项错误;B B选项错误;C=,故C选项错误;=,正确,D2故选D.【点睛】本题考查了二次根式的运算,熟练掌握各运算的运算法则是解题的关键.3.B解析:B【分析】把x=0【详解】解:当x=0时,=2,故选:B.【点睛】本题考查了二次根式的定义和二次根式的性质,能灵活运用二次根式的性质进行计算是解题的关键.4.A解析:A【分析】由合并同类项、二次根式的性质分别进行判断,即可得到答案.【详解】解:A、-=A正确;B=B错误;C、2不能合并,故C错误;D2=,故D错误;故选:A.【点睛】本题考查了二次根式的性质,合并同类项,解题的关键是熟练掌握运算法则进行解题.5.A解析:A【分析】分别进行二次根式的乘除法、加减法运算,然后选择正确答案.【详解】解:======,原式计算错误;D. 2220=-=,原式计算错误;故应选:A【点睛】本题考查了二次根式的乘除法和加减法,掌握运算法则是解答本题的关键.6.A解析:A【分析】分别根据二次根式的除法和乘法法则以及二次根式的平方计算每一项,再合并即可.【详解】=+=解:原式333故选:A.【点睛】本题主要考查了二次根式的混合运算,属于基础题型,熟练掌握二次根式的乘除法则是解题的关键.7.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.8.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A,故A错误;B 、2211(2)=22--=,故B 错误;C 、822=,故C 错误;D 、2(7)-=7,故D 正确;故选:D .【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.9.A解析:A【分析】根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式=2223232323x x x x112323x x 将4x =代入得, 原式11423423 22111313131133331131=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.10.D解析:D【解析】(4,2)表示第4排从左向右第2个数是:,(21,2)表示第21排从左向右第2个数,可以看出奇数排最中间的一个数都是1,第21排是奇数排,最中间的也就是这排的第1个数是1,那么第2个就是:, •=6,故选D 11.A解析:A【分析】根据合并同类二次根式的法则对A 进行判断;根据二次根式的乘法法则对B 进行判断;根据二次根式的除法法则对C 进行判断;根据二次根式的性质对D 进行判断.【详解】 23 23236=⨯= 828242÷÷===,故此项正确,不符合要求; D. 2 (3)3-=,故此项正确,不符合要求;故选A .【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.B解析:B【分析】将a 乘以235235+-+- 可化简为关于b 的式子, 从而得到a 和b 的关系, 继而能得出a b 的值【详解】 解:3(235)32352(235)423523526b a +-+-+-====+++- 14a b ∴= 故选:B .【点睛】本题考查二次根式的乘除法,有一定难度,关键是在分母有理化时要观察b 的形式.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 14.13【解析】【分析】由得a+b=2ab ,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】 由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 15.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.16.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°.∴在Rt △ABC 中,ACAE =2,EH =,…,即a 2a 3=2,a 4=(2)an n 为正整数).17.【分析】先把x 分母有理化求出x= ,求出a 、b 的值,再代入求出结果即可.【详解】∵∴∴∴【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.解析:6【分析】先把x 分母有理化求出2 ,求出a 、b 的值,再代入求出结果即可.【详解】2x === ∵23<<∴425<<∴4,242a b ==-=∴42)6a b -=-=【点睛】本题考查了分母有理化和估算无理数的大小的应用,解此题的关键是求a 、b 的值.18.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=故答案为【点解析:1 2【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣,∴(2x﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x)=2∴x2﹣x=12故答案为1 2【点睛】本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.19.5【分析】因为是整数,且,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∵,且是整数,∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n是完全平方数,满足条件的最小正整数n为5.【详解】∴是整数,即5n是完全平方数;∴n的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.20.7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,∴若是整数,则n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式解析:7【分析】把28分解因数,再根据二次根式的定义判断出n的最小值即可.【详解】解:∵28=4×7,4是平方数,n的最小正整数值为7,故答案为7.【点睛】本题考查了二次根式的定义,把28分解成平方数与另一个数相乘的形式是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
一、选择题1.如果0,0a b <<,且6a b -= )A .6B .6-C .6或6-D .无法确定2.下列式子为最简二次根式的是( )A B C D 3.下列计算正确的是( )A =B .12=C 3=D .14=4.下列各式计算正确的是( )A =B =C .23=D 2=-5.下列计算正确的是( )A .+=B .()322326a ba b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++6.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--7.若化简的结果为2x ﹣5,则x 的取值范围是( ) A . x 为任意实数B .1≤x ≤4C .x ≥1D . x ≤48.x 的取值范围是( ) A .x ≥1B .x >1C .x ≤1D .x <19.下列运算中正确的是( )A .=B===C 3===D 1==10.与根式- )A .B .x -C .D二、填空题11.已知112a b +=,求535a ab b a ab b++=-+_____. 12.对于任何实数a ,可用[a]表示不超过a 的最大整数,如[4]=4,[3]=1.现对72进行如下操作:72[72]=8[8]=2[2]=1,类似地,只需进行3次操作后变为1的所有正整数中,最大的是________. 13.下面是一个按某种规律排列的数阵:11第行325 62第行722310 11 233第行 131541732 19254第行根据数阵排列的规律,第 5 行从左向右数第 3 个数是 ,第 n (n 3≥ 且 n 是整数)行从左向右数第 n 2- 个数是 (用含 n 的代数式表示).14.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.15.3x-x 的取值范围是______. 16.20n n 的最小值为___ 17.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 18.若实数23a =-,则代数式244a a -+的值为___.19.观察分析下列数据:0,,-3,的规律得到第10个数据应是__________.20. (a ≥0)的结果是_________.三、解答题21.阅读下面的解答过程,然后作答:m 和n ,使m 2+n 2=a 且,则a 可变为m 2+n 2+2mn ,即变成(m +n )2例如:∵=)2+)2=)2∴请你仿照上例将下列各式化简(12【答案】(1)2-【分析】参照范例中的方法进行解答即可. 【详解】解:(1)∵22241(1+=+=,1=(2)∵2227-=-=,∴==22.计算 (1)(4﹣3)+2(2)(3)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如表:请计算两组数据的方差. 【答案】(1)6﹣3;(2)-6(3)甲的方差1.65;乙的方差0.76【解析】试题分析:(1)先去括号,再合并;(2)先进行二次根式的乘法运算,然后去绝对值合并;(3)先分别计算出甲乙的平均数,然后根据方差公式分别进行甲乙的方差.试题解析:(1)原式=4﹣3+2=6﹣3;(2)原式=﹣3﹣2+﹣3=-6;(3)甲的平均数=(0+1+0+2+2+0+3+1+2+4)=1.5,乙的平均数=(2+3+1+1+0+2+1+1+0+1)=1.2,甲的方差=×[3×(0﹣1.5)2+2×(1﹣1.5)2+3×(2﹣1.5)2+(3﹣1.5)2+(4﹣1.5)2]=1.65;乙的方差=×[2×(0﹣1.2)2+5×(1﹣1.2)2+2×(2﹣1.2)2+(3﹣1.2)2]=0.76.考点:二次根式的混合运算;方差.23.计算下列各题(1)⎛÷⎝(2)2-【答案】(1)1;(2).【分析】(1)先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算即可;(2)利用完全平方公式和平方差公式展开,然后再进行合并即可.【详解】(1)原式=1;(2)原式+2).【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.24.先化简,再求值:2222212⎛⎫----÷⎪-+⎝⎭x y x yxx x xy y,其中x y==.【答案】原式x yx-=-,把x y ==代入得,原式1=-. 【详解】试题分析:先将括号里面进行通分,再将能分解因式的分解因式,约分化简即可. 试题解析:2222212⎛⎫----÷ ⎪-+⎝⎭x y x y x x x xy y ()()()222=x y x y x x xx x x y x y -⎛⎫---⋅ ⎪+-⎝⎭=y x x y x x y ---⋅+ x yx-=-把x y ==代入得:原式1==-+考点:分式的化简求值.25.计算:(1(2|a ﹣1|,其中1<a【答案】(1)1;(2)1 【分析】(1)根据二次根式的乘法法则计算;(2)由二次根式的非负性,a 的取值范围进行化简. 【详解】解:(1-1=2-1=1 (2)∵1<a,a ﹣1=2﹣a +a ﹣1=1. 【点睛】本题考查二次根式的性质、二次根式的乘法法则,主要检验学生的计算能力.26.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答. 【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.27.(1)计算:21)-(2)已知a ,b 是正数,4a b +=,8ab =【答案】(1)5-2 【分析】(1)根据完全平方公式、平方差公式可以解答本题;(2)先将所求式子化简,然后将a+b=4,ab=8代入化简后的式子即可解答本题. 【详解】解:(1)原式21)=-(31)(23)=---5=-;(2)原式=== a ,b 为正数, ∴原式=把4a b +=,8ab =代入,则原式== 【点睛】本题考查二次根式的化简求值,完全平方公式、平方差公式,解答本题的关键是明确二次根式化简求值的方法.28.计算:(1 (2)()()2221-【答案】2)1443 【分析】(1)先化成最简二次根式,然后再进行加减运算即可; (2)套用平方差公式和完全平方式进行运算即可. 【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443. 【点睛】本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】=-a-(-b)=b-a=-6.故选B 2.A解析:A 【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察. 【详解】AB |a |,可以化简,故不是最简二次根式;C =D 2=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.3.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A不符合题意;∵12=,故选项B符合题意;C不符合题意;∵=D不符合题意;故选:B.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.C解析:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】2,故选项A错误;=2,故选项B错误;C. 23=,故选项C正确;2=,故选项D错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.5.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A选项错误;B. ()()()33322363228a ba b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D . 【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.6.C解析:C 【解析】 【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007na =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n nn a a -=-=-. 故选C . 【点睛】本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.7.B解析:B 【分析】根据完全平方公式先把多项式化简为|1-x|-|x-4|,然后根据x 的取值范围分别讨论,求出符合题意的x 的值即可. 【详解】原式可化简为|1-x|-|x-4|,当1-x ≥0,x-4≥0时,可得x 无解,不符合题意; 当1-x ≥0,x-4≤0时,可得x ≤1时,原式=1-x-4+x=-3; 当1-x ≤0,x-4≥0时,可得x ≥4时,原式=x-1-x+4=3; 当1-x ≤0,x-4≤0时,可得1≤x ≤4时,原式=x-1-4+x=2x-5, 据以上分析可得当1≤x ≤4时,多项式等于2x-5, 故选B . 【点睛】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论.8.A解析:A【分析】根据二次根式有意义的条件:被开方数x-1≥0,解不等式即可.【详解】解:根据题意,得x-1≥0,解得x≥1.故选A.【点睛】本题考查的知识点为:二次根式的被开方数是非负数.9.B解析:B【分析】根据二次根式的乘除法则求出每个式子的值,再判断即可.【详解】=⨯==42,故本选项不符合题意;解: A. 67===,故本选项,符合题意;===,故本选项不符合题意;D. ==3,故本选项不符合题意;故选B.【点睛】本题考查二次根式的性质和二次根式的乘除法则,能灵活运用二次根式的乘除法则进行计算是解题关键.10.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以-x-=故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题11.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b+=得a+b=2ab,然后再变形535a ab ba ab b++-+,最后代入求解即可.【详解】解:∵112 a b+=∴a+b=2ab∴()5353510ab3===132aba b aba ab b aba ab b a b ab ab+++++-++--故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 12.255【解析】解:∵[]=1,[]=3,[]=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和解析:255【解析】解:]=1,=3,=15,所以只需进行3次操作后变为1的所有正整数中,最大的是255.故答案为255.点睛:本题考查了估算无理数的大小的应用,主要考查学生的阅读能力和逆推思维能力.13.;.【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表【分析】根据被开方数是连续的自然数写出即可;根据每一行的最后一个数的被开方数是所在的行数乘比行数大1的数写出第(n-1)行的最后一个数,然后被开方数加上(n-2)即可求解.【详解】观察表格中的数据可得,第5行从左向右数第3=∵第(n-1,∴第n(n≥3且n是整数)行从左向右数第n-2个数是..【点睛】本题是对数字变化规律的考查,观察出被开方数是连续自然数并且每一行的最后一个数的被开方数是所在的行数乘比行数大1的数是解题的关键.14.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为15.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 16.5【分析】因为是整数,且,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∵,且是整数,∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了解析:5【分析】,则5n 是完全平方数,满足条件的最小正整数n 为5.【详解】∴是整数,即5n 是完全平方数;∴n 的最小正整数值为5.故答案为5.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.17.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y +-xy=21515151)2222=5-1=4.18.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3 【解析】∵a =∴244a a -+=(a-2)2=()222+=3,故答案为3.19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6.解析:6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6. 故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
山东省聊城市莘县俎店中学2015-2016学年八年级数学下学期第一次月考试题一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求,共36分)1.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.462.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.54.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.25.矩形、正方形、菱形的共同性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.每一条对角线平分一组对角6.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关7.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S328.下列各数中,3.14159,﹣,0.131131113,…,﹣π,,﹣,有理数的个数有()A.1个B.2个C.3个D.4个9.下列命题中,正确的个数有()①1的平方根是1;②1是1的算术平方根;③(﹣1)2的平方根是﹣1;④0的算术平方根是它本身.A.1个B.2个C.3个D.4个10.下列计算正确的是()A.B.C.﹣32=9 D.11.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N12.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm二、填空题(本大题共5个小题,每小题3分,共15分)13.9的算术平方根是.14.▱ABCD中,周长为20cm,对角线AC交BD于点O,△OAB比△OBC的周长多4,则边AB= ,BC= .15.如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是.(只需写出一个即可,图中不能再添加别的“点”和“线”)16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .三、解答题18.计算(1)||+||﹣||(2).19.求下列各式中的x.(1)4x2=121;(2)(x+2)3=125.20.一个正数3a+1的平方根是±4,a﹣2b﹣2的立方根是﹣1,求a+2b的平方根.21.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.22.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?24.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.25.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.2015-2016学年山东省聊城市莘县俎店中学八年级(下)第一次月考数学试卷参考答案与试题解析一、选择题(本题共12个小题,每小题3分,在每小题给出的四个选项中,只有一项符合题目要求,共36分)1.如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46【考点】平行四边形的性质.【分析】由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.【点评】本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.2.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB∥CD,AD∥BC【考点】平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.【点评】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.3.如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【专题】数形结合.【分析】根据题意可得出∠B=60°,结合菱形的性质可得BA=BC,判断出△ABC是等边三角形即可得出△ABC的周长.【解答】解:∵∠BCD=120°,∴∠B=60°,又∵ABCD是菱形,∴BA=BC,∴△ABC是等边三角形,故可得△ABC的周长=3AB=15.故选B.【点评】此题考查了菱形的性质及等边三角形的判定与性质,根据菱形的性质判断出△ABC是等边三角形是解答本题的关键,难度一般.4.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A.8 B.6 C.4 D.2【考点】等腰三角形的判定;矩形的性质.【分析】根据矩形的对角线相等且互相平分可得AO=BO=CO=DO,进而得到等腰三角形.【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∴△ABO,△BCO,△DCO,△ADO都是等腰三角形,故选:C.【点评】此题主要考查了等腰三角形的判定,以及矩形的性质,关键是掌握矩形的对角线相等且互相平分.5.矩形、正方形、菱形的共同性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分D.每一条对角线平分一组对角【考点】矩形的性质;菱形的性质;正方形的性质.【分析】根据矩形,菱形,正方形都是特殊的平行四边形,因而平行四边形性质定理描述的性质就是矩形、正方形、菱形的共同性质.【解答】解:矩形、正方形、菱形的共同性质是平行四边形的对角线的性质:对角线互相平分,故选C.【点评】本题解决的关键是正确记忆平行四边形,矩形、正方形、菱形之间的关系,它们各自的性质是需要熟记的内容.6.如图,已知四边形ABCD中,R,P分别是BC,CD上的点,E,F分别是AP,RP的中点,当点P在CD上从C向D移动而点R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长与点P的位置有关【考点】三角形中位线定理.【专题】压轴题.【分析】因为AR的长度不变,根据中位线定理可知,线段EF的长不变.【解答】解:因为AR的长度不变,根据中位线定理可知,EF平行与AR,且等于AR的一半.所以当点P在CD上从C向D移动而点R不动时,线段EF的长不变.故选C.【点评】主要考查中位线定理.在解决与中位线定理有关的动点问题时,只要中位线所对应的底边不变,则中位线的长度也不变.7.如图,直角三角形三边上的半圆面积从小到大依次记为S1、S2、S3,则S1、S2、S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S32【考点】勾股定理.【专题】压轴题.【分析】依据半圆的面积公式,以及勾股定理即可解决.【解答】解:设直角三角形三边分别为a,b,c,则三个半圆的半径分别为,,由勾股定理得a2+b2=c2,即()2+()2=()2两边同时乘以π得π()2+π()2=π()2即S1、S2、S3之间的关系是S1+S2=S3故选C.【点评】根据勾股定理,然后变形,得出三个半圆之间的关系.8.下列各数中,3.14159,﹣,0.131131113,…,﹣π,,﹣,有理数的个数有()A.1个B.2个C.3个D.4个【考点】实数.【分析】直接利用有理数的定义分析得出答案.【解答】解:∵3.14159,﹣ =﹣2,0.131131113…,﹣π, =5,﹣,∴有理数的有3.14159,﹣,,﹣共4个.故选:D.【点评】此题主要考查了有理数的定义,正确把握相关定义是解题关键.9.下列命题中,正确的个数有()①1的平方根是1;②1是1的算术平方根;③(﹣1)2的平方根是﹣1;④0的算术平方根是它本身.A.1个B.2个C.3个D.4个【考点】算术平方根;平方根.【分析】根据平方根的定义可知:正数有两个平方根,且互为相反数;0的平方根与算术平方根都是0;可得答案.【解答】解:∵①1的平方根是±1,故此项错误;②1是1的算术平方根,故此项正确;③∵(﹣1)2的值是1,1平方根是±1,∴(﹣1)2的平方根是±1.故此项错误;④∵0的算术平方根是0,∴0的算术平方根是它本身.故此项正确.∴正确的个数有2个.故选B.【点评】此题考查了平方根与算术平方根的定义.题目比较简单,注意熟记与理解定义.10.下列计算正确的是()A.B.C.﹣32=9 D.【考点】立方根;有理数的乘方;平方根;算术平方根.【专题】计算题.【分析】根据平方根和立方根的性质和定义,对A、B、C、D四个选项进行一一判断,从而求解.【解答】解:A、=4,故A错误;B、=﹣3,故B正确;C、﹣32=﹣9,故C错误;D、根据根号有意义的条件,D错误;故选B.【点评】此题考查立方根的定义和平方根的定义,要注意:一个正数两个平方根;0只有一个平方根,就是0本身;负数没有平方根.11.如图,在数轴上表示实数的点可能是()A.点P B.点Q C.点M D.点N【考点】估算无理数的大小;实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.12.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A.20cm B.50cm C.40cm D.45cm【考点】勾股定理的应用.【分析】如图,AC为圆桶底面直径,所以AC=24cm,CB=32cm,那么线段AB的长度就是桶内所能容下的最长木棒的长度,在直角三角形ABC中利用勾股定理可以求出AB,也就求出了桶内所能容下的最长木棒的长度.【解答】解:如图,AC为圆桶底面直径,∴AC=24cm,CB=32cm,∴线段AB的长度就是桶内所能容下的最长木棒的长度,∴AB==40cm.故桶内所能容下的最长木棒的长度为40cm.故选C.【点评】此题首先要正确理解题意,把握好题目的数量关系,然后利用勾股定理即可求出结果.二、填空题(本大题共5个小题,每小题3分,共15分)13.9的算术平方根是 3 .【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.▱ABCD中,周长为20cm,对角线AC交BD于点O,△OAB比△OBC的周长多4,则边AB= 7cm ,BC= 3cm .【考点】平行四边形的性质.【分析】由▱ABCD中,周长为20cm,可得AB+BC=10cm①,由△OAB比△OBC的周长多4cm,可得AB﹣BC=4cm②,继而求得答案.【解答】解:∵▱ABCD中,周长为20cm,∴AB+BC=10cm①,OA=OC,∵△OAB比△OBC的周长多4cm,∴(OA+AB+OB)﹣(OB+BC+OC)=AB﹣BC=4cm②,联立①②得:AB=7cm,BC=3cm.故答案为:7cm,3cm.【点评】此题考查了平行四边形的性质.注意利用方程思想求解是解此题的关键.15.如图,平行四边形ABCD中,AF、CE分别是∠BAD和∠BCD的角平分线,根据现有的图形,请添加一个条件,使四边形AECF为菱形,则添加的一个条件可以是AC⊥EF或AF=CF等.(只需写出一个即可,图中不能再添加别的“点”和“线”)【考点】菱形的判定;平行四边形的性质.【专题】开放型.【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.根据平行四边形的判定可得四边形AECF是平行四边形,由平行四边形的性质知,对角线互相平分,又对角线互相平分且垂直的四边形是菱形,可得:当AC⊥EF时,四边形AECF是菱形.【解答】解:则添加的一个条件可以是:AC⊥EF.证明:∵AD∥BC,∴∠FAD=∠AFB,∵AF是∠BAD的平分线,∴∠BAF=FAD,∴∠BAF=∠AFB,∴AB=BF,同理ED=CD,∵AD=BC,AB=CD,∴AE=CF,又∵AE∥CF∴四边形AECF是平行四边形,∵对角线互相平分且垂直的四边形是菱形,则添加的一个条件可以是:AC⊥EF.故答案为:AC⊥EF.【点评】本题考查了菱形的判定,利用角的平分线的性质和平行四边形的性质求解,答案不唯一.16.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11 .【考点】三角形中位线定理;勾股定理.【专题】压轴题.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.17.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .【考点】勾股定理;全等三角形的判定与性质.【专题】规律型.【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【解答】解:观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S3+S4=3.则S1+S2+S3+S4=1+3=4.故答案为:4.【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.三、解答题18.计算(1)||+||﹣||(2).【考点】实数的运算.【专题】计算题.【分析】(1)原式利用绝对值的代数意义化简,计算即可得到结果;(2)原式利用平方根及立方根定义计算即可得到结果.【解答】解:(1)原式=﹣+2﹣﹣+1=3﹣2;(2)原式=2+2﹣=3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.19.求下列各式中的x.(1)4x2=121;(2)(x+2)3=125.【考点】立方根;平方根.【分析】(1)首先两边同时除以4,再两边直接开平方;(2)首先两边直接开立方得:x+2=5,再解方程.【解答】解:(1)两边同时除以4得:x2=,两边直接开平方得:x=±;(2)两边直接开立方得:x+2=5,移项得:x=5﹣2,合并同类项得:x=3.【点评】此题主要考查了平方根和立方根,关键是掌握一个正数有两个平方根.20.一个正数3a+1的平方根是±4,a﹣2b﹣2的立方根是﹣1,求a+2b的平方根.【考点】立方根;平方根.【分析】根据平方根和立方根的定义得出3a+1=16,a﹣2b﹣2=﹣1,求出a、b的值,求出a+2b的值,根据平方根的定义求出即可.【解答】解:根据题意得:3a+1=16,a﹣2b﹣2=﹣1,解得:a=5,b=2,所以a+2b=9,即a+2b的平方根为±3.【点评】本题考查了平方根和立方根的定义的应用,能理解平方根和立方根的定义是解此题的关键.21.已知:如图,四边形ABCD中,AB⊥BC,AB=1,BC=2,CD=2,AD=3,求四边形ABCD的面积.【考点】勾股定理的逆定理;勾股定理.【分析】先根据勾股定理求出AC的长度,再根据勾股定理的逆定理判断出△ACD的形状,再利用三角形的面积公式求解即可.【解答】解:连接AC.∵∠ABC=90°,AB=1,BC=2,∴AC==,在△ACD中,AC2+CD2=5+4=9=AD2,∴△ACD是直角三角形,∴S四边形ABCD=AB•BC+AC•CD,=×1×2+××2,=1+.故四边形ABCD的面积为1+.【点评】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.22.如图,在△ABC中,AB=BC,BD平分∠ABC.四边形ABED是平行四边形,DE交BC于点F,连接CE.求证:四边形BECD是矩形.【考点】矩形的判定.【专题】证明题.【分析】根据已知条件易推知四边形BECD是平行四边形.结合等腰△ABC“三线合一”的性质证得BD⊥AC,即∠BDC=90°,所以由“有一内角为直角的平行四边形是矩形”得到▱BECD是矩形.【解答】证明:∵AB=BC,BD平分∠ABC,∴BD⊥AC,AD=CD.∵四边形ABED是平行四边形,∴BE∥AD,BE=AD,∴BE=CD,∴四边形BECD是平行四边形.∵BD⊥AC,∴∠BDC=90°,∴▱BECD是矩形.【点评】本题考查了矩形的判定.矩形的定义:有一个角是直角的平行四边形是矩形.23.如图所示,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm.求CE的长?【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【专题】数形结合.【分析】根据翻折的性质,先在RT△ABF中求出BF,进而得出FC的长,然后设CE=x,EF=8﹣x,从而在RT△CFE中应用勾股定理可解出x的值,即能得出CE的长度.【解答】解:由翻折的性质可得:AD=AF=BC=10,在Rt△ABF中可得:BF==6,∴FC=BC﹣BF=4,设CE=x,EF=DE=8﹣x,则在Rt△ECF中,EF2=EC2+CF2,即x2+16=(8﹣x)2,解可得x=3,故CE=3cm.【点评】本题通过折叠变换考查学生的逻辑思维能力,解决本题的关键是结合图形,首先根据翻折的性质得到一些相等的线段,然后灵活运用勾股定理进行解答.24.如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.【考点】菱形的判定;勾股定理的逆定理.【专题】几何综合题.【分析】(1)根据两组对边分别平行证得四边形AECD是平行四边形,只需证明四边形AECD的两邻边相等即可.根据AC平分∠BAD,以及CE∥AD,易证得∠EAC=∠ECA,由此可知AE=CE,即四边形AECD是菱形;(2)连DE,DE交AC于F,根据菱形的性质,对角线互相垂直且平分有:DE垂直平分AC,则EF是△ABC 的中位线,有EF∥BC,则BC⊥AC,由此可证得△ABC是直角三角形.【解答】(1)证明:∵AB∥CD,即AE∥CD,又∵CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠CAE=∠CAD,又∵AD∥CE,∴∠ACE=∠CAD,∴∠ACE=∠CAE,∴AE=CE,∴四边形AECD是菱形;(2)解:△ABC是直角三角形.证法一:∵E是AB中点,∴AE=BE.又∵AE=CE,∴BE=CE,∴∠B=∠BCE,∵∠B+∠BCA+∠BAC=180°,∴2∠BCE+2∠ACE=180°,∴∠BCE+∠ACE=90°.即∠ACB=90°,∴△ABC是直角三角形.证法二:连DE,由四边形AECD是菱形,得到DE⊥AC,且平分AC,设DE交AC于F,∵E是AB的中点,且F为AC中点,∴EF∥BC.∠AFE=90°,∴∠ACB=∠AFE=90°,∴BC⊥AC,∴△ABC是直角三角形.【点评】本题利用了平行四边形的判定和性质,菱形的判定和性质,以及三角形中位线的性质求解.25.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。