2017_2018版高中数学第二章基本初等函数Ⅰ2_1_1函数的概念和图象二学案苏教版必修1
- 格式:doc
- 大小:307.00 KB
- 文档页数:8
2.1.2 指数函数及其性质疱丁巧解牛知识·巧学·升华 一、指数函数及其性质 1.指数函数的定义一般地,函数y=a x(a >0且a ≠1,x ∈R )叫做指数函数,其中x 是自变量.由于当a=0时,若x >0,a x 恒等于0;若x ≤0,a x无意义. 当a <0时,如y=(-2)x,对x=…,-21,41,21,…在实数范围内函数值不存在. 当a=1时,y=1x=1,是一常量,没有研究的必要.综上可知,当a ≤0或a=1时,不是没有意义,就是没有研究的必要,故规定a >0且a ≠1.只有形如y=a x (a >0且a ≠1)且定义域为R 的函数,才是指数函数,又如y=3·2x ,y=2x-1,y=2x+1等,是由指数函数经过某种变换而得到的,它们都不是指数函数.要点提示 因为指数的概念已经从整数扩充到实数,在底数a >0且a ≠1的情况下,对任意一个x 都有唯一确定的值y 与它对应,所以x 是任意实数. 2.指数函数的图象和性质(1)下面先画指数函数y=2x 及y=0.5x图象列出x,y 的对应值表,用描点法化出图象: x …-3 -2 -1 0 1 2 3 … y=2x 0.13 0.25 0.5 1 2 4 8 y=0.5x84210.50.250.13要点提示 函数y=a x与y=a -x的图象关于y 轴对称.xa >10<a <1图象性质①定义域:R ②值域:(0,+∞)③过点(0,1),即x=0时,y=1 ④在R 上是增函数, 当x <0时,0<y <1; 当x >0时,y >1④在R 上是减函数, 当x <0时,y >1; 当x >0时,0<y <1指数函数的单调性是指数函数性质中应用最广的,运用此性质可以求与指数函数有关的一般函数的值域、单调区间等.指数函数的图象变换有两种:一种是平移变换分上下、左右平移,遵循“左加右减,上加下减”.平移前后的形状没有发生变化,只是位置改变了;另一种是对称变换,它会导致前后的形状发生明显改变.指数函数的图象变换可以推广到我们学过的任何函数. 研究函数的性质,可明确图象的形状;通过函数的图象可以进一步加深对性质的理解.二者相辅相成、缺一不可,可通过解决函数的图象来解决与方程和不等式有关的问题,这时作函数的图象应明确其图象的形状,而确定形状的手段主要有:函数关系式的等价变形、图象的变换、通过研究函数的性质等.要点提示 ①指数函数的图象恒在x 轴上方;②指数函数的单调性取决于它的底数;③y=a x (a >1)在 x >0的方向上增幅越来越快;④指数函数由唯一的常量a 确定.⑤y=a x (0<a<1)在x <0的方向上增幅越来越快.方法点拨 遇到求含有字母的表达式等问题可先用待定系数法确定a ,再求值.深化升华 ①底数相同,指数不同的,可构造指数函数,利用函数的单调性比较大小; ②底数、指数都不相同的,可选一中间值比较大小; ③指数相同,底数不同的可用数形结合法比较大小. 问题·思路·探究问题1 为什么说指数函数的图象是研究函数性质的直观工具?思路:对于指数函数问题,我们不仅仅应该知道其表达式及利用表达式进行计算的问题,而且应注重结合其相应的图象掌握相应的知识且能灵活运用图象来分析问题、解决问题,从而领会图象在指数函数应用方面的作用. 探究:因为通过图象我们可以直观地看到,任取a({a|a>0且a ≠1}),图象始终过定点(0,1),图象始终在x 轴的上方;当a>1时第一象限的图象与0<a<1时第二象限的图象始终在直线y=1的上方,当a>1时第二象限的图象与0<a<1时第一象限的图象始终在直线y=1的下方,当a>1时,图象是上升的,当0<a<1时,图象是下降的.所以应用图象进行数形结合,清晰地刻画了指数函数的性质,它们便于我们记忆起函数性质和变化规律.问题2 函数y=2|x|的图象有什么特征?你能根据它的图象指出其值域和单调区间吗?思路:函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留,再将y 轴右边部分关于y轴作出对称部分;就得到了y=a |x|的图象.探究:函数y=2|x|的图象关于y 轴对称,这是因为它的图象由y=2x(x ≥0)的图象和y=(21)x(x<0)的图象合并而成,而y=2x(x>0)与y=(21)x(x<0)的图象关于y 轴对称,所以函数y=2|x|的图象关于y 轴对称,由图象可知值域是[1,+∞),递增区间为[0,+∞),递减区间为(-∞,0]问题3 函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ),为什么?思路:一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=探究:函数y=a x+h +k(a>0且a ≠1)的图象可由y=a x(a>0且a ≠1)的图象向左(当h>0时)或向右(当h<0时)平移|h|个单位,再向上(当k>0时)或向右(当k<0时)平移|k|个单位而得到,因为y=a x (a>0且a ≠1)的图象恒过点(0,1),所以函数y=a x+h+k(a>0且a ≠1)的图象恒过点(-h,1+k ). 典题·热题·新题例1 下列函数中,哪些是指数函数?①y=4x ②y=x 4 ③y=-4x ④y=4-x ⑤y=(-4)x ⑥y=4x+1 ⑦y=4x +1⑧y=e x ⑨y=4x(x>0)⑩y=(a-1)x(a>1且a ≠2)思路解析:①④⑧⑩为指数函数,其中④y=4-x 从形式上看不是指数函数,将它变形为y=(4-1)x,即y=(41)x.它实质上是指数函数. ②中底数x 不是常数,而4不是变数;③是-1与指数函数4x的乘积;⑤中底数-4<0; ⑥中的指数是x 的函数,不是自变量x ;⑦由y=4x向上平移得到的;⑨x 的范围不是R . 答案:②③⑤⑥⑦⑨不是指数函数.误区警示 像y=4x+1,y=4x +1的图象可由y=2x 的图象通过平移或伸缩变换而得到.而y=a -x从形式上看不是指数函数,将它变形为y=(a -1)x,即y=(a1)x.它实质上是指数函数. 例2 若指数函数y=(2a-1)x是减函数.则a 的范围是多少? 思路解析:由题意可知1>2a-1>0,得21<a <1. 答案:21<a <1 深化升华 解与指数有关的问题时,注意对底数分类讨论,这是考试的一个重点.例3 如右图,在同一坐标系下给出四个指数函数的图象,试比较底数a 、b 、c 、d 的大小.思路解析:作直线x=1与四个图象交于四个点,得四个纵坐标为a 、b 、c 、d ,底数都“跑”到纵轴上去了,可在数轴的位置上直观比较底数的大小,则a >b >1>c >d >0 . 答案:a >b >c >d拓展延伸 在同一坐标系中,画出函数y=3x,y=(31)x ,y=2x,y=(21)x 的图象,比一比,看它们之间有何联系.从图中可以看到,图象向下无限地与x 轴靠拢,即x 轴是指数函数的渐近线.任何两个函数图象都是交叉出现的,交叉点是(0,1).在y 轴的右侧,对同一变量x 而言,底数越大,函数值越大;在y 轴的左侧,情况正好相反,即对同一自变量x 而言,底数越大,函数值越小.以此为依据,可定性地分析在同一坐标系中,底数不同的若干个指数函数的底数的大小关系.怎样定量分析同一坐标系中底数不同的指数函数的底数的大小呢?我们知道,对指数函数y=a x(a >0且a ≠1),当x=1时,y=a ,而a 恰好是指数函数的底数,这就启发我们,不妨作直线x=1,它同各个图象相交,交点的纵坐标就是各指数函数的底数,以此可比较底数的大小.深化升华 (1)渐近线是指逐渐靠拢,但永远不能到达的线.(2)从联系的观点研究不同底数的指数函数图象间的关系,对深化理解指数函数的图象和性质是有帮助的.例4 画出下列函数的图象:(1)y=2x-1+2;(2)y=0.5|x|思路解析:利用指数函数的图象及结合函数图象的变换来处理.答案:(1)利用函数y=2x的图象沿x 轴正半轴平移一个单位,纵坐标不变,再把所得图象沿y 轴的正半轴平移2个单位,横坐标不变,得到y=2x-1+2的图象,如图(1)(注:画出虚直线的目的是体现平移变换).(2)由y=0.5|x|=⎪⎩⎪⎨⎧<=≥-,0,25.0,0,5.0x x xx x作y=0.5x的图象但只取y 轴及其右侧部分,再作y=2x的图象但只取y 轴左侧部分,就得到函数y=0.5|x|的图象,如图(2)所示的实线(注:画出虚线的目的是衬托实线的特征).图(1) 图(2) 深化升华 由指数函数的图象,我们还可以总结出图象的变化规律: ①平移规律若已知y=a x 的图象,则把y=a x 的图象向左平移b (b >0)个单位,则得到y=a x+b的图象.把y=a x 的图象向右平移b (b >0)个单位,则得到y=a x-b 的图象,把y=a x的图象向上平移b(b >0)个单位,则得到y=a x +b 的图象.把y=a x的图象向下平移b (b >0)个单位,则得到y=a x-b 的图象. ②对称规律函数y=a x 的图象与y=a -x 的图象关于y 轴对称,y=a x 的图象与y=-a x的图象关于直线x轴对称.函数y=a x 的图象与y=-a -x的图象关于坐标原点对称.函数y=a |x|:其图象是关于y 轴对称的,所以只要先把y=a x的y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=a |x|的图象.拓展延伸 一般地,把函数y=f (x )的图象向右平移m 个单位得函数y=f (x-m )的图象(m ∈R ,m <0就是向右平移|m|个单位);把函数y=f (x )的图象向上平移n 个单位,得到函数y=f (x )+n 的图象(n ∈R ,若n <0,就是向下平移|n|个单位=.函数y=f (x )的图象与y=f (-x )的图象关于y 轴对称,函数y=f (x )的图象与函数y=-f (x )的图象关于x 轴对称,函数y=f (x )的图象与函数y=-f (1-x )的图象关于原点对称.函数y=f(|x|):其图象是关于y 轴对称的,所以只要先把y轴右边的图象保留;再将y轴右边部分关于y轴对称;就得到了y=f(|x|)的图象.例5 用函数单调性定义证明函数f (x )=2x在(-∞,+∞)上单调递增. 思路解析:函数单调递增:x 1<x 2⇒f (x 1)<f (x 2);或先论证)()(21x f x f <1,又f (x 2)>0⇒f (x 1)<f (x 2).证明:在(-∞,+∞)上任取x 1<x 2,则)()(21x f x f =2121222x x x x -=,∵x 1-x 2<0,∴212xx -<1.又f (x 2)=2x2>0,∴f (x 1)<f (x 2).∴函数f (x )=2x在(-∞,+∞)上单调递增. 深化升华 在用函数单调性定义证明的过程中,除了作差法也可用作商法比较f (x 1)、f (x 2)的大小.例6 求下列函数的单调区间:(1)y=2425.0--x x ;(2)y=x112+.思路解析:将原函数“拆”成两个简单的函数,再依据复合函数的单调性求解. 解:(1)令u=x 2-4x-2,则y=0.5u.因为y=0.5u为减函数,所以y=2425.0--x x 与u=x 2-4x-2的单调性相反.又由u=x 2-4x-2=(x-2)2-6得u=x 2-4x-2在(-∞,2]为减函数,在[2,+∞)为增函数.所以y=2425.0--x x 在(-∞,2)为增函数,在[2,+∞]为减函数;(2)令u=1+x 1,则y=2u ,因为y=2u为增函数,所以y=x 112+的单调性与u=1+x 1的单调性相同.因为u=1+x1(x ≠0)所以在(-∞,0)及(0,+∞)上均为减函数,所以y=x 112+的单调递减区间为(-∞,0)和(0,+∞).拓展延伸 确定函数的单调性,利用复合函数的单调性的方法或可变形函数解析式,利用已有函数的单调性进行由里及外的层层判断,最终得出函数的单调性.但是要证明单调性必须用单调性定义.本题求函数值域也可以利用解析式变形,由里及外层层求出值域最终而得:y=1212+-x x =1-122+x .x ∈(-∞,+∞)⇒2x >0⇒2x+1>1⇒121+x <1,∴-2<-122+x<0.∴-1<y <1.∴值域为(-1,1).例7 已知函数f (x )=a x(a >0,且a ≠1),根据图象判断21[f (x 1)+f (x 2)]与f (221x x +)的大小,并加以证明.思路解析:对a >1及0<a <1两种情形的指数函数图象,分别取两点A (x 1,f (x 1))、B (x 2,f (x 2))连线段,其中21[f (x 1)+f (x 2)]就是这线段中点M 的函数值,f (221x x +)就是图象上弧线段与直线x=221x x +的交点M 的函数值,如下图.显然无论哪一种情形总有点N 在点M 下方. ∴f (221x x +)<21[f (x 1)+f (x 2)]. 证明:f (x 1)+f (x 2)-2f (221x x +)=2222)(2112121x x x x xx a aaa a -=-++.由x 1≠x 2,∴21x ≠22x .∴2221xxa a -≠0,∴222)(21xxa a ->0.∴f (x 1)+f (x 2)-2f (221x x +)>0. 深化升华 通过数形结合我们不难发现凸凹函数的性质. 若f (x )是凸函数,则f (221x x +)≥21[f (x 1)+f (x 2)]; 若f (x )是凹函数,则f (221x x +)≤21[f (x 1)+f (x 2)]. 例8 方程2x-1=2x 的实数解的个数为( )A. 0个B.1个C.2个D.3个 思路解析:这不是我们所学的代数等式,也不可能转化成代数式,只有数形结合观察图象交点才能解决.答案:2x-1=2x 可化为2x=2x+1,令⎩⎨⎧+==122x y y x 在同一坐标系中画出y=2x及y=2x+1的图象.如右图所示,可以看出它们图象有两个交点.故选C.深化升华 遇到等式两边的形式属于不同类型的函数而且直接处理无法进行时,这时应联想到用数形结合来解决.。
第1课时 对数函数的图象及性质知识点一 对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是{x |x >0}. 形如y =2log 2x ,y =log 2x3都不是对数函数,可称其为对数型函数.知识点二 对数函数的图象与性质a >1 0<a <1图 象性 质定义域(0,+∞)值域R过点(1,0),即当x =1时,y =0在(0,+∞)上是增函数在(0,+∞)上是减函数底数a 与1的大小关系决定了对数函数图象的“升降”:当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”.知识点三 反函数指数函数y =a x和对数函数y =log a x (a >0且a ≠1)互为反函数.[小试身手]1.判断(正确的打“√”,错误的打“×”) (1)对数函数的定义域为R .( )(2)y =log 2x 2与log x 3都不是对数函数.( ) (3)对数函数的图象一定在y 轴右侧.( ) (4)函数y =log 2x 与y =x 2互为反函数.( )答案:(1)× (2)√ (3)√ (4)× 2.下列函数中是对数函数的是( ) A .y =log 14x B .y =log 14(x +1)C .y =2log 14x D .y =log 14x +1解析:形如y =log a x (a >0,且a ≠1)的函数才是对数函数,只有A 是对数函数. 答案:A3.函数y =x ln(1-x )的定义域为( ) A .(0,1) B .[0,1) C .(0,1] D .[0,1]解析:由题意,得⎩⎪⎨⎪⎧x ≥0,1-x >0,解得0≤x <1;故函数y =x ln(1-x )的定义域为[0,1).答案:B4.若f (x )=log 2x ,x ∈[2,3],则函数f (x )的值域为________. 解析:因为f (x )=log 2x 在[2,3]上是单调递增的, 所以log 22≤log 2x ≤log 23, 即1≤log 2x ≤log 23. 答案:[1,log 23]类型一 对数函数的概念例1 下列函数中,哪些是对数函数? (1)y =log a x (a >0,且a ≠1); (2)y =log 2x +2; (3)y =8log 2(x +1); (4)y =log x 6(x >0,且x ≠1); (5)y =log 6x .【解析】 (1)中真数不是自变量x ,不是对数函数.(2)中对数式后加2,所以不是对数函数.(3)中真数为x +1,不是x ,系数不为1,故不是对数函数.(4)中底数是自变量x ,而非常数,所以不是对数函数.(5)中底数是6,真数为x ,系数为1,符合对数函数的定义,故是对数函数.用对数函数的概念例如y =log a x(a >0且a≠0)来判断. 方法归纳判断一个函数是对数函数的方法跟踪训练1 若函数f (x )=(a 2-a +1)log (a +1)x 是对数函数,则实数a =________. 解析:由a 2-a +1=1,解得a =0或a =1. 又底数a +1>0,且a +1≠1,所以a =1. 答案:1,对数函数y =log a x 系数为1. 类型二 求函数的定义域 例2 求下列函数的定义域: (1)y =lg(x +1)+3x21-x;(2)y =log (x -2)(5-x ).【解析】 (1)要使函数有意义,需⎩⎪⎨⎪⎧x +1>0,1-x >0,即⎩⎪⎨⎪⎧x >-1,x <1.∴-1<x <1,∴函数的定义域为(-1,1). (2)要使函数有意义,需⎩⎪⎨⎪⎧ 5-x >0,x -2>0,x -2≠1,∴⎩⎪⎨⎪⎧x <5,x >2,x ≠3.∴定义域为(2,3)∪(3,5).,真数大于0,偶次根式被开方数大于等于0,分母不等于0,列不等式组求解.方法归纳求定义域有两种题型,一种是已知函数解析式求定义域,常规为:分母不为0;0的零次幂与负指数次幂无意义;偶次根式被开方式(数)非负;对数的真数大于0,底数大于0且不等于1.另一种是抽象函数的定义域问题.同时应注意求函数定义域的解题步骤.跟踪训练2 函数y =log 0.5x -5的定义域是( ) A .(0,+∞) B .(5,6] C .(5,+∞) D .(-∞,6]解析:由⎩⎪⎨⎪⎧x -5>0,log 0.5x -5≥0,得⎩⎪⎨⎪⎧x >5,x -5≤1,∴5<x ≤6,∴定义域为(5,6]. 答案:B ,真数大于0,偶次根式被开方数大于等于0. 类型三 对数函数的图象问题例3 (1)函数y =x +a 与y =log a x 的图象只可能是下图中的( )(2)已知函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=3x+b 的图象上,则f (log 32)=________.(3)如图所示的曲线是对数函数y =log a x ,y =log b x ,y =log c x ,y =log d x 的图象,则a ,b ,c ,d 与1的大小关系为________.【解析】 (1)A 中,由y =x +a 的图象知a >1,而y =log a x 为减函数,A 错;B 中,0<a <1,而y =log a x 为增函数,B 错;C 中,0<a <1,且y =log a x 为减函数,所以C 对;D 中,a <0,而y =log a x 无意义,也不对.(2)依题意可知定点A (-2,-1),f (-2)=3-2+b =-1,b =-109,故f (x )=3x-109,f (log 32)=3log 32-109=2-109=89.(3)由题干图可知函数y =log a x ,y =log b x 的底数a >1,b >1,函数y =log c x ,y =log d x 的底数0<c <1,0<d <1.过点(0,1)作平行于x 轴的直线,则直线与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b >a >1>d >c .【答案】 (1)C (2)89 (3)b >a >1>d >c(1)由函数y =x +a 的图象判断出a 的范围. (2)依据log a 1=0,a 0=1,求定点坐标.(3)沿直线y =1自左向右看,对数函数的底数由小变大. 方法归纳解决对数函数图象的问题时要注意(1)明确对数函数图象的分布区域.对数函数的图象在第一、四象限.当x 趋近于0时,函数图象会越来越靠近y 轴,但永远不会与y 轴相交.(2)建立分类讨论的思想.在画对数函数图象之前要先判断对数的底数a 的取值范围是a >1,还是0<a <1.(3)牢记特殊点.对数函数y =log a x (a >0,且a ≠1)的图象经过点:(1,0),(a,1)和⎝ ⎛⎭⎪⎫1a ,-1.跟踪训练3(1)如图所示,曲线是对数函数y =log a x (a >0,且a ≠1)的图象,已知a 取3,43,35,110,则相应于C 1,C 2,C 3,C 4的a 值依次为( )A.3,43,35,110B.3,43,110,35C.43,3,35,110D.43,3,110,35(2)函数y =log a |x |+1(0<a <1)的图象大致为( )解析:(1)方法一 作直线y =1与四条曲线交于四点,由y =log a x =1,得x =a (即交点的横坐标等于底数),所以横坐标小的底数小,所以C 1,C 2,C 3,C 4对应的a 值分别为3,43,35,110,故选A. 方法二 由对数函数的图象在第一象限内符合底大图右的规律,所以底数a 由大到小依次为C 1,C 2,C 3,C 4,即3,43,35,110.故选A.(2)函数为偶函数,在(0,+∞)上为减函数,(-∞,0)上为增函数,故可排除选项B ,C ,又x =±1时y =1,故选A.答案:(1)A (2)A(1)增函数底数a >1, 减函数底数0<a <1.(2)先去绝对值,再利用单调性判断.[基础巩固](25分钟,60分)一、选择题(每小题5分,共25分) 1.下列函数是对数函数的是( ) A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1) D .y =ln x解析:判断一个函数是否为对数函数,其关键是看其是否具有“y =log a x ”的形式,A ,B,C全错,D正确.答案:D2.若某对数函数的图象过点(4,2),则该对数函数的解析式为( )A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定解析:由对数函数的概念可设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则2=log a4=log a22=2log a2,即log a2=1,a=2.故所求解析式为y=log2x.答案:A3.设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( ) A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.答案:D4.函数y=e x的图象与函数y=f(x)的图象关于直线y=x对称,则( )A.f(x)=lg x B.f(x)=log2xC.f(x)=ln x D.f(x)=x e解析:易知y=f(x)是y=e x的反函数,所以f(x)=ln x.答案:C5.已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象只能是下图中的( )解析:由函数y=log a(-x)有意义,知x<0,所以对数函数的图象应在y轴左侧,可排除A,C.又当a>1时,y=a x为增函数,所以图象B适合.答案:B二、填空题(每小题5分,共15分)6.若f(x)=log a x+(a2-4a-5)是对数函数,则a=________.解析:由对数函数的定义可知⎩⎪⎨⎪⎧a 2-4a -5=0a >0a ≠1,∴a =5.答案:57.已知函数f (x )=log 3x ,则f ⎝ ⎛⎭⎪⎫95+f (15)=________.解析:f ⎝ ⎛⎭⎪⎫95+f (15)=log 395+log 315=log 327=3.答案:38.函数f (x )=log a (2x -3)(a >0且a ≠1),的图象恒过定点P ,则P 点的坐标是________. 解析:令2x -3=1,解得x =2,且f (2)=log a 1=0恒成立,所以函数f (x )的图象恒过定点P (2,0).答案:(2,0)三、解答题(每小题10分,共20分) 9.求下列函数的定义域: (1)y =log 3(1-x ); (2)y =1log 2x ;(3)y =log 711-3x.解析:(1)∵当1-x >0,即x <1时, 函数y =log 3(1-x )有意义,∴函数y =log 3(1-x )的定义域为(-∞,1). (2)由log 2x ≠0,得x >0且x ≠1.∴函数y =1log 2x 的定义域为{x |x >0且x ≠1}.(3)由11-3x >0,得x <13.∴函数y =log 711-3x 的定义域为⎝ ⎛⎭⎪⎫-∞,13.10.求出下列函数的反函数: (1)y =log 16x ;(2)y =⎝ ⎛⎭⎪⎫1e x;(3)y =πx.解析:(1)对数函数y =log 16x ,它的底数为16,所以它的反函数是指数函数y =⎝ ⎛⎭⎪⎫16x;(2)同理,指数函数y =⎝ ⎛⎭⎪⎫1e x的反函数是对数函数y =log 1ex ;(3)指数函数y =πx的反函数为对数函数y =log πx .[能力提升](20分钟,40分)11.已知函数f (x )=a x(a >0,a ≠1)的反函数为g (x ),且满足g (2)<0,则函数g (x +1)的图象是下图中的( )解析:由y =a x解得x =log a y , ∴g (x )=log a x . 又∵g (2)<0,∴0<a <1.故g (x +1)=log a (x +1)是递减的,并且是由函数g (x )=log a x 向左平移1个单位得到的. 答案:A12.函数f (x )=ln x +31-2x的定义域是________.解析:∵f (x )=lnx +31-2x,∴要使函数f (x )有意义,需使⎩⎪⎨⎪⎧x +3>01-2x>0,即-3<x <0.答案:(-3,0)13.已知函数y =log 2x 的图象,如何得到y =log 2(x +1)的图象?y =log 2(x +1)的定义域与值域是多少?与x 轴的交点是什么?解析:y =log 2x ―――――→左移1个单位y =log 2(x +1),如图.定义域为(-1,+∞),值域为R ,与x 轴的交点是(0,0).14.已知函数f (x )=log 2x -1的定义域为A ,函数g (x )=⎝ ⎛⎭⎪⎫12x(-1≤x ≤0)的值域为B .(1)求A ∩B ;(2)若C ={y |y ≤a -1},且B ⊆C ,求a 的取值范围. 解析:(1)由题意知:⎩⎪⎨⎪⎧x -1>0,log 2x -1≥0⇒x ≥2,所以A ={x |x ≥2},B ={y |1≤y ≤2}, 所以A ∩B ={2}.(2)由(1)知B ={y |1≤y ≤2},若要使B ⊆C ,则有a -1≥2,所以a ≥3. 即a 的取值范围为[3,+∞).。
第2章 函数概念与基本初等函数Ⅰ本章概述函数是中学数学中的一个重要概念,函数是高中数学的基础.学生在初中已经初步接受了函数的知识,掌握了一些简单函数的表示方法、性质和图象,本章在初中学习的基础上,继续系统学习函数知识,培养学生应用函数知识的意识,并对后续选修课程中要涉及的函数知识打下良好的基础.本章在学生学习函数知识的过程中是一个重要的环节.一、课标要求1.函数的概念和图象(1)学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.(2)了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.通过具体实例,了解简单的分段函数,并能简单应用.(3)结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.(4)通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.2.基本初等函数(1)了解指数函数模型的实际背景.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算.理解指数函数的概念和意义,掌握f(x)=a x 的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特殊点).通过应用实例的教学,体会指数函数是一种重要的函数模型.(2)理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x 符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点).(3)知道指数函数f(x)=a x 与对数函数f(x)=log a x 互为反函数(a >0,a≠1),初步了解反函数的概念和f -1(x)的意义.(4)通过实例,了解幂函数的概念,结合五种具体函数y=x,y=x 3,y=x -1,y=x 21的图象,了解它们的变化情况.3.函数的应用(1)通过二次函数的图象,懂得判断一元二次方程根的存在性与根的个数,通过具体的函数例子,了解函数零点与方程根的联系.根据函数图象,借助计算器或电脑,学会运用二分法求一些方程的近似解,了解二分法的实际应用,初步体会算法思想.(2)借助计算机作图,比较指数函数、对数函数、幂函数的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的关系.收集现实生活中普遍使用的几种函数模型的案例,体会三种函数模型的应用价值,发展学习应用数学知识解决实际问题的意识.二、本章编写意图与教学建议1.在进一步体会两个变量之间的依赖关系的基础上,学习用集合与对应的语言来刻画“单值对应”,领悟函数就是一个从一个数集到另一个数集的单值对应.“单值对应”是函数对应法则的根本特征.箭头图给出了“单值对应”从一个集合到另一个集合的方向性,应突出“输进”与“输出”的关系.2.教材把指数函数、对数函数、幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题.3.教材“阅读”中力求通过信息技术与课程内容的整合,激发学生对数学学习的兴趣,体现数学的应用性,教学中应鼓励学生探索,把现代教育技术作为学习的研究和探究解决问题的工具.例如,用Excel可以解决陌生函数的图象的大致形状,增加直观性.为以后研究函数的性质和学习方程的近似解、数据拟合等打下基础.4.本章通过学习用二分法求方程近似解的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题.三、教学内容及课时安排建议本章教学时间约29课时:2.1.1 函数的概念和图象3课时2.1.2 函数的表示方法1课时2.1.3 函数的简单性质3课时2.1.4 映射的概念1课时2.2.1 分数指数幂2课时2.2.2 指数函数3课时2.3.1 对数2课时2.3.2 对数函数3课时2.4 幂函数1课时2.5.1 二次函数与一元二次方程2课时2.5.2 用二分法求方程的近似解1课时2.6 函数模型及其应用3课时探究案例——钢琴与指数曲线1课时实习作业1课时本章复习2课时2.1函数的概念和图象2.1.1函数的概念和图象整体设计教材分析先从初中学过的变量观点的函数概念说起,借助对应关系和集合语言得到了函数更为确切的定义,然后学习映射的概念,之后再用映射的概念来研究函数,使同学们对函数概念的理解更加深刻.定义域、对应法则是函数的两个要素.判断两个函数是否相同只需判断它们的定义域、对应法则是否相同即可.对函数符号y=f(x)的理解是同学们学习中的难点.这是一个抽象的数学符号,也仅仅是函数符号,它表示“y是x的函数”,指对定义域中的任意x,在“对应法则f”的作用下,即可得到y=f(x),既不表示“y等于f与x的乘积”,也不一定是解析式.要注意符号f(a)与f(x)的区别与联系,f(a)表示当自变量x=a时函数f(x)的值,它是一个常量;而f(x)是自变量x的函数.在一般情况下,它是一个变量,f(a)是f(x)在x=a时的一个特殊值.学习过程中要充分理解教材中的几个例题,感受函数概念的应用,体会求函数定义域、函数在x取某些特定值时的函数值和值域、函数关系式的转化的方法,体会换元法的应用.三维目标(1)了解构成函数的要素.(2)会求一些简单函数的定义域和值域.(3)能够正确使用“区间”的符号表示某些函数的定义域.(4)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用.重点难点教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示.课时安排3课时教学过程第一课时函数的概念(一)导入新课设计思路一(问题导入)阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:(1)估计人口数量变化趋势是我们制定一系列相关政策的依据,从人口统计年鉴中可以查得我国从1949年至1999年人口数据资料如下表所示,你能根据这个表说出我国人口的变化情况吗?年份1949 1954 1959 1964 1969 1974 1979 1984 1989 1994 1999 人口数/百万542 603 672 705 807 909 975 1035 1107 1177 1246(2)一物体从静止开始下落,下落的距离y(m)与下落的时间x(s)之间近似地满足关系式y=4.9x2.若一物体下落2 s,你能求出它下落的距离吗?(3)下图为某市一天24小时内的气温变化图,①上午8时的气温约是多少?全天的最高、最低气温分别是多少?②大约在什么时刻,气温为0 ℃?③大约在什么时刻内,气温在0 ℃以上?其中:(1)人口数量与时间的变化关系问题;(2)物体自由落体运动中下落的高度与时间的变化关系问题;(3)某市一天中的温度与时间的变化关系问题.思考1.分析、归纳以上三个实例,它们有什么共同点.2.引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系.3.根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系. 设计思路二(情境导入)社会生活中,地球正在逐渐变暖,为什么?中国的国内生产总值为什么在逐年增长?上述这些变化的现象中,都存在着两个变量,当一个变量变化时,另一个变量随之发生变化.那么我们如何用数学模型来刻画这两个变量之间的关系?这数学模型又有什么特征?学好本章便可弄清这两个问题.推进新课新知探究设计思路一函数的有关概念(1)函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A→B 为从集合A 到集合B 的一个函数.记作:y=f(x),x ∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)|x ∈A}叫做函数的值域.注意:①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;②函数符号“y=f(x)”中的f(x)表示与x 对应的函数值,是一个数,而不是f 乘x.(2)构成函数的三要素是什么?定义域、对应关系和值域.(3)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?通过三个已知的函数:y=ax+b ,(a≠0),y=ax 2+bx+c ,(a≠0),y=xk ,(k≠0), 比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.设计思路二对于导入新课设计思路一的问题解答:(1)解:我国人口随时间的变化是逐渐增加的.(2)解:1 s→4.9 m , 2 s→19.6 m ,对任一时刻x ,都有唯一的下落距离y 与之对应.(3)解:①上午8时的气温约是0 ℃,全天的最高、最低气温分别是9 ℃和-2 ℃; ②大约在上午8时和晚上22时,气温为0 ℃;③大约在8到22时刻内,气温在0 ℃以上.总结:对任一时刻t ,都有唯一的温度θ与之对应.思考解答:上述三个问题中,都反映出两个变量之间的关系,当一个变量的取值确定后,另一个变量的值也随之唯一确定.回忆初中学习的函数的概念,如何用集合语言来阐述上述三个问题的共同特点?每个问题均涉及两个非空数集A ,B :A B问题1 {1949,1954,…,1999} {542,603,…1246}问题2 {x|x≥0} {y|y≥0}问题3 {t|0≤t≤24} {θ|-2≤θ≤9}存在某种对应法则,对于A 中任意元素x ,B 中总有一个元素y 与之对应.问题1 问题2 单值对应:对于A 中的任一个元素x ,B 中有唯一的元素y 与之对应.或一个输入值对应到唯一的输出值.总结:单值对应为一对一,多对一,而不能一对多.函数的概念:(1)设A ,B 是两个非空的数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应,这样的对应叫做从A 到B 的一个函数.记为y=f(x),x ∈A.其中,所有的输入值x 组成的集合A 叫函数的定义域.(2)函数是建立在两个非空的数集上的单值对应,x 叫自变量,y 叫因变量.问:上述的三个问题中的对应是否是单值对应,是否是函数,且函数的定义域是什么? 答:是的,都上单值对应,同时也都是函数,每个集合都是非空的数集.记忆技巧:在定义的记忆中,要抓住几个关键词,使用定义时要注意数形结合,增加对单值定义的理解.应用示例思路1例1 已知函数f(x)=3+x +21+x . (1)求函数的定义域;(2)求f(-3),f(32)的值; (3)当a >0时,求f(a),f(a-1)的值.分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.解:(1)使函数有意义,必须满足 x+3≥0,且x+2≠0,化简得到:x≥-3且x≠-2,所以函数的定义域为{x|x≥-3且x≠-2}.(2)f(-3)=-1,f(32)=332++833332321+=+.(3)f(a)=213+++a a ,f(a-1)=1122)1(13)1(+++=+-++-a a a a . 点评:在解题时要注意(3)的求解,此时的x 就是a 、a-1,所以只要把它们作为x 代入. 例2 设一个矩形的周长为80,其中一边长为x ,求它的面积关于x 的函数的解析式,并写出定义域.分析:这是一道应用题,要把一个实际问题转化为数学问题,转化时应注意使实际问题有意义.解:由题意知,另一边长为2280x -,且边长为正数,所以0<x <40. 所以面积s=2280x -·x=(40-x)x,(0<x <40), 所以s(x)=(40-x)x,(0<x <40).点评:引导学生小结几类函数的定义域:(1)如果f(x)是整式,那么函数的定义域是实数集R .(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集).(5)满足实际问题有意义.例3 下列函数中哪个与函数y=x 相等?(1)y=(x )2;(2)y=33x ;(3)y=2x ;(4)y=x x 2. 分析:(1)构成函数的三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数).(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关.解:(1)、(4)与函数y=x 不相等,因为定义域不同;(3)与函数y=x 不相等,因为对应关系不同;只有(2)与函数y=x 相等.点评:在判断时要注意函数表达式的化简,同时注意化简前后的等价变形,不然就不是原函数了.例4 比较下列两个函数的定义域与值域:(1)f(x)=(x-1)2+1,x ∈{-1,0,1,2,3};(2)f(x)=(x-1)2+1.分析:定义域与值域是函数的两个要素,通过解析式可以得出两者的关系.解:(1)函数的定义域为{-1,0,1,2,3},因为f(-1)=(-1-1)2+1=5,同理f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以这个函数的值域为{1,2,5};(2)函数的定义域为R ,因为(x-1)2+1≥1,所以这个函数的值域是{y|y≥1}.点评:函数的值域就是函数值的取值集合,我们可以把函数的值域表示成{y|y=f(x),x ∈A}.例5 已知函数y=ax ax ++312的定义域为R ,求a 的取值范围. 分析:本题是从函数的定义域的逆向思维的角度来设计的一个问题,所以考虑问题时会有一个暂时的停顿.同时要注意分类思想.解:当a=0时,y=x31,函数的定义域不是R ; 当a≠0时,只要9-4a 2<0,得a >23或a <23-. 综上所述,a >23或a <23-. 点评:对于参数问题的求解,可先把它当作已知的,然后再用相关的知识求解.也就是以退为进.思路2例1 判断下列对应是否为函数:(1)x→x2,x≠0,x ∈R ; (2)x→y,这里y=x 2,x ∈N ,y ∈R ;(3)x→y,这里y 2=x,x ∈N ,y ∈R ;(4)x→y,这里y=x+1,x ∈{1,2,3,4,5},y ∈{0,2,3,4,6}.分析:根据定义来进行判断.解:(1)(2)是函数,(3)(4)不是函数.例2 如下图所示的对应x→y ,能表示函数的是______.分析:可以用与y 轴平行的直线来截,如有两个交点就不是函数图象.答案:A 、D点评:函数概念的要点:(1) A ,B 为非空数集.(2) A 中的任一个元素,B 中都有唯一的元素与之对应;而B 中的元素在A 中的对应元素可以不唯一,也可以没有.从上述三个问题中我们可以看出,函数可以用列表、图象、解析式来表示.对给定的函数必须要指明定义域,对于用解析式表示的函数如果没指明定义域,则认为函数的定义域是指使函数表达式有意义的输入值的集合.例3 求下列函数的定义域:(1)f(x)=1-x ;(2)f(x)=11+x ;(3)f(x)=1231+-x x. 分析:运用函数的定义域的求法,就是根据满足的几个条件来进行判断和列式. 解:(1) {x|x≥1};(2){x|x ∈R 且x≠-1};(3){x|x ∈R 且x≠0且x≥21-}. 点评:注意几个满足条件就可以了.例4 已知函数y=f(x)的定义域是(-1,1),求y=f(x+1)的定义域.解:因为y=f(x)的定义域是(-1,1),所以-1<x+1<1,所以-2<x <0.所以y=f(x+1)的定义域为{x|-2<x <0}.点评:隐函数的定义域要紧扣定义进行求解.例5 已知函数y=a x ax ++32的定义域为R ,求a 的取值范围.解:⎩⎨⎧≤-=∆>,049,02a a ∴a ∈[23,+∞). 点评:挖掘概念的内涵,是解决这类问题的思维的关键.知能训练1.y=x 1111++的定义域是( )A.x≠0的一切实数B.x≠-1且x≠0的一切实数C.x >0的一切实数D.x≠0且x≠-1且x≠21-的一切实数 2.如图,在直角坐标系的第一象限内,△AOB 是边长为2的等边三角形,垂直底的直线x =t (0≤t≤2)截这个三角形所得阴影部分面积为f(t),则y=f(t)的图象大致是()3.函数f(x)=⎪⎩⎪⎨⎧≥<<--≤+),2(,2),21(,),1(,22x x x x x x 若f(x)=3,则x 等于( )A.1B.1或23 C.1,±3 D.3 4.函数y=x x -+-22的定义域是___________,值域是___________.5.(1)若f(x)=x 2+1,则f(3x+2)=___________.(2)若f(x-1)=2x 2-1,则f(x)=_________,f(0)=_________,f(1)=_________,f[f(0)]=_________.6.已知函数f(x)=⎪⎩⎪⎨⎧+∞∈-∞∈),,0[,),0,(,12x x x x 求f(x+1).解答:1.D ;2.D ;3.D ;4.{x|x=2},{y|y=0};5.(1)9x 2+12x+5,(2)2x 2+4x+1,1,7,7;6.解:由已知得:f(x+1)=⎪⎩⎪⎨⎧+∞∈++-∞∈++),,0[1,)1(),0,(1,112x x x x所以f(x+1)=⎪⎩⎪⎨⎧+∞-∈+--∞∈+).,1[,)1(),1,(,112x x x x课堂小结今天我们学习了函数的概念、函数的定义域和值域等,体会用集合间的特殊对应来表示函数,这是学生认识的进步,是今后学习函数的基础.本节课我们从不同的角度对定义域做了研究,在今后学习函数的过程中,应该要求学生一看到函数,马上就要去想它的定义域,避免因定义域的忽略而出现解题的错误.作业课本第28页习题2.1(1) 1、2.设计感想1.注重学生学习函数概念的心理建构过程建构主义学习理论认为:应把学习看成是学生主动的建构活动,学习应与一定的知识、背景及情境相联系;在实际情境下进行学习,可以使学生利用已有的知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情境中.在函数概念教学中,可以适当采用引导讨论,注重分析、启发、反馈,先从实际问题引入概念,然后揭示函数概念的共同特性:(1)问题中所研究的两个变量是相互联系的;(2)其中一个变量变化时,另一个变量也随着发生变化;(3)对第一个变量在某一范围内的每一个确定的值,第二个变量都有唯一确定的值与它对应.同时从阅读、练习中巩固概念,再从讨论、反馈中深化概念,让学生自己完成从具体到抽象的过程,避免概念教学的抽象与枯燥,使学生深入理解函数的实质,从而让学生较好地完成函数概念的建构.2.注重函数概念与信息技术适时性、适度性的结合由于初中刚进高中的高一学生,思维较为单一,认识比较具体,注意不够持久,并且高中数学比较抽象,学生学习普遍感到困难,因此在教学过程中应创设一些知识情境,借助现代教学手段多媒体进行教学,让学生在轻松愉快的氛围中进行学习.应用信息技术时要根据教学需要、学生需求和课堂教学过程中出现的情况适时使用,并且运用要适度,掌握分寸,避免过量信息钝化学生的思维.函数概念教学中,教师可以借助于几何画板、图形计算器等现代教学工具辅助教学,鼓励、引导学生通过交流与讨论,来更好地学习和理解函数.(设计者:王银娣)第二课时 函数的概念(二)导入新课设计思路一(复习导入)在上节课我们学习了函数的定义,从定义中我们可以看出,构成函数有三个要素:定义域、值域和解析式,在函数的定义中大家要能体会出通过符号来解决问题的思想,也就是把实际的问题抽象成数学问题,函数也是高中数学中抽象思维要求最强的一个知识,也是有着广泛用途的一个数学知识,同时也推动了人类认识的进步.本节课将在上一节课的基础上对函数作更深一个层次的了解.这个认识我们将会在以后的学习中逐步加深.设计思路二(事例导入)函数在数学及实际生活中有着广泛的应用,在我们身边就存在着很多与函数有关的问题,如在我们身边就有不少函数的实例,我们看下面的一个实例:夏天,大家都喜欢吃西瓜,而西瓜的价格往往与西瓜的重量有关.某人到一个水果店去买西瓜,价格表上写的是:6斤以下,每斤0.4元;6斤以上9斤以下,每斤0.5元;9斤以上,每斤0.6元.此人挑了一个西瓜,称重后店主说5元1角,1角就不要了,给5元吧,可这位聪明的顾客马上说,你不仅没少要,反而多收了我钱,当顾客讲出理由,店主只好承认了错误,照实收了钱.同学们,你知道顾客是怎样识破店主坑人的吗?其实数学问题时刻伴随着我们,只要你注意观察、积累,并学以致用,就能成为聪明人,因为数学可以使人聪明起来.答案:若西瓜重9斤以下则最多应付4.5元,若西瓜9斤以上,则最少也要5.4元,不可能出现5.1元这样的价钱,所以店主坑人了.推进新课新知探究1.函数的概念关键词:任意、唯一.2.构成函数的三要素是:定义域、对应关系和值域.3.函数的值域:若A 是函数y=f(x)的定义域,则对于A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域.应用示例思路1例1 求下列函数的值域:(1)y=x2-;(2)y=x 2+x-1; (3)y=x 2-2x,x ∈[2,3];(4)y=x 2-2x,x ∈[-1,1].分析:这些函数都可以用基本函数的方法来解决,解题时要注意它们的定义域,不然就会造成值域的范围的扩大.解:(1){y|y ∈R ,y≠0}(基本函数法);(2)[45-,+∞)(基本函数法); (3)[0,3](函数图象法);(4)[-1,3](函数图象法).变式训练1.求函数y=x 2-2x,x ∈[-2,5]的值域.解:[-1,15](函数图象法).2.求函数y=x 1-,x ∈(-1,0)∪(0,2)的值域. 解:(-∞,21-)∪(1,+∞)(函数图象法). 点评:函数图象法就是根据基本函数的图象,通过已知的图象来观察出要解决的函数的值域的方法,主要从图象的高低来进行判断.例2 若一次函数y=f(x)满足f(1)=1,f(-1)=3,求f(x)的解析式.分析:一次函数是一条直线,有两个点,直线就会被唯一确定,所以本题使用待定系数法就很容易求得.解:设f(x )=ax+b,(a≠0)(待定系数法),由题意可得⎩⎨⎧=+-=+,3,1b a b a 解得⎩⎨⎧=-=,2,1b a 所以f(x)=-x+2.点评:使用待定系数法时,在设系数时要注意符合一次函数的定义,同时在解方程时要依据所设的条件,注意增根和减根的现象.例3 二次函数y=f(x)对任意x ∈R ,有f(x+1)+f(x-1)=2x 2-4x ,求f(x)的解析式.分析:本题根据恒等式的特征进行解题,所以在代入计算时要有足够的耐心进行计算,同时要保证计算的准确性.解:设f(x)=ax 2+bx+c,(a≠0),由题意可得a(x+1)2+b(x+1)+c+a(x-1)2+b(x-1)+c=2x 2-4x,即2ax 2+2bx+(2a+2c)=2x 2-4x,所以⎪⎩⎪⎨⎧=+-==,022,42,22c a b a 即⎪⎩⎪⎨⎧-=-==,1,2,1c b a所以f(x)=x 2-2x-1.点评:与例2的解法相似,但有其自身的特点,复杂的程度比一次的高,所以计算的时候准确性要注意,不然即使方法正确,答案也容易错.例4 y=f(x)满足f(x+1)=x 2-7x-1,求f(x)的解析式.分析:本题求函数的解析式是从配凑法、换元法的角度来解决这个问题,在运算过程中,要明白解题的目的.解法一:f(x+1)=x 2-7x-1=(x+1)2-9x-2=(x+1)2-9(x+1)+7,所以f(x)=x 2-9x+7.解法二:令x+1=t ,所以x=t-1,代入可得f(t)=(t-1)2-7(t-1)-1=t 2-9t+7,所以f(x)=x 2-9x+7.点评:这两种求函数解析式的方法比较常见,其中配凑法要在目的的导引下来进行有效的变形,换元法比较容易操作.例5 函数y=f(x)满足f(x x 1+)=221xx x ++,求f(x)的解析式. 分析:本题看上去比较复杂,但是方法仍用配凑法,当然也可以用换元法,下面就这两种方法分别给出解答,然后观察比较.解:(换元法)令x x 1+=t ,则x=11-t ,代入可得 f(t)=22)1(11)1(1)1(1-+-+-t t t =1+(t-1)+(t-1)2=t 2-t+1,所以f(x)=x 2-x+1. 另解:(配凑法)f(x x 1+)=221x x x ++=222212xx x x x x +--++=(x x 1+)2-x x 1++1,所以f(x)=x 2-x+1. 点评:两种方法比较下来,我们感觉第一种容易上手,易于操作,学生也比较容易把握,方法二要求技巧性比较强,对基础好的同学可以作要求,它能培养学生的观察能力.思路2例1 已知f(x)=x1,g(x)=x 2+x+1,求f[g(2)]和g[f(2)]的值. 分析:这是一个求函数值的问题,它分为两层,从里层开始计算,一层一层地计算,实际上就是按照函数的定义来进行分解.解:f[g(2)]=f(7)=71,g[f(2)]=g(21)=47. 点评:学生对这类问题的求解,开始的时候有点难,但随着对函数定义的理解,这类问。
第二章函数与基本初等函数Ⅰ第一节函数的概念及其表示1.函数与映射的概念2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应法则.(3)相同函数:如果两个函数的定义域和对应法则完全一致,则这两个函数相同,这是判断两函数相同的依据.(4)函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应法则,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题体验]1.(教材习题改编)下列五个对应f,不是从集合A到集合B的函数的是________(填序号).①A =⎩⎨⎧⎭⎬⎫12,1,32 ,B ={-6,-3,1},f ⎝⎛⎭⎫12 =-6,f (1)=-3,f ⎝⎛⎭⎫32 =1; ②A ={1,2,3},B ={7,8,9},f (1)=f (2)=7,f (3)=8; ③A =B ={1,2,3},f (x )=2x -1; ④A =B ={x |x ≥-1},f (x )=2x +1;⑤A =Z ,B ={-1,1},n 为奇数时,f (n )=-1,n 为偶数时,f (n )=1.解析:根据函数定义,即看是否是从非空数集A 到非空数集B 的映射.③中集合A 中的元素3在集合B 中无元素与之对应,故不是A 到B 的函数.其他均满足.答案:③2.(教材习题改编)若f (x )=x -x 2,则f ⎝⎛⎭⎫12 =________. 解析:f ⎝⎛⎭⎫12 =12-⎝⎛⎭⎫12 2=14. 答案:143.(教材习题改编)用长为30 cm 的铁丝围成矩形,若将矩形面积S (cm 2)表示为矩形一边长x (cm)的函数,则函数解析式为________,其函数定义域为________.解析:矩形的另一条边长为15-x ,且x >0,15-x >0. 故S =x (15-x ),定义域为(0,15). 答案:S =x (15-x ) (0,15) 4.函数f (x )=x -4|x |-5的定义域是________________. 答案:[4,5)∪(5,+∞)1.解决函数的一些问题时,易忽视“定义域优先”的原则.2.易混“函数”与“映射”的概念:函数是特殊的映射,映射不一定是函数,从A 到B 的一个映射,若A ,B 不是数集,则这个映射便不是函数.3.误把分段函数理解为几个函数组成. [小题纠偏]1.函数y =x 与函数y =xx________(填“是”或“不是”)同一函数. 解析:函数y =x 的定义域为[0,+∞),y =xx的定义域为(0,+∞).因为两个函数的定义域不同,所以不表示同一函数.答案:不是2.函数f (x )=x -1·x +1的定义域为________.解析:由题意,得⎩⎪⎨⎪⎧x -1≥0,x +1≥0,所以x ≥1,所以函数f (x )的定义域是[1,+∞).答案:[1,+∞)3.一个面积为100的等腰梯形,上底长为x ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为______________________________________________________________.解析:由x +3x2·y =100,得2xy =100,所以y =50x (x >0). 答案:y =50x (x >0)4.已知f ⎝⎛⎭⎫1x =x 2+5x ,则f (x )=________. 解析:令t =1x ,∴x =1t .∴f (t )=1t 2+5t .∴f (x )=5x +1x 2(x ≠0).答案:5x +1x 2(x ≠0)考点一 函数的定义域(常考常新型考点——多角探明)[命题分析]函数的定义域是使函数有意义的自变量取值的集合,它是函数不可缺少的组成部分,研究函数问题必须树立“定义域优先”的观念.求给定函数的定义域往往转化为解不等式(组)的问题,在解不等式(组)取交集时可借助于数轴.常见的命题角度有:(1)求给定函数解析式的定义域; (2)求抽象函数的定义域; (3)已知定义域确定参数问题.[题点全练]角度一:求给定函数解析式的定义域 1.(2016·南师附中月考)y =x -12x -log 2(4-x 2)的定义域是________. 解析:要使函数有意义,必须⎩⎨⎧x -12x≥0,x ≠0,4-x 2>0,∴x ∈(-2,0)∪[1,2). 答案:(-2,0)∪[1,2) 2.函数f (x )=1-|x -1|a x -1(a >0且a ≠1)的定义域为____________________.解析:由⎩⎪⎨⎪⎧1-|x -1|≥0,a x-1≠0⇒⎩⎨⎧0≤x ≤2,x ≠0⇒0<x ≤2,故所求函数的定义域为(0,2]. 答案:(0,2]角度二:求抽象函数的定义域3.若函数y =f (x )的定义域是[1,2 016],则函数g (x )=f (x +1)x -1的定义域是________. 解析:令t =x +1,则由已知函数的定义域为[1,2 016],可知1≤t ≤2 016.要使函数f (x +1)有意义,则有1≤x +1≤2 016,解得0≤x ≤2 015,故函数f (x +1)的定义域为[0,2 015].所以使函数g (x )有意义的条件是⎩⎪⎨⎪⎧0≤x ≤2 015,x -1≠0,解得0≤x <1或1<x ≤2 015.故函数g (x )的定义域为[0,1)∪(1,2 015]答案:[0,1)∪(1,2 015]4.若函数f (x 2+1)的定义域为[-1,1],则f (lg x )的定义域为________. 解析:因为f (x 2+1)的定义域为[-1,1], 则-1≤x ≤1,故0≤x 2≤1, 所以1≤x 2+1≤2.因为f (x 2+1)与f (lg x )是同一个对应法则, 所以1≤lg x ≤2,即10≤x ≤100,所以函数f (lg x )的定义域为[10,100]. 答案:[10,100]角度三:已知定义域确定参数问题 5.(2016·苏北四市调研)若函数f (x )= 2ax ax22+--1的定义域为R ,则a 的取值范围为______________________.解析:因为函数f (x )的定义域为R , 所以222ax ax +--1≥0对x ∈R 恒成立,即2ax ax22+-≥20,x 2+2ax -a ≥0恒成立,因此有Δ=(2a )2+4a ≤0, 解得-1≤a ≤0. 答案:[-1,0][方法归纳] 函数定义域的2种求法考点二 求函数的解析式(重点保分型考点——师生共研)[典例引领](1)已知f ⎝⎛⎭⎫x +1x =x 2+1x 2,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ); (4)已知函数f (x )的定义域为(0,+∞),且f (x )=2f ⎝⎛⎭⎫1x ·x -1,求f (x ). 解:(1)由于f ⎝⎛⎭⎫x +1x =x 2+1x 2=⎝⎛⎭⎫x +1x 2-2,所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2,x ≥2或x ≤-2. (2)令2x +1=t 得x =2t -1,代入得f (t )=lg 2t -1,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1,x >1.(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,解得a =b =12.所以f (x )=12x 2+12x ,x ∈R.(4)在f (x )=2f ⎝⎛⎭⎫1x x -1中, 用1x 代替x ,得f ⎝⎛⎭⎫1x =2f (x )1x-1, 将f ⎝⎛⎭⎫1x =2f (x )x -1代入f (x )=2f ⎝⎛⎭⎫1x x -1中, 可求得f (x )=23x +13.[由题悟法]求函数解析式的4个方法[即时应用]1.设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:设f (x )=ax 2+bx +c (a ≠0),则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根,∴Δ=4-4c =0,解得c =1.故f (x )=x 2+2x +1. 2.根据下列条件求各函数的表达式:(1)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x ); (2)已知f ⎝⎛⎭⎫x +1x =x 3+1x 3,求f (x ). 解:(1)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,所以a =2,b =7,所以f (x )=2x +7.(2)因为f ⎝⎛⎭⎫x +1x =x 3+1x 3=⎝⎛⎭⎫x +1x 3-3⎝⎛⎭⎫x +1x ,所以f (x )=x 3-3x (x ≥2或x ≤-2).考点三 分段函数(重点保分型考点——师生共研)[典例引领]1.已知f (x )=⎩⎨⎧log 3x ,x >0,a x +b ,x ≤0,且f (0)=2,f (-1)=3,则f (f (-3))=________.解析:由题意得f (0)=a 0+b =1+b =2,解得b =1.f (-1)=a -1+b =a -1+1=3,解得a =12.故f (-3)=⎝⎛⎭⎫12-3+1=9, 从而f (f (-3))=f (9)=log 39=2. 答案:22.(2015·山东高考改编)设函数f (x )=⎩⎪⎨⎪⎧3x -1,x <1,2x , x ≥1,则满足f (f (a ))=2f (a )的a 的取值范围是________.解析:由f (f (a ))=2f (a )得,f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,∴23≤a <1.当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1.综上,a ≥23.答案:⎣⎡⎭⎫23,+∞ [由题悟法]分段函数2种题型的求解策略(1)根据分段函数解析式求函数值首先确定自变量的值属于哪个区间,其次选定相应的解析式代入求解. (2)已知函数值或函数值范围求自变量的值或范围应根据每一段的解析式分别求解,但要注意检验所求自变量的值或范围是否符合相应段的自变量的取值范围.[提醒] 当分段函数的自变量范围不确定时,应分类讨论.[即时应用]1.已知函数f (x )=⎩⎪⎨⎪⎧2x +1,x ≥0,3x 2,x <0,且f (x 0)=3,则实数x 0的值为________.解析:由条件可知,当x 0≥0时,f (x 0)=2x 0+1=3,所以x 0=1;当x 0<0时,f (x 0)=3x 20=3,所以x 0=-1,所以实数x 0的值为-1或1.答案:-1或12.已知f (x )=⎩⎪⎨⎪⎧12x +1,x ≤0,-(x -1)2,x >0,使f (x )≥-1成立的x 的取值范围是________.解析:由题意知⎩⎪⎨⎪⎧x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1,解得-4≤x ≤0或0<x ≤2,故x 的取值范围是[-4,2]. 答案:[-4,2]一抓基础,多练小题做到眼疾手快1.函数f (x )=x +3+log 2(6-x )的定义域是________.解析:要使函数有意义应满足⎩⎪⎨⎪⎧x +3≥0,6-x >0,解得-3≤x <6. 答案:[-3,6)2.已知f ⎝⎛⎭⎫12x -1=2x -5,且f (a )=6,则a 等于________.解析:令t =12x -1,则x =2t +2,f (t )=2(2t +2)-5=4t -1,则4a -1=6,解得a =74.答案:743.若二次函数g (x )满足g (1)=1,g (-1)=5,且图象过原点,则g (x )的解析式为________________________.解析:设g (x )=ax 2+bx +c (a ≠0), ∵g (1)=1,g (-1)=5,且图象过原点, ∴⎩⎪⎨⎪⎧a +b +c =1,a -b +c =5,c =0,解得⎩⎪⎨⎪⎧a =3,b =-2,c =0,∴g (x )=3x 2-2x . 答案:g (x )=3x 2-2x4.已知函数f (x )=⎩⎪⎨⎪⎧(a -1)x +1,x ≤1,a x -1,x >1,若f (1)=12,则f (3)=________.解析:由f (1)=12,可得a =12,所以f (3)=⎝⎛⎭⎫122=14. 答案:145.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2ax ,x ≥2,2x +1,x <2,若f (f (1))>3a 2,则a 的取值范围是________.解析:由题意知f (1)=2+1=3,f (f (1))=f (3)=32+6a , 若f (f (1))>3a 2,则9+6a >3a 2,即a 2-2a -3<0,解得-1<a <3. 答案:(-1,3)二保高考,全练题型做到高考达标1.函数f (x )=10+9x -x 2lg (x -1)的定义域为________.解析:要使函数f (x )有意义,则x 须满足⎩⎪⎨⎪⎧10+9x -x 2≥0,x -1>0,lg (x -1)≠0,即⎩⎪⎨⎪⎧(x +1)(x -10)≤0,①x >1,x ≠2,解①得,-1≤x ≤10.所以函数f (x )的定义域为(1,2)∪(2,10]. 答案:(1,2)∪(2,10]2.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0,x 2,x <0,则f (f (-2))=________.解析:因为f (-2)=(-2)2=4,而f (4)=4+1=5,所以f (f (-2))=5. 答案:53.(2016·福建四地六校联考)若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (1)=________.解析:令x =1,得2f (1)-f (-1)=4,① 令x =-1,得2f (-1)-f (1)=-2,② 联立①②得f (1)=2. 答案:24.已知函数f (x ),g (x )分别由下表给出:则满足f (g (x ))>g (f (x ))的x 的值是________.解析:当x =1时,f (g (1))=1,g (f (1))=3,不满足f (g (x ))>g (f (x ));当x =2时,f (g (2))=3,g (f (2))=1,满足f (g (x ))>g (f (x ));当x =3时,f (g (3))=1,g (f (3))=3,不满足f (g (x ))>g (f (x )).答案:25.已知函数f (x )=⎩⎪⎨⎪⎧3x,0≤x ≤1,92-32x ,1<x ≤3,当t ∈[0,1]时,f (f (t ))∈[0,1],则实数t 的取值范围是________.解析:当t ∈[0,1]时,f (t )=3t ∈[1,3];当3t =1,即t =0时,f (1)=3∉[0,1],不符合题意,舍去;当3t ∈(1,3]时,f (3t )=92-32×3t ∈[0,1],由f (3t )=92-32×3t ≥0,得3t ≤3,所以t ≤1;由f (3t )=92-32×3t ≤1,得3t ≥73,所以t ≥log 373.综上所述,实数t 的取值范围是⎣⎡⎦⎤log 373,1. 答案:⎣⎡⎦⎤log 373,1 6.(2016·南京一中检测)已知f (x )=⎩⎨⎧x 12,x ∈[0,+∞),|sin x |,x ∈⎝⎛⎭⎫-π2,0,若f (a )=12,则a =________.解析:若a ≥0,由f (a )=12得,a 1212=12,解得a =14;若a <0,则|sin a |=12,a ∈⎝⎛⎭⎫-π2,0,解得a =-π6. 综上可知,a =14或-π6.答案:14或-π67.已知函数y =f (x 2-1)的定义域为[-3, 3 ],则函数y =f (x )的定义域为________. 解析:∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3, 3 ],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2]. 答案:[-1,2]8.已知函数f (x )=2x +1与函数y =g (x )的图象关于直线x =2成轴对称图形,则函数y =g (x )的解析式为________.解析:设点M (x ,y )为函数y =g (x )图象上的任意一点,点M ′(x ′,y ′)是点M 关于直线x =2的对称点,则⎩⎪⎨⎪⎧x ′=4-x ,y ′=y .又y ′=2x ′+1,∴y =2(4-x )+1=9-2x ,即g (x )=9-2x . 答案:g (x )=9-2x9.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎡⎦⎤74=1. ∵g (x )=74-⎣⎡⎦⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝⎛⎭⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.故x 的取值范围为⎣⎡⎭⎫716,12.10.(1)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式; (2)若函数f (x )=xax +b(a ≠0),f (2)=1,且方程f (x )=x 有唯一解,求f (x )的解析式.解:(1)当x ∈(-1,1)时,有 2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg(-x +1).② 由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).(2)由f (2)=1,得22a +b=1,即2a +b =2.由f (x )=x ,得xax +b=x ,变形得x ⎝ ⎛⎭⎪⎫1ax +b -1=0,解此方程得x =0或x =1-ba ,又因为方程有唯一解,故1-ba =0,解得b =1,代入2a +b =2,得a =12,所以f (x )=2xx +2. 三上台阶,自主选做志在冲刺名校1.(2016·金陵中学月考)已知f (x )=⎩⎪⎨⎪⎧(1-2a )x +3a ,x <1,ln x ,x ≥1的值域为R ,那么a 的取值范围是________.解析:要使函数f (x )的值域为R ,需使⎩⎪⎨⎪⎧1-2a >0,ln 1≤1-2a +3a ,∴⎩⎪⎨⎪⎧a <12,a ≥-1,∴-1≤a <12.即a 的取值范围是⎣⎡⎭⎫-1,12. 答案:⎣⎡⎭⎫-1,12 2.已知f 是有序数对集合M ={(x ,y )|x ∈N *,y ∈N *}上的一个映射,正整数数对(x ,y )在映射f 下的象为实数z ,记作f (x ,y )=z .对于任意的正整数m ,n (m >n ),映射f 由下表给出:则使不等式f 解析:∵∀x ∈N *,都有2x >x ,∴f (2x ,x )=2x -x , 则f (2x ,x )≤4⇔2x -x ≤4(x ∈N *)⇔2x ≤x +4(x ∈N *), 当x =1时,2x =2,x +4=5,2x ≤x +4成立; 当x =2时,2x =4,x +4=6,2x ≤x +4成立; 当x ≥3(x ∈N *)时,2x >x +4. 故满足条件的x 的集合是{1,2}. 答案:{1,2}3.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx+n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解:(1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x 100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70.∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.第二节 函数的单调性与最值1.函数的单调性(1)单调函数的定义(2)单调区间的定义如果函数y =f (x )在区间D 上是单调增函数或单调减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,单调增区间和单调减区间统称为函数y =f (x )的单调区间.2.函数的最值 [小题体验]1.(教材习题改编)下列函数中,在区间(0,2)上是单调增函数的是________.(填序号) ①y =1-3x ;②y =-1x;③y =x 2+1;④y =|x +1|.解析:y =1-3x 在区间(0,2)上是减函数,故①错误,其余均正确.故填②③④. 答案:②③④2.(教材习题改编)若函数y =ax 2+(2a +1)x 在(-∞,2]上是增函数,则实数a 的取值范围是________.解析:应分函数为一次函数还是二次函数两种情况:①若a =0,则y =x 在(-∞,2]上是增函数,所以a =0符合题意;②若a ≠0,则⎩⎨⎧a <0,-2a +12a ≥2,解得-16≤a <0.综合①②得实数a 的取值范围是⎣⎡⎦⎤-16,0. 答案:⎣⎡⎦⎤-16,0 3.已知函数f (x )=2x -1(x ∈[2,6]),则函数的最大值为______. 答案:21.易混淆两个概念:“函数的单调区间”和“函数在某区间上单调”,前者指函数具备单调性的“最大”的区间,后者是前者“最大”区间的子集.2.若函数在两个不同的区间上单调性相同,则这两个区间要分开写,不能写成并集.例如,函数f (x )在区间(-1,0)上是减函数,在(0,1)上是减函数,但在(-1,0)∪(0,1)上却不一定是减函数,如函数f (x )=1x .3.两函数f (x ),g (x )在x ∈(a ,b )上都是增(减)函数,则f (x )+g (x )也为增(减)函数,但f (x )·g (x ),1f (x )等的单调性与其正负有关,切不可盲目类比. [小题纠偏]1.函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的单调增区间是________.解析:由题意画出函数y =⎩⎪⎨⎪⎧2x +1,x <0,2x 2+x -1,x ≥0的图象如图所示,所以函数的单调增区间是(-∞,0)和[0,+∞). 答案:(-∞,0)和[0,+∞)2.设函数f (x )是(-3,3)上的增函数,若f (m -1)>f (2m -1),则实数m 的取值范围是________.解析:由题意,得⎩⎪⎨⎪⎧m -1>2m -1,-3<m -1<3,-3<2m -1<3,所以-1<m <0.答案:(-1,0)3.设定义在[-1,7]上的函数y =f (x )的图象如图所示,则函数y =f (x )的增区间为________.答案:[-1,1],[5,7]考点一 函数单调性的判断(基础送分型考点——自主练透)[题组练透]1.函数y =-(x -3)|x |的递增区间是________.解析:y =-(x -3)|x |=⎩⎪⎨⎪⎧-x 2+3x ,x >0,x 2-3x ,x ≤0.作出该函数的图象,观察图象知递增区间为⎣⎡⎦⎤0,32. 答案:⎣⎡⎦⎤0,32 2.讨论函数f (x )=axx 2-1(a >0)在x ∈(-1,1)上的单调性. 解:法一(定义法): 设-1<x 1<x 2<1, 则f (x 1)-f (x 2)=ax 1x 21-1-ax 2x 22-1 =ax 1x 22-ax 1-ax 2x 21+ax 2(x 21-1)(x 22-1) =a (x 2-x 1)(x 1x 2+1)(x 21-1)(x 22-1). ∵-1<x 1<x 2<1,a >0,∴x 2-x 1>0,x 1x 2+1>0,(x 21-1)(x 22-1)>0.∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),故函数f (x )在(-1,1)上为减函数. 法二(导数法):f ′(x )=a (x 2-1)-2ax 2(x 2-1)2=-a (x 2+1)(x 2-1)2.又a >0, 所以f ′(x )<0,所以函数f (x )在(-1,1)上为减函数.[谨记通法]判断或证明函数的单调性的2种重要方法及其步骤 (1)定义法,其基本步骤:(2)导数法,其基本步骤: 求导函数确定符号得出结论考点二 求函数的单调区间(重点保分型考点——师生共研)[典例引领]求下列函数的单调区间: (1)y =-x 2+2|x |+1; (2)y =log 12(x 2-3x +2).解:(1)由于y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.画出函数图象如图所示,单调增区间为(-∞,-1]和[0,1],单调减区间为[-1,0]和[1,+∞).(2)令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数,在(2,+∞)上是单调增函数. 而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).[由题悟法]确定函数的单调区间的3种方法[提醒] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.[即时应用]1.若将[典例引领](1)中的函数变为“y =|-x 2+2x +1|”,则结论如何? 解:函数y =|-x 2+2x +1|的图象如图所示.由图象可知,函数y =|-x 2+2x +1|的单调增区间为(1-2,1)和(1+2,+∞);单调减区间为(-∞,1-2)和(1,1+2).2.函数y =⎝⎛⎭⎫13x x 1223-+的单调递增区间为________. 解析:令u =2x 2-3x +1=2⎝⎛⎭⎫x -342-18. 因为u =2⎝⎛⎭⎫x -342-18在⎝⎛⎦⎤-∞,34上单调递减,函数y =⎝⎛⎭⎫13u 在R 上单调递减.所以y =⎝⎛⎭⎫1322x 3x 1-+在⎝⎛⎦⎤-∞,34上单调递增. 答案:⎝⎛⎦⎤-∞,34考点三 函数单调性的应用(常考常新型考点——多角探明)[命题分析]高考对函数单调性的考查多以填空题的形式出现,有时也应用于解答题中的某一问中. 常见的命题角度有: (1)求函数的值域或最值;(2)比较两个函数值或两个自变量的大小; (3)解函数不等式;(4)利用单调性求参数的取值范围或值.[题点全练]角度一:求函数的值域或最值1.函数f (x )=⎩⎪⎨⎪⎧1x ,x ≥1,-x 2+2,x <1的最大值为________.解析:当x ≥1时,函数f (x )=1x 为减函数,所以f (x )在x =1处取得最大值,为f (1)=1;当x <1时,易知函数f (x )=-x 2+2在x =0处取得最大值,为f (0)=2.故函数f (x )的最大值为2. 答案:2角度二:比较两个函数值或两个自变量的大小2.(2016·苏州调研)已知函数f (x )的图象关于直线x =1对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝⎛⎭⎫-12,b =f (2),c =f (e),则a ,b ,c 的大小关系为_____. 解析:因为f (x )的图象关于直线x =1对称.由此可得f ⎝⎛⎭⎫-12=f ⎝⎛⎭⎫52.由x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,知f (x )在(1,+∞)上单调递减.∵1<2<52<e ,∴f (2)>f ⎝⎛⎭⎫52>f (e),∴b >a >c . 答案:b >a >c角度三:解函数不等式3.f (x )是定义在(0,+∞)上的单调增函数,满足f (xy )=f (x )+f (y ),f (3)=1,当f (x )+f (x-8)≤2时,x 的取值范围是________.解析:2=1+1=f (3)+f (3)=f (9),由f (x )+f (x -8)≤2,可得f [x (x -8)]≤f (9),因为f (x )是定义在(0,+∞)上的增函数,所以有⎩⎪⎨⎪⎧x >0,x -8>0,x (x -8)≤9,解得8<x ≤9.答案:(8,9]角度四:利用单调性求参数的取值范围或值4.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是________.解析:当a =0时,f (x )=2x -3, 在定义域R 上是单调递增的, 故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a ,因为f (x )在(-∞,4)上单调递增, 所以a <0, 且-1a ≥4,解得-14≤a <0.综上所述,实数a 的取值范围是⎣⎡⎦⎤-14,0. 答案:⎣⎡⎦⎤-14,0 5.已知函数f (x )=⎩⎪⎨⎪⎧(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a的取值范围为________.解析:要使函数f (x )在R 上单调递增, 则有⎩⎪⎨⎪⎧a >1,a -2>0,f (1)≤0,即⎩⎪⎨⎪⎧a >1,a >2,a -2-1≤0,解得2<a ≤3,即实数a 的取值范围是(2,3]. 答案:(2,3][方法归纳]函数单调性应用问题的常见类型及解题策略(1)求函数值域或最值.常用方法有:单调性法、图象法、基本不等式法、导数法、换元法.(2)比较大小.比较函数值的大小,应将自变量转化到同一个单调区间内,然后利用函数的单调性解决.(3)解不等式.在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(4)利用单调性求参数.视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数.[提醒] ①若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的;②分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.一抓基础,多练小题做到眼疾手快1.已知函数y =f (x )的图象如图所示,那么该函数的单调减区间是________.解析:由函数的图象易知,函数f (x )的单调减区间是[-3,-1]和[1,2]. 答案:[-3,-1]和[1,2]2.函数f (x )=|x -2|x 的单调减区间是________.解析:由于f (x )=|x -2|x =⎩⎪⎨⎪⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2]. 答案:[1,2]3.(2016·学军中学检测)已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1. 答案:(-∞,1]4.函数f (x )=1x -1在区间[a ,b ]上的最大值是1,最小值是13,则a +b =________.解析:易知f (x )在[a ,b ]上为减函数,∴⎩⎪⎨⎪⎧f (a )=1,f (b )=13,即⎩⎪⎨⎪⎧1a -1=1,1b -1=13,∴⎩⎪⎨⎪⎧a =2,b =4.∴a +b =6. 答案:65.已知函数f (x )=x 2-2ax -3在区间[1,2]上具有单调性,则实数a 的取值范围为________________.解析:函数f (x )=x 2-2ax -3的图象开口向上,对称轴为直线x =a ,画出草图如图所示.由图象可知,函数在(-∞,a ]和[a ,+∞)上都具有单调性,因此要使函数f (x )在区间[1,2]上具有单调性,只需a ≤1或a ≥2,从而a ∈(-∞,1]∪[2,+∞).答案:(-∞,1]∪[2,+∞) 二保高考,全练题型做到高考达标1.函数f (x )=x -a x 在[1,4]上单调递增,则实数a 的最大值为________.解析:令x =t ,所以t ∈[1,2],即f (t )=t 2-at ,由f (x )在[1,4]上递增,知f (t )在[1,2]上递增,所以a2≤1,即a ≤2,所以a 的最大值为2.答案:22.已知函数f (x )=x 2-2x -3,则该函数的单调增区间为________. 解析:设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调增区间为[3,+∞). 答案:[3,+∞)3.已知函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围是________.解析:由f (x )在R 上是减函数,得0<a <1,且-0+3a ≥a 0,由此得a ∈⎣⎡⎭⎫13,1. 答案:⎣⎡⎭⎫13,14.定义新运算⊕:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2,则函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2]的最大值等于________.解析:由已知得当-2≤x ≤1时,f (x )=x -2, 当1<x ≤2时,f (x )=x 3-2.∵f (x )=x -2,f (x )=x 3-2在定义域内都为增函数. ∴f (x )的最大值为f (2)=23-2=6. 答案:65.(2016·南通调研)已知f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1,log a x ,x ≥1是(-∞,+∞)上的减函数,那么a 的取值范围是________.解析:当x =1时,log a 1=0,若f (x )为R 上的减函数,则(3a -1)x +4a >0在x <1时恒成立,令g (x )=(3a -1)x +4a ,则必有⎩⎪⎨⎪⎧ 3a -1<0,g (1)≥0,即⎩⎪⎨⎪⎧3a -1<0,3a -1+4a ≥0⇒17≤a <13.此时,log a x 是减函数,符合题意. 答案:⎣⎡⎭⎫17,136.函数y =x -x (x ≥0)的最大值为________.解析:令t =x ,则t ≥0,所以y =t -t 2=-⎝⎛⎭⎫t -122+14,结合图象知,当t =12,即x =14时,y max =14.答案:147.已知函数f (x )为(0,+∞)上的增函数,若f (a 2-a )>f (a +3),则实数a 的取值范围为________.解析:由已知可得⎩⎪⎨⎪⎧a 2-a >0,a +3>0,a 2-a >a +3,解得-3<a <-1或a >3.所以实数a 的取值范围为(-3,-1)∪(3,+∞). 答案:(-3,-1)∪(3,+∞) 8.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.解析:由题意知g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.函数图象如图所示,其递减区间是[0,1). 答案:[0,1)9.(2016·苏州调研)已知函数f (x )=1a -1x (a >0,x >0), (1)求证:f (x )在(0,+∞)上是增函数;(2)若f (x )在 ⎣⎡⎦⎤12,2上的值域是⎣⎡⎦⎤12,2,求a 的值. 解:(1)证明:任取x 1>x 2>0,则f (x 1)-f (x 2)=1a -1x 1-1a +1x 2=x 1-x 2x 1x 2,∵x 1>x 2>0,∴x 1-x 2>0,x 1x 2>0, ∴f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),∴f (x )在(0,+∞)上是增函数.(2)由(1)可知f (x )在⎣⎡⎦⎤12,2上为增函数, ∴f ⎝⎛⎭⎫12=1a -2=12,f (2)=1a -12=2, 解得a =25.10.已知f (x )=xx -a(x ≠a ). (1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围. 解:(1)证明:任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2). ∵(x 1+2)(x 2+2)>0,x 1-x 2<0, ∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)上单调递增. (2)任设1<x 1<x 2,则 f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a (x 2-x 1)(x 1-a )(x 2-a ). ∵a >0,x 2-x 1>0, ∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0在(1,+∞)上恒成立,∴a ≤1. 综上所述,a 的取值范围是(0,1]. 三上台阶,自主选做志在冲刺名校1.已知函数f (x )=⎩⎪⎨⎪⎧e x -k ,x ≤0,(1-k )x +k ,x >0是R 上的增函数,则实数k 的取值范围是________.解析:由题意得⎩⎪⎨⎪⎧e 0-k ≤k ,1-k >0,解得12≤k <1.答案:⎣⎡⎭⎫12,12.(2016·泰州中学期中)已知函数y =log 12(x 2-ax +a )在区间(-∞,2]上是增函数,则实数a 的取值范围是________.解析:设y =log 12t ,t =x 2-ax +a .因为y =log 12t 在(0,+∞)上是单调减函数,要想满足题意,则t =x 2-ax +a 在(-∞, 2 ]上为单调减函数, 且t min >0,故需⎩⎪⎨⎪⎧a 2≥ 2,(2)2-2a +a >0,解得22≤a <2+2 2. 答案:[22,22+2)3.已知定义在区间(0,+∞)上的函数f (x )满足f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0.(1)求f (1)的值;(2)证明:f (x )为单调递减函数;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解:(1)令x 1=x 2>0, 代入得f (1)=f (x 1)-f (x 1)=0, 故f (1)=0.(2)证明:任取x 1,x 2∈(0,+∞),且x 1>x 2, 则x 1x 2>1,由于当x >1时,f (x )<0, 所以f ⎝⎛⎭⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在(0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9). 由f ⎝⎛⎭⎫x 1x 2=f (x 1)-f (x 2)得,f ⎝⎛⎭⎫93=f (9)-f (3),而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.第三节 函数的奇偶性及周期性1.函数的奇偶性(1)周期函数对于函数f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数f (x )为周期函数,称T 为这个函数的周期.(2)最小正周期如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f (x )的最小正周期.[小题体验]1.(教材习题改编)函数f (x )=mx 2+(2m -1)x +1是偶函数,则实数m =________. 解析:由f (-x )=f (x ),得2m -1=0,即m =12.答案:122.(教材习题改编)已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 3+x +1,则当x <0时,f (x )=________.解析:若x <0,则-x >0,f (-x )=-x 3-x +1,由于f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=x 3+x -1.答案:x 3+x -13.若函数f (x )是周期为5的奇函数,且满足f (1)=1,f (2)=2,则f (8)-f (14)=________. 答案:-11.判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.2.判断函数f (x )的奇偶性时,必须对定义域内的每一个x ,均有f (-x )=-f (x )或f (-x )=f (x ),而不能说存在x 使f (-x )=-f (x )或f (-x )=f (x ).3.分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性.[小题纠偏]1.已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b =________. 解析:∵f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数, ∴a -1+2a =0,∴a =13.又f (-x )=f (x ),∴b =0,∴a +b =13.答案:132.设f (x )是定义在R 上的周期为2的函数,当x ∈[-1,1)时, f (x )=⎩⎪⎨⎪⎧-4x 2+2,-1≤x <0,x , 0≤x <1,则f ⎝⎛⎭⎫32=________. 解析:由题意得,f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫-12=-4×⎝⎛⎭⎫-12 2+2=1. 答案:13.函数f (x )=(2x +2)2+x2-x的奇偶性为________. 解析:由2+x2-x ≥0,得函数f (x )=(2x +2)2+x2-x的定义域为[-2,2),不关于原点对称,所以函数f (x )为非奇非偶函数.答案:非奇非偶考点一 函数奇偶性的判断(基础送分型考点——自主练透)[题组练透]判断下列函数的奇偶性: (1)f (x )=1-x 2+x 2-1; (2)f (x )=3-2x +2x -3; (3)f (x )=3x -3-x ;(4)f (x )=4-x 2|x +3|-3;(5)(易错题)f (x )=⎩⎪⎨⎪⎧x 2+x ,x >0,x 2-x ,x <0.解:(1)∵由⎩⎪⎨⎪⎧x 2-1≥0,1-x 2≥0,得x =±1,∴f (x )的定义域为{-1,1}.又f (1)+f (-1)=0,f (1)-f (-1)=0, 即f (x )=±f (-x ).∴f (x )既是奇函数又是偶函数. (2)∵函数f (x )=3-2x +2x -3的定义域为⎩⎨⎧⎭⎬⎫32,不关于坐标原点对称,∴函数f (x )既不是奇函数,也不是偶函数. (3)∵f (x )的定义域为R ,∴f (-x )=3-x -3x =-(3x -3-x )=-f (x ), 所以f (x )为奇函数.(4)∵由⎩⎪⎨⎪⎧4-x 2≥0,|x +3|-3≠0,得-2≤x ≤2且x ≠0.∴f (x )的定义域为[-2,0)∪(0,2],∴f (x )=4-x 2|x +3|-3=4-x 2(x +3)-3=4-x 2x ,∴f (-x )=-f (x ), ∴f (x )是奇函数.(5)易知函数的定义域为(-∞,0)∪(0,+∞),关于原点对称,又当x>0时,f(x)=x2+x,则当x<0时,-x>0,故f(-x)=x2-x=f(x);当x<0时,f(x)=x2-x,则当x>0时,-x<0,故f(-x)=x2+x=f(x),故原函数是偶函数.[谨记通法]判定函数奇偶性的3种常用方法(1)定义法:(2)图象法:(3)性质法:①设f(x),g(x)的定义域分别是D1,D2,那么在它们的公共定义域上:奇+奇=奇,奇×奇=偶,偶+偶=偶,偶×偶=偶,奇×偶=奇.②复合函数的奇偶性可概括为“同奇则奇,一偶则偶”.[提醒](1)“性质法”中的结论是在两个函数的公共定义域内才成立的.(2)判断分段函数的奇偶性应分段分别证明f(-x)与f(x)的关系,只有对各段上的x都满足相同的关系时,才能判断其奇偶性.如“题组练透”第(5)题.考点二函数的周期性(题点多变型考点——纵引横联)[典型母题]设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求函数的最小正周期;(2)计算f(0)+f(1)+f(2)+…+f(2 015).[解](1)∵f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x).∴f(x)的最小正周期为4.(2)f(0)=0,f(1)=1,f(2)=0,f(3)=f(-1)=-f(1)=-1.又∵f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=…=f(2 012)+f(2 013)+f(2 014)+f(2 015)=0,∴f(0)+f(1)+f(2)+…+f(2 015)=0.[类题通法]1.判断函数周期性的2个方法(1)定义法.(2)图象法.2.周期性3个常用结论对f(x)定义域内任一自变量的值x:(1)若f(x+a)=-f(x),则T=2a;(2)若f(x+a)=1f(x),则T=2a;(3)若f(x+a)=-1f(x),则T=2a.(a>0)[越变越明][变式1]若母题中条件变为“f(x+2)=-1f(x)”,求函数f(x)的最小正周期.解:∵对任意x ∈R ,都有f (x +2)=-1f (x ),∴f (x +4)=f (x +2+2)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )的最小正周期为4.[变式2] 若母题条件改为:定义在R 上的函数f (x )满足f (x +6)=f (x ),当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .求f (1)+f (2)+f (3)+…+f (2 015)的值.解:∵f (x +6)=f (x ),∴T =6.∵当-3≤x <-1时,f (x )=-(x +2)2; 当-1≤x <3时,f (x )=x ,∴f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,∴f (1)+f (2)+…+f (6)=1,∴f (1)+f (2)+…+f (6)=f (7)+f (8)+…+f (12) =…=f (2 005)+f (2 006)+…+f (2 010)=1, ∴f (1)+f (2)+…+f (2 010)=1×2 0106=335. 而f (2 011)+f (2 012)+f (2 013)+f (2 014)+f (2 015) =f (1)+f (2)+f (3)+f (4)+f (5)=1+2-1+0-1=1. ∴f (1)+f (2)+…+f (2 015)=335+1=336.[变式3] 在母题条件下,求f (x )(x ∈[2,4])的解析式. 解:当x ∈[-2,0]时,-x ∈[0,2],由已知得f (-x )=2(-x )-(-x )2=-2x -x 2, 又f (x )是奇函数, ∴f (-x )=-f (x )=-2x -x 2. ∴f (x )=x 2+2x .又当x ∈[2,4]时,x -4∈[-2,0], ∴f (x -4)=(x -4)2+2(x -4).又f (x )是周期为4的周期函数,∴f (x )=f (x -4)=(x -4)2+2(x -4)=x 2-6x +8. 故x ∈[2,4]时,f (x )=x 2-6x +8. [破译玄机]利用函数的周期性,求函数的解析式,应把问题转化为已知区间上的相应问题,即把区间[2,4]转化为[-2,0]上.考点三 函数性质的综合应用(常考常新型考点——多角探明)[命题分析]函数的奇偶性、周期性以及单调性是函数的三大性质,在高考中常常将它们综合在一起命制试题,其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.多以填空题形式出现.常见的命题角度有: (1)奇偶性的应用; (2)单调性与奇偶性结合; (3)周期性与奇偶性结合; (4)单调性、奇偶性与周期性结合.[题点全练]角度一:奇偶性的应用1.已知f (x )是R 上的偶函数,且当x >0时,f (x )=x 2-x -1,则当x <0时,f (x )=________. 解析:∵f (x )是定义在R 上的偶函数, ∴当x <0时,-x >0.由已知f (-x )=(-x )2-(-x )-1=x 2+x -1=f (x ), ∴f (x )=x 2+x -1. 答案:x 2+x -1 2.设函数f (x )=(x +1)(x +a )x为奇函数,则a =________. 解析:∵f (x )=(x +1)(x +a )x 为奇函数,∴f (1)+f (-1)=0,即(1+1)(1+a )1+(-1+1)(-1+a )-1=0,∴a =-1. 答案:-1角度二:单调性与奇偶性结合3.(2016·刑台摸底考试)已知定义在(-1,1)上的奇函数f (x ),其导函数为f ′(x )=1+cos x ,如果f (1-a )+f (1-a 2)<0,则实数a 的取值范围为________.解析:依题意得,f ′(x )>0,则f (x )是定义在(-1,1)上的奇函数、增函数.不等式f (1-a )+f (1-a 2)<0等价于f (1-a 2)<-f (1-a )=f (a -1),则-1<1-a 2<a -1<1,由此解得1<a < 2.答案:(1,2)角度三:周期性与奇偶性结合4.已知f (x )是定义在R 上的以3为周期的偶函数,若f (1)<1,f (5)=2a -3a +1,则实数a 的取值范围为________.解析:∵f (x )是定义在R 上的周期为3的偶函数, ∴f (5)=f (5-6)=f (-1)=f (1), ∵f (1)<1,f (5)=2a -3a +1, ∴2a -3a +1<1,即a -4a +1<0, 解得-1<a <4. 答案:(-1,4)角度四:单调性、奇偶性与周期性结合5.已知函数f (x )是定义在R 上以5为周期的奇函数,若f (-1)>1,f (2 016)=a +3a -3,则a的取值范围是________.解析:因为f (x )的周期为5, 所以f (2 016)=f (1), 又因为f (x )是奇函数, 所以f (-1)=-f (1),即f (2 016)=-f (-1)<-1, 所以a +3a -3<-1,解得0<a <3.答案:(0,3)[方法归纳]函数性质综合应用问题的常见类型及解题策略(1)函数单调性与奇偶性结合.注意函数单调性及奇偶性的定义,以及奇、偶函数图象的对称性.(2)周期性与奇偶性结合.此类问题多考查求值问题,常利用奇偶性及周期性进行交换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.(3)周期性、奇偶性与单调性结合.解决此类问题通常先利用周期性转化自变量所在的区间,然后利用奇偶性和单调性求解.一抓基础,多练小题做到眼疾手快1.函数f (x )=1x-x 的图象关于________对称.解析:因为函数f (x )的定义域为(-∞,0)∪(0,+∞),且对定义域内每一个x ,都有f (-x )=-1x+x =-f (x ),所以函数f (x )是奇函数,其图象关于原点对称.答案:原点2.下面四个结论:①偶函数的图象一定与y 轴相交;②奇函数的图象一定过原点;③偶函数的图象关于y 轴对称;④没有一个函数既是奇函数又是偶函数.其中正确的结论是________(填序号).解析:函数y =1x 2是偶函数,但不与y 轴相交,故①错;函数y =1x 是奇函数,但不过原点,故②错;由偶函数的性质,知③正确;函数f (x )=0既是奇函数又是偶函数,故④错.答案:③3.(2016·南通调研)设函数f (x )为偶函数,当x ∈(0,+∞)时,f (x )=log 2x ,则f (-2)=________.解析:因为函数f (x )是偶函数,所以f (-2)=f (2)=log 22=12.答案:124.设奇函数f (x )的定义域为[-6,6].若当x ∈[0,6]时,f (x )的图象如图所示,则不等式f (x )>0的解集是________.解析:奇函数的图象关于原点对称,作出函数f (x )在[-6,0]上的图象(图略),由图象,可知不等式f (x )>0的解集是[-6,-2)∪(0,2).答案:[-6,-2)∪(0,2)5.函数f (x )在R 上为奇函数,且x >0时,f (x )=x +1,则当x <0时,f (x )=________________.解析:∵f (x )为奇函数,x >0时,f (x )=x +1, ∴当x <0时,-x >0,。
2.1.1 函数的概念和图象(二)
学习目标 1.理解函数图象的定义.2.会画简单的函数图象.3.能利用图象初步研究函数的性质.
知识点一 函数的图象
思考 在上一节中我们提到A ={0},B ={1},从A 到B 是函数关系,那么这个函数的图象是什么?
梳理 将自变量的一个值x 0作为横坐标,相应的函数值f (x 0)作为纵坐标,就得到坐标平面上的一个点(x 0,f (x 0)).当自变量取遍函数定义域A 中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为{(x ,f (x ))|x ∈A },即{(x ,y )|y =f (x ),x ∈A },所有这些点组成的图形就是函数y =f (x )的图象. 知识点二 函数图象的初步应用
思考 如图是一个函数f (x )的图象,那么函数f (x )的定义域、值域是什么?f ⎝ ⎛⎭⎪⎫12和f ⎝ ⎛⎭
⎪⎫13谁大?
梳理 如果已知函数图象,可以从中知道函数的定义域、值域、上升、下降趋势、某些特殊点的坐标等性质.
类型一 画函数的图象 例1 画出下列函数的图象. (1)y =x 2
+x ,x ∈{-1,0,1,2,3}; (2)y =x 2+x ,x ∈R ; (3)y =x 2+x ,x ∈[-1,1).
反思与感悟 函数图象受对应法则和定义域的双重影响,故画图时要关注定义域,另外画图时要标明关键点坐标,如最高点、最低点、与x 轴、y 轴交点,点的虚实要分清. 跟踪训练1 试画出下列函数的图象. (1)y =2x ;
(2)y =2
x
,x ∈[-2,1)且x ≠0; (3)y =2x +1
.
类型二函数图象的应用
例2 函数f(x),g(x)图象分别为如图(1),(2)所示.
试指出f(x),g(x)的定义域、值域,并求当y=1时,f(x),g(x)对应的x的值.
反思与感悟由图求定义域看横坐标的范围,求值域看纵坐标的范围.函数定义允许多个x 值对应一个y值,但不允许一个x值对应多个y值.
跟踪训练2 已知函数f(x),g(x)的图象分别为如图(1),(2).试指出f(x),g(x)的定义域、值域,设x1,x2分别是f(x),g(x)定义域内的两个数,且x1<x2,试指出f(x1),f(x2)的大小关系和g(x1),g(x2)的大小关系.
1.下列图形中,可以作为函数y=f(x)的图象的是______.(填序号)
2.将函数y=(x-2)2+2的图象向左平移1个单位长度,再向上平移1个单位长度,得到的函数解析式为_______________________________________________________________.3.若函数y=f(x)的图象经过点(0,1),则函数y=f(x-1)的图象必经过点________.4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,建立坐标系,其中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是________.(填序号)
5.画出下列函数的图象,并求值域. (1)f (x )=2;
(2)f (x )=1-x ,x ∈Z ,-2≤x ≤2; (3)f (x )=(x -1)2
+1,x ∈(-2,3].
1.函数图象受对应法则和定义域双重影响,画图时要注意定义域.
2.对于y =kx +b ,y =ax 2
+bx +c ,y =k x
这类我们熟知的图象,通常是先画整体,再根据定义域剪裁,同时标注关键点的坐标.
3.y =f (x )向左平移a 个单位,可得y =f (x +a )的图象;向上平移b 个单位,可得y =f (x )+b 的图象.口诀为“左加右减,上加下减”.
4.读图求定义域、值域要理解定义域、值域与图象的关系.
答案精析
问题导学 知识点一
思考 这个函数的图象是一个点(0,1). 知识点二
思考 由定义知图象上每一点的横坐标组成的集合是定义域,故f (x )定义域为[-1,1].图象上每一点的纵坐标组成的集合是值域,故f (x )的值域为[0,1].
由图知f (x )在(0,1]上的图象呈下降趋势,故f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭
⎪⎫13. 题型探究
例1 解 (1)列表:
x -1 0 1 2 3 y
2
6
12
描点得该函数的图象如图:
(2)y =x 2
+x =⎝ ⎛⎭⎪⎫x +122-14
,
故函数对称轴为x =-12,顶点为⎝ ⎛⎭⎪⎫-1
2
,-14.
又y =x 2
+x 开口向上,且与x 轴,y 轴分别交于点(-1,0),(0,0). 故图象如图:
(3)y =x 2+x ,x ∈[-1,1)的图象是y =x 2
+x ,x ∈R 的图象上x ∈[-1,1)的一段,其中点(-1,0)在图象上,用实心点表示;点(1,2)不在图象上,用空心点表示:
跟踪训练1 解 (1)如图:
(2)y =2
x
在x ∈[-2,1)上的一段,如图:
(3)由y =2x 向左平移一个单位得y =2
x +1
的图象,如图:
例2 解 (1)f (x )的定义域为{-1,0,1,2},值域为{0,1,4}. 当y =1时,x =0或2. (2)g (x )的定义域为(-∞,2), 值域为[1,4).
当y =1时,x ∈(-∞,1].
跟踪训练2 解 (1)f (x )的定义域为[1,3),值域为(1
3,1],
对于x 1,x 2∈[1,3),且x 1<x 2,有f (x 1)>f (x 2); (2)g (x )的定义域为(0,+∞),值域为(0,+∞), 对于x 1,x 2∈(0,+∞),且x 1<x 2,有g (x 1)<g (x 2). 当堂训练
1.①②④ 2.y =(x -1)2
+3
3.(1,1) 4.④
5.解(1)图象:
值域:{2}.
(2)图象:
值域:{-1,0,1,2,3}.
(3)图象:
值域:[1,10).。