人教A版(理)数学一轮复习导练测:第二章 函数与基本初等函数I 45分钟阶段测试(二)
- 格式:docx
- 大小:79.58 KB
- 文档页数:4
2.8 函数与方程1.函数的零点 (1)函数零点的定义对于函数y =f (x ) (x ∈D ),把使f (x )=0的实数x 叫做函数y =f (x ) (x ∈D )的零点. (2)几个等价关系方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. (3)函数零点的判定(零点存在性定理)如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么,函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个__c __也就是方程f (x )=0的根.2.二次函数y =ax 2+bx +c (a >0)的图象与零点的关系3.对于在区间[a ,b ]上连续不断且f (a )·f (b )<0的函数y =f (x ),通过不断地把函数f (x )的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x 轴的交点.( × )(2)函数y =f (x )在区间(a ,b )内有零点(函数图象连续不断),则f (a )·f (b )<0.( × ) (3)二次函数y =ax 2+bx +c (a ≠0)在b 2-4ac <0时没有零点.( √ ) (4)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (5)函数y =2sin x -1的零点有无数多个.( √ )(6)函数f (x )=kx +1在[1,2]上有零点,则-1<k <-12.( × )1.(2013·重庆)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)内答案 A解析 由于a <b <c ,所以f (a )=0+(a -b )(a -c )+0>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0.因此有f (a )·f (b )<0,f (b )·f (c )<0,又因f (x )是关于x 的二次函数,函数的图象是连续不断的曲线,因此函数f (x )的两零点分别位于区间(a ,b )和(b ,c )内,故选A. 2.(2013·天津)函数f (x )=2x |log 0.5x |-1的零点个数为( ) A .1B .2C .3D .4 答案 B解析 当0<x <1时,f (x )=2x log 0.5x -1,令f (x )=0,则log 0.5x =⎝⎛⎭⎫12x .由y =log 0.5x ,y =⎝⎛⎭⎫12x 的图象知,在(0,1)内有一个交点,即f (x )在(0,1)上有一个零点. 当x >1时,f (x )=-2x log 0.5x -1=2x log 2x -1, 令f (x )=0得log 2x =⎝⎛⎭⎫12x ,由y =log 2x ,y =⎝⎛⎭⎫12x 的图象知在(1,+∞)上有一个交点,即f (x )在(1,+∞)上有一个零点,故选B.3.(2014·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A .{1,3} B .{-3,-1,1,3} C .{2-7,1,3} D .{-2-7,1,3} 答案 D解析 令x <0,则-x >0,所以f (-x )=(-x )2-3(-x )=x 2+3x . 因为f (x )是定义在R 上的奇函数, 所以f (-x )=-f (x ).所以当x <0时,f (x )=-x 2-3x .所以当x ≥0时,g (x )=x 2-4x +3.令g (x )=0,即x 2-4x +3=0,解得x =1或x =3.当x <0时,g (x )=-x 2-4x +3.令g (x )=0,即x 2+4x -3=0,解得x =-2+7>0(舍去)或x =-2-7.所以函数g (x )有三个零点,故其集合为{-2-7,1,3}.4.已知函数f (x )=ln x -x +2有一个零点所在的区间为(k ,k +1) (k ∈N +),则k 的值为________. 答案 3解析 由题意知,当x >1时,f (x )单调递减,因为f (3)=ln3-1>0,f (4)=ln4-2<0,所以该函数的零点在区间(3,4)内,所以k =3.题型一 函数零点的判断和求解例1 (1)设x 0是方程ln x +x =4的解,则x 0属于( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)(2)函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0,4x +1,x ≤0的零点个数是________.答案 (1)C (2)3解析 (1)设f (x )=ln x +x -4, ∵f (2)=ln2-2<0,f (3)=ln3-1>0, ∴x 0∈(2,3).(2)当x >0时:作函数y =ln x 和y =x 2-2x 的图象,由图知,x >0时,f (x )有两个零点; 当x <0时,由f (x )=0得x =-14,综上,f (x )有三个零点. 思维升华 函数零点的求法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其有几个交点,就有几个不同的零点.(1)函数f (x )=2x +3x 的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)(2)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .多于4个 B .4个 C .3个D .2个答案 (1)B (2)B解析 (1)∵f (x )=2x +3x 在R 上是增函数. 而f (-2)=2-2-6<0,f (-1)=2-1-3<0,f (0)=20=1>0,f (1)=2+3=5>0,f (2)=22+6=10>0, ∴f (-1)·f (0)<0.故函数f (x )在区间(-1,0)上有零点. (2)由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 题型二 二次函数的零点问题例2 已知函数f (x )=x 2+ax +2,a ∈R .(1)若不等式f (x )≤0的解集为[1,2],求不等式f (x )≥1-x 2的解集;(2)若函数g (x )=f (x )+x 2+1在区间(1,2)上有两个不同的零点,求实数a 的取值范围. 解 (1)因为不等式f (x )≤0的解集为[1,2], 所以a =-3,于是f (x )=x 2-3x +2. 由f (x )≥1-x 2得,1-x 2≤x 2-3x +2, 解得x ≤12或x ≥1,所以不等式f (x )≥1-x 2的解集为{x |x ≤12或x ≥1}.(2)函数g (x )=2x 2+ax +3在区间(1,2)上有两个不同的零点,则⎩⎪⎨⎪⎧g (1)>0,g (2)>0,1<-a4<2,a 2-24>0,即错误!解得-5<a <-2错误!.所以实数a 的取值范围是(-5,-26).思维升华 解决二次函数的零点问题:(1)可利用一元二次方程的求根公式;(2)可用一元二次方程的判别式及根与系数之间的关系;(3)利用二次函数的图象列不等式组.已知f (x )=x 2+(a 2-1)x +(a -2)的一个零点比1大,一个零点比1小,求实数a的取值范围.解 方法一 设方程x 2+(a 2-1)x +(a -2)=0的两根分别为x 1,x 2(x 1<x 2),则(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2)+1<0, 由根与系数的关系,得(a -2)+(a 2-1)+1<0, 即a 2+a -2<0,∴-2<a <1. 方法二 函数图象大致如图, 则有f (1)<0,即1+(a 2-1)+a -2<0, 故-2<a <1.题型三 函数零点和参数的范围例3 若关于x 的方程22x +2x a +a +1=0有实根,求实数a 的取值范围. 解 方法一 (换元法)设t =2x (t >0),则原方程可变为t 2+at +a +1=0,(*) 原方程有实根,即方程(*)有正根. 令f (t )=t 2+at +a +1.①若方程(*)有两个正实根t 1,t 2, 则⎩⎪⎨⎪⎧Δ=a 2-4(a +1)≥0,t 1+t 2=-a >0,t 1·t 2=a +1>0,解得-1<a ≤2-22;②若方程(*)有一个正实根和一个负实根(负实根,不合题意,舍去),则f (0)=a +1<0,解得a <-1;③若方程(*)有一个正实根和一个零根,则f (0)=0且-a2>0,解得a =-1.综上,a 的取值范围是(-∞,2-22]. 方法二 (分离变量法)由方程,解得a =-22x +12x +1,设t =2x (t >0),则a =-t 2+1t +1=-⎝⎛⎭⎫t +2t +1-1=2-⎣⎡⎦⎤(t +1)+2t +1,其中t +1>1,由基本不等式,得(t +1)+2t +1≥22,当且仅当t =2-1时取等号,故a ≤2-2 2.思维升华 对于“a =f (x )有解”型问题,可以通过求函数y =f (x )的值域来解决,解的个数也可化为函数y =f (x )的图象和直线y =a 交点的个数.(2014·江苏)已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=|x 2-2x +12|.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________. 答案 (0,12)解析 作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.数形结合思想在函数零点问题中的应用典例:(1)方程log 3x +x -3=0的解所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)(2)已知函数f (x )=log a x +x -b (a >0,且a ≠1),当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.思维点拨 (1)利用零点存在性定理;(2)利用临界情况时f (x )的图象观察零点的大小. 解析 (1)设f (x )=log 3x +x -3, 则f (2)=log 32-1<0, f (3)=log 33+3-3=1>0, ∴f (x )=0在(2,3)有零点,又f (x )为增函数,∴f (x )=0的零点在(2,3)内.(2)在直角坐标系下分别作出y =log 2x ,y =log 3x 及y =3-x ,y =4-x 的图象,如图所示,显然所有可能的交点构成图中的阴影区域(不含边界),其中各点的横坐标均落于(2,3)之内,又因为x 0∈(n ,n +1),n ∈N *,故n =2.答案 (1)C (2)2温馨提醒 (1)零点问题可转化为函数图象的交点问题进行求解,体现了数形结合的思想.(2)求零点范围时用数形结合求解可减少思维量,作图时要尽量准确.方法与技巧1.函数零点的判定常用的方法有(1)零点存在性定理;(2)数形结合;(3)解方程f (x )=0.2.研究方程f (x )=g (x )的解,实质就是研究G (x )=f (x )-g (x )的零点.3.转化思想:方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题. 失误与防范1.函数f (x )的零点是一个实数,是方程f (x )=0的根,也是函数y =f (x )的图象与x 轴交点的横坐标.2.函数零点存在性定理是零点存在的一个充分条件,而不是必要条件;判断零点个数还要根据函数的单调性、对称性或结合函数图象.A 组 专项基础训练 (时间:45分钟)1.已知函数f (x )=⎩⎪⎨⎪⎧2x -1, x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B .-2,0 C.12 D .0答案 D解析 当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解. 综上函数f (x )的零点只有0,故选D.2.方程|x 2-2x |=a 2+1(a >0)的解的个数是( ) A .1B .2C .3D .4 答案 B解析 (数形结合法) ∵a >0,∴a 2+1>1. 而y =|x 2-2x |的图象如图,∴y =|x 2-2x |的图象与y =a 2+1的图象总有两个交点.3.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是( ) A .(-1,1)B .(-2,2)C .(-∞,-2)∪(2,+∞)D .(-∞,-1)∪(1,+∞) 答案 C解析 ∵方程x 2+mx +1=0有两个不相等的实数根, ∴Δ=m 2-4>0,∴m >2或m <-2.4.函数f (x )=x cos x 2在区间[0,4]上的零点个数为( ) A .4 B .5 C .6 D .7答案 C解析 由f (x )=x cos x 2=0,得x =0或cos x 2=0. 又x ∈[0,4],所以x 2∈[0,16]. 由于cos(π2+k π)=0(k ∈Z ),而在π2+k π(k ∈Z )的所有取值中,只有π2,3π2,5π2,7π2,9π2满足在[0,16]内,故零点个数为1+5=6.5.已知三个函数f (x )=2x +x ,g (x )=x -2,h (x )=log 2x +x 的零点依次为a ,b ,c ,则( ) A .a <b <c B .a <c <b C .b <a <c D .c <a <b答案 B解析 方法一 由于f (-1)=12-1=-12<0,f (0)=1>0,且f (x )为R 上的递增函数. 故f (x )=2x +x 的零点a ∈(-1,0).∵g (2)=0,∴g (x )的零点b =2; ∵h ⎝⎛⎭⎫12=-1+12=-12<0,h (1)=1>0, 且h (x )为(0,+∞)上的增函数, ∴h (x )的零点c ∈⎝⎛⎭⎫12,1,因此a <c <b . 方法二 由f (x )=0得2x =-x ;由h (x )=0得log 2x =-x 作出函数y =2x , y =log 2x 和y =-x 的图象(如图).由图象易知a <0,0<c <1,而b =2, 故a <c <b .6.若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 答案 {x |-32<x <1}解析 ∵f (x )=x 2+ax +b 的两个零点是-2,3. ∴-2,3是方程x 2+ax +b =0的两根,由根与系数的关系知⎩⎪⎨⎪⎧-2+3=-a ,-2×3=b .∴⎩⎪⎨⎪⎧a =-1,b =-6, ∴f (x )=x 2-x -6. ∵不等式af (-2x )>0,即-(4x 2+2x -6)>0⇔2x 2+x -3<0, 解集为{x |-32<x <1}.7.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________. 答案 2解析 由于ln2<lne =1,所以f (2)<0,f (3)=2+ln3,由于ln3>1,所以f (3)>0,所以增函数f (x )的零点位于区间(2,3)内,故n =2.8.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0,若函数g (x )=f (x )-m 有3个零点,则实数m 的取值范围是________.答案 (0,1)解析 画出f (x )=⎩⎪⎨⎪⎧2x -1,x >0,-x 2-2x ,x ≤0的图象,如图.由于函数g (x )=f (x )-m 有3个零点,结合图象得:0<m <1,即m ∈(0,1). 9.判断函数f (x )=4x +x 2-23x 3在区间[-1,1]上零点的个数,并说明理由.解 因为f (-1)=-4+1+23=-73<0,f (1)=4+1-23=133>0,所以f (x )在区间[-1,1]上有零点.又f ′(x )=4+2x -2x 2=92-2(x -12)2,当-1≤x ≤1时,0≤f ′(x )≤92,所以f (x )在[-1,1]上单调递增.所以f (x )在[-1,1]上有且只有一个零点.10.关于x 的二次方程x 2+(m -1)x +1=0在区间[0,2]上有解,求实数m 的取值范围. 解 方法一 设f (x )=x 2+(m -1)x +1,x ∈[0,2], ①若f (x )=0在区间[0,2]上有一解, ∵f (0)=1>0,则应有f (2)<0, 又∵f (2)=22+(m -1)×2+1, ∴m <-32.②若f (x )=0在区间[0,2]上有两解,则⎩⎪⎨⎪⎧Δ≥0,0<-m -12<2,f (2)≥0,∴⎩⎪⎨⎪⎧(m -1)2-4≥0,-3<m <1,4+(m -1)×2+1≥0.∴⎩⎪⎨⎪⎧m ≥3或m ≤-1,-3<m <1,m ≥-32.∴-32≤m ≤-1.由①②可知m 的取值范围是(-∞,-1].方法二 显然x =0不是方程x 2+(m -1)x +1=0的解, 0<x ≤2时,方程可变形为 1-m =x +1x,又∵y =x +1x在(0,1]上单调递减,[1,2]上单调递增,∴y =x +1x 在(0,2]的取值范围是[2,+∞),∴1-m ≥2,∴m ≤-1, 故m 的取值范围是(-∞,-1].B 组 专项能力提升 (时间:25分钟)11.(2014·重庆)已知函数f (x )=⎩⎪⎨⎪⎧1x +1-3, x ∈(-1,0],x ,x ∈(0,1],且g (x )=f (x )-mx -m 在(-1,1]内有且仅有两个不同的零点,则实数m 的取值范围是( ) A.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,12 B.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,12 C.⎝⎛⎦⎤-94,-2∪⎝⎛⎦⎤0,23 D.⎝⎛⎦⎤-114,-2∪⎝⎛⎦⎤0,23 答案 A解析 作出函数f (x )的图象如图所示, 其中A (1,1),B (0,-2).因为直线y =mx +m =m (x +1)恒过定点C (-1,0),故当直线y =m (x +1)在AC 位置时,m =12,可知当直线y =m (x +1)在x 轴和AC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与AC 重合但不能与x 轴重合),此时0<m ≤12,g (x )有两个不同的零点.当直线y =m (x +1)过点B 时,m =-2;当直线y =m (x +1)与曲线f (x )相切时,联立⎩⎪⎨⎪⎧y =1x +1-3,y =m (x +1),得mx 2+(2m +3)x +m +2=0,由Δ=(2m +3)2-4m (m +2)=0,解得m =-94,可知当y =m (x +1)在切线和BC 之间运动时两图象有两个不同的交点(直线y =m (x +1)可与BC 重合但不能与切线重合),此时-94<m ≤-2,g (x )有两个不同的零点.综上,m 的取值范围为(-94,-2]∪(0,12],故选A.12.若直角坐标平面内的两点P ,Q 满足条件:①P ,Q 都在函数y =f (x )的图象上;②P ,Q 关于原点对称,则称点对[P ,Q ]是函数y =f (x )的一对“友好点对”(点对[P ,Q ]与[Q ,P ]看作同一对“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0,则此函数的“友好点对”有( )A .0对B .1对C .2对D .3对 答案 C解析 函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,-x 2-4x ,x ≤0的图象及函数f (x )=-x 2-4x (x ≤0)的图象关于原点对称的图象如图所示,则A ,B 两点关于原点的对称点一定在函数f (x )=-x 2-4x (x ≤0)的图象上,故函数f (x )的“友好点对”有2对,选C.13.若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________. 答案 (512,34]解析 作出函数y 1=4-x 2和y 2=k (x -2)+3的图象如图所示,函数y 1的图象是圆心在原点,半径为2的圆在x 轴上方的半圆(包括端点),函数y 2的图象是过定点P (2,3)的直线,因为点A (-2,0),则k P A =3-02-(-2)=34.直线PB 是圆的切线,由圆心到直线的距离等于半径得,|3-2k PB |k 2PB +1=2,得k PB =512.由图可知当k PB <k ≤k P A 时,两函数图象有两个交点,即原方程有两个不等实根.所以512<k ≤34.14.已知0<a <1,k ≠0,函数f (x )=⎩⎪⎨⎪⎧a x, x ≥0,kx +1,x <0,若函数g (x )=f (x )-k 有两个零点,则实数k 的取值范围是________. 答案 (0,1)解析 函数g (x )=f (x )-k 有两个零点,即f (x )-k =0有两个解,即y =f (x )与y =k 的图象有两个交点.分k >0和k <0作出函数f (x )的图象.当0<k <1时,函数y =f (x )与y =k 的图象有两个交点;当k =1时,有一个交点;当k >1或k <0时,没有交点,故当0<k <1时满足题意.15.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x(x >0).(1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)方法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e , 故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 方法二 作出g (x )=x +e 2x (x >0)的大致图象如图.可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象如图.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2. ∴其图象的对称轴为x =e ,开口向下, 最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).。
§2.9函数模型及其应用1.几类函数模型及其增长差异(1)几类函数模型(2)(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题的意义.以上过程用框图表示如下:【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)函数y =2x 的函数值比y =x 2的函数值大.( × ) (2)幂函数增长比直线增长更快.( × ) (3)不存在x 0,使000log x n a ax x <<.( × )(4)美缘公司2013年上市的一种化妆品,由于脱销,在2014年曾提价25%,2015年想要恢复成原价,则应降价25%.( × )(5)某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,若按九折出售,则每件还能获利.( √ )(6)f (x )=x 2,g (x )=2x ,h (x )=log 2x ,当x ∈(4,+∞)时,恒有h (x )<f (x )<g (x ).( √ )1.(2014·湖南)某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A.p +q2B.(p +1)(q +1)-12C.pqD.(p +1)(q +1)-1答案 D解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.2.某公司租地建仓库,已知仓库每月占用费y 1与仓库到车站的距离成反比,而每月车载货物的运费y 2与仓库到车站的距离成正比.据测算,如果在距离车站10千米处建仓库,这两项费用y 1,y 2分别是2万元和8万元,那么要使这两项费用之和最小,仓库应建在离车站( ) A .5千米处 B .4千米处 C .3千米处 D .2千米处答案 A解析 由题意得,y 1=k 1x,y 2=k 2x ,其中x >0,当x =10时,代入两项费用y 1,y 2分别是2万元和8万元,可得k 1=20,k 2=45,y 1+y 2=20x +45x ≥220x ·45x =8,当且仅当20x =45x ,即x =5时取等号,故选A.3.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边长x 、y 应为( ) A .x =15,y =12 B .x =12,y =15 C .x =14,y =10 D .x =10,y =14答案 A解析 由三角形相似得24-y24-8=x 20,得x =54(24-y ),∴S =xy =-54(y -12)2+180,∴当y =12时,S 有最大值,此时x =15.4.(2014·北京)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a 、b 、c是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A .3.50分钟B .3.75分钟C .4.00分钟D .4.25分钟答案 B解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式,联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.0.所以p =-0.2t 2+1.5t -2.0=-15(t 2-152t +22516)+4516-2=-15(t -154)2+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.题型一 二次函数模型例1 某跳水运动员在一次跳水训练时的跳水曲线为如图所示的抛物线的一段,已知跳水板AB 长为2 m ,跳水板距水面CD 的高BC 为3 m ,CE =5 m ,CF =6 m ,为安全和空中姿态优美,训练时跳水曲线应在离起跳点h m(h ≥1)时达到距水面最大高度4 m ,规定:以CD 为横轴,CB 为纵轴建立直角坐标系. (1)当h =1时,求跳水曲线所在的抛物线方程;(2)若跳水运动员在区域EF 内入水时才能达到压水花的训练要求,求达到压水花的训练要求时h 的取值范围.解 (1)由题意知最高点为(2+h,4),h ≥1, 设抛物线方程为y =a [x -(2+h )]2+4,当h =1时,最高点为(3,4),方程为y =a (x -3)2+4, 将A (2,3)代入,得3=a (2-3)2+4,解得a =-1. ∴当h =1时,跳水曲线所在的抛物线方程为 y =-(x -3)2+4.(2)将点A (2,3)代入y =a [x -(2+h )]2+4 得ah 2=-1,所以a =-1h2.由题意,得方程a [x -(2+h )]2+4=0在区间[5,6]内有一解. 令f (x )=a [x -(2+h )]2+4=-1h 2[x -(2+h )]2+4,则f (5)=-1h 2(3-h )2+4≥0,且f (6)=-1h2(4-h )2+4≤0.解得1≤h ≤43.所以达到压水花的训练要求时h 的取值范围为[1,43].思维升华 实际生活中的二次函数问题(如面积、利润、产量等),可根据已知条件确定二次函数模型,结合二次函数的图象、单调性、零点解决,解题中一定要注意函数的定义域.某产品的总成本y (万元)与产量x (台)之间的函数关系是y =3 000+20x -0.1x 2(0<x <240,x ∈N *),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是( ) A .100台 B .120台 C .150台 D .180台答案 C解析 设利润为f (x )万元,则 f (x )=25x -(3 000+20x -0.1x 2) =0.1x 2+5x -3 000 (0<x <240,x ∈N *). 令f (x )≥0,得x ≥150,∴生产者不亏本时的最低产量是150台. 题型二 指数函数模型例2 (1)一个人喝了少量酒后,血液中的酒精含量迅速上升到0.3 mg/mL ,在停止喝酒后,血液中的酒精含量以每小时25%的速度减少,为了保障交通安全,某地根据《道路交通安全法》规定:驾驶员血液中的酒精含量不得超过0.09 mg/mL ,那么,此人至少经过________小时才能开车.(精确到1小时)(2)里氏震级M 的计算公式:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍. A .6 1 000 B .4 1000 C .6 10 000 D .4 10 000 答案 (1)5 (2)C解析 (1)设经过x 小时才能开车. 由题意得0.3(1-25%)x ≤0.09,∴0.75x ≤0.3,x ≥log 0.750.3≈4.19. ∴x 最小为5.(2)由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=3-(-3)=6,∴此次地震的震级为6级. 设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lg A 2-lg A 0)=9-5=4. ∴A 1A 2=104=10 000, ∴9级地震的最大振幅是5级地震最大振幅的10 000倍.思维升华 一般地,涉及增长率问题、存蓄利息问题、细胞分裂问题等,都可以考虑用指数函数的模型求解.求解时注意指数式与对数式的互化,指数函数的值域的影响以及实际问题中的条件限制.某种病毒经30分钟繁殖为原来的2倍,且知病毒的繁殖规律为y =e kt (其中k 为常数,t 表示时间,单位:小时,y 表示病毒个数),则k =________,经过5小时,1个病毒能繁殖为________个. 答案 2ln 2 1 024解析 当t =0.5时,y =2,∴2=12k e ,∴k =2ln 2,∴y =e 2t ln 2, 当t =5时,y =e 10ln 2=210=1 024. 题型三 分段函数模型例3 中共十八届三中全会提出要努力建设社会主义文化强国.为响应中央号召.某市2016年计划投入600万元加强民族文化基础设施改造.据调查,改造后预计该市在一个月内(以30天计),民族文化旅游人数f (x )(万人)与时间x (天)的函数关系近似满足f (x )=4(1+1x ),人均消费g (x )(元)与时间x (天)的函数关系近似满足g (x )=104-|x -23|.(1)求该市旅游日收益p (x )(万元)与时间x (1≤x ≤30,x ∈N *)的函数关系式;(2)若以最低日收益的15%为纯收入,该市对纯收入按1.5%的税率来收回投资,按此预计两年内能否收回全部投资.解 (1)由题意知p (x )=f (x )g (x )=4(1+1x)(104-|x -23|)(1≤x ≤30,x ∈N *).(2)由p (x )=⎩⎨⎧4(1+1x)(81+x )(1≤x ≤23,x ∈N *),4(1+1x )(127-x )(23<x ≤30,x ∈N *).①当1≤x ≤23时,p (x )=4(1+1x )(81+x )=4(82+x +81x )≥4(82+2x ·81x)=400, 当且仅当x =81x,即x =9时p (x )取得最小值400.②当23<x ≤30时,p (x )=4(1+1x )(127-x )=4(126+127x -x ).设h (x )=127x -x ,则有h ′(x )=-127x 2-1<0, 所以h (x )在(23,30]上为减函数,则p (x )在(23,30]上也是减函数,所以当x =30时,p (x )min =4(126+12730-30)=4001415>400. 所以当x =9时,p (x )取得最小值400万元.则两年内的税收为400×15%×30×12×2×1.5%=648>600,所以600万元的投资可以在两年内收回.思维升华 (1)分段函数的特征主要是每一段自变量变化所遵循的规律不同.分段函数模型的最值问题,应该先求出每一段上的最值,然后比较大小.(2)构造分段函数时,要力求准确、简洁,做到分段合理,保证不重不漏.某学校制定奖励条例,对在教育教学中取得优异成绩的教职工实行奖励,其中有一个奖励项目是针对学生高考成绩的高低对任课教师进行奖励的.奖励公式为f (n )=k (n )(n -10),n >10(其中n 是任课教师所在班级学生参加高考该任课教师所任学科的平均成绩与该科省平均分之差,f (n )的单位为元),而k (n )=⎩⎪⎨⎪⎧0 (n ≤10),100 (10<n ≤15),200 (15<n ≤20),300 (20<n ≤25),400 (n >25).现有甲、乙两位数学任课教师,甲所教的学生高考数学平均分超出省平均分18分,而乙所教的学生高考数学平均分超出省平均分21分.则乙所得奖励比甲所得奖励多( ) A .600元 B .900元 C .1 600元 D .1 700元答案 D解析 ∵k (18)=200(元),∴f (18)=200×(18-10)=1 600(元). 又∵k (21)=300(元),∴f (21)=300×(21-10)=3 300(元),∴f (21)-f (18)=3 300-1 600=1 700(元).故选D.函数应用问题典例:(12分)某工厂统计资料显示,一种产品次品率p 与日产量x (x ∈N *,80≤x ≤100)件之间的关系如下表所示:其中p (x )=1a -x (a 为常数).已知生产一件正品盈利k 元,生产一件次品损失k3元(k 为给定常数).(1)求出a ,并将该厂的日盈利额y (元)表示为日生产量x (件)的函数; (2)为了获得最大盈利,该厂的日生产量应该定为多少件?思维点拨 (1)首先根据图表确定次品率p (x ),利用“日盈利额=正品盈利总额-次品损失总额”求出y 关于x 的函数;(2)求第(1)步建立函数模型的最大值. 解 (1)根据列表数据可得a =108,所以p (x )=1108-x(x ∈N *,80≤x ≤100),[2分]由题意,当日产量为x 时,次品数为1108-x ·x ,正品数为(1-1108-x )·x ,[3分]所以y =(1-1108-x )·x ·k -1108-x ·x ·13k ,[5分] 整理得y =13kx (3-4108-x )(x ∈N *,80≤x ≤100).[6分](2)令t =108-x ,t ∈[8,28],t ∈N *.[7分] 则y =13k (108-t )(3-4t )=13k [328-3(t +144t)]≤13k (328-3×2·t ·144t )=2563k .[10分] 当且仅当t =144t ,即t =12时取得最大盈利,此时x =96.答 为了取得最大盈利,该工厂的日生产量应定为96件.[12分]答题模板解函数应用题的一般程序第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:解模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思——对于数学模型得到的数学结果,必须验证这个数学结果对实际问题的合理性.温馨提醒 (1)本题函数模型的建立分为两个阶段:先求次品率p (x ),再求日盈利额关于日产量x 的函数,要在充分理解题意的基础上建模;(2)求函数模型的最值时一定要考虑函数的定义域;解题步骤的最后要对所求问题作答.方法与技巧1.认真分析题意,合理选择数学模型是解决应用问题的基础.2.实际问题中往往解决一些最值问题,我们可以利用二次函数的最值、函数的单调性、基本不等式等求得最值.3.解函数应用题的四个步骤:①审题;②建模;③解模;④还原. 失误与防范1.函数模型应用不当,是常见的解题错误.所以,要正确理解题意,选择适当的函数模型. 2.要特别关注实际问题的自变量的取值范围,合理确定函数的定义域.3.注意问题反馈.在解决函数模型后,必须验证这个数学结果对实际问题的合理性.A 组 专项基础训练(时间:45分钟)1.某家具的标价为132元,若降价以九折出售(即优惠10%),仍可获利10%(相对进货价),则该家具的进货价是( ) A .118元 B .105元 C .106元 D .108元答案 D解析 设进货价为a 元,由题意知132×(1-10%)-a =10%·a ,解得a =108.2.若一根蜡烛长20 cm ,点燃后每小时燃烧5 cm ,则燃烧剩下的高度h (cm)与燃烧时间t (小时)的函数关系用图象表示为( )答案 B解析 根据题意得解析式为h =20-5t (0≤t ≤4),其图象为B.3.利民工厂某产品的年产量在150吨至250吨之间,年生产的总成本y (万元)与年产量x (吨)之间的关系可近似地表示为y =x 210-30x +4 000,则每吨的成本最低时的年产量为( )A .240吨B .200吨C .180吨D .160吨 答案 B解析 依题意,得每吨的成本为y x =x 10+4 000x -30,则yx≥2 x 10·4 000x-30=10, 当且仅当x 10=4 000x,即x =200时取等号,因此,当每吨成本最低时,年产量为200吨,故选B.4.某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( ) A .10元 B .20元 C .30元 D.403元 答案 A解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15, t =150时,150k 2-150k 1-20=150×15-20=10. 5.某汽车销售公司在A ,B 两地销售同一种品牌的汽车,在A 地的销售利润(单位:万元)为y 1=4.1x -0.1x 2,在B 地的销售利润(单位:万元)为y 2=2x ,其中x 为销售量(单位:辆),若该公司在两地共销售16辆该种品牌的汽车,则能获得的最大利润是( )A .10.5万元B .11万元C .43万元D .43.025万元答案 C解析 设公司在A 地销售该品牌的汽车x 辆,则在B 地销售该品牌的汽车(16-x )辆,所以可得利润y =4.1x -0.1x 2+2(16-x )=-0.1x 2+2.1x +32=-0.1(x -212)2+0.1×2124+32. 因为x ∈[0,16],且x ∈N ,所以当x =10或11时,总利润取得最大值43万元.6.如图是某质点在4秒钟内作直线运动时,速度函数v =v (t )的图象,则该质点运动的总路程为________cm.答案 11解析 总路程为(2+4)×1×12+4×1+12×2×4=11. 7.一个容器装有细沙a cm 3,细沙从容器底下一个细微的小孔慢慢地匀速漏出,t min 后剩余的细沙量为y =a e -bt (cm 3),经过8 min 后发现容器内还有一半的沙子,则再经过________ min ,容器中的沙子只有开始时的八分之一.答案 16解析 当t =0时,y =a ,当t =8时,y =a e -8b =12a , ∴e -8b =12,容器中的沙子只有开始时的八分之一时, 即y =a e -bt =18a , e -bt =18=(e -8b )3=e -24b ,则t =24,所以再经过16 min.8.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________ km.答案 9解析 设出租车行驶x km 时,付费y 元,则y =⎩⎪⎨⎪⎧ 9,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6,解得x =9.9.某地上 年度电价为0.8元,年用电量为1亿千瓦时.本年度计划将电价调至0.55元~0.75元之间,经测算,若电价调至x 元,则本年度新增用电量y (亿千瓦时)与(x -0.4)(元)成反比例.又当x =0.65时,y =0.8.(1)求y 与x 之间的函数关系式;(2)若每千瓦时电的成本价为0.3元,则电价调至多少时,本年度电力部门的收益将比上年度增加20%?[收益=用电量×(实际电价-成本价)]解 (1)∵y 与(x -0.4)成反比例,∴设y =k x -0.4(k ≠0). 把x =0.65,y =0.8代入上式,得0.8=k 0.65-0.4,k =0.2. ∴y =0.2x -0.4=15x -2, 即y 与x 之间的函数关系式为y =15x -2. (2)根据题意,得(1+15x -2)·(x -0.3) =1×(0.8-0.3)×(1+20%).整理,得x 2-1.1x +0.3=0,解得x 1=0.5,x 2=0.6.经检验x 1=0.5,x 2=0.6都是所列方程的根.∵x 的取值范围是0.55~0.75,故x =0.5不符合题意,应舍去.∴x =0.6.∴当电价调至0.6元时,本年度电力部门的收益将比上年度增加20%.10.“活水围网”养鱼技术具有养殖密度高、经济效益好的特点.研究表明:“活水围网”养鱼时,某种鱼在一定的条件下,每尾鱼的平均生长速度v (单位:千克/年)是养殖密度x (单位:尾/立方米)的函数.当x 不超过4尾/立方米时,v 的值为2千克/年;当4<x ≤20时,v 是x 的一次函数,当x 达到20尾/立方米时,因缺氧等原因,v 的值为0千克/年.(1)当0<x ≤20时,求函数v 关于x 的函数表达式;(2)当养殖密度x 为多大时,鱼的年生长量(单位:千克/立方米)可以达到最大?并求出最大值. 解 (1)由题意得当0<x ≤4时,v =2;当4<x ≤20时,设v =ax +b ,显然v =ax +b 在(4,20]内是减函数,由已知得⎩⎪⎨⎪⎧ 20a +b =0,4a +b =2,解得⎩⎨⎧ a =-18,b =52,所以v =-18x +52, 故函数v =⎩⎪⎨⎪⎧ 2, 0<x ≤4,-18x +52, 4<x ≤20.(2)设年生长量为f (x )千克/立方米,依题意并由(1)可得f (x )=⎩⎪⎨⎪⎧2x , 0<x ≤4,-18x 2+52x , 4<x ≤20, 当0<x ≤4时,f (x )为增函数,故f (x )max =f (4)=4×2=8;当4<x ≤20时,f (x )=-18x 2+52x =-18(x 2-20x )=-18(x -10)2+1008,f (x )max =f (10)=12.5. 所以当0<x ≤20时,f (x )的最大值为12.5.即当养殖密度为10尾/立方米时,鱼的年生长量可以达到最大,最大值为12.5千克/立方米.B 组 专项能力提升(时间:25分钟)11.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图象,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00答案 C解析 当x ∈[0,4]时,设y =k 1x ,把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)分别代入 可得⎩⎪⎨⎪⎧k 2=-20,b =400.∴y =400-20x . ∴y =f (x )=⎩⎪⎨⎪⎧80x , 0≤x ≤4,400-20x , 4<x ≤20.由y ≥240, 得⎩⎪⎨⎪⎧ 0≤x ≤480x ≥240或⎩⎪⎨⎪⎧ 4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8,∴3≤x ≤8.故第二次服药最迟应在当日下午4:00.故选C.12.我国为了加强对烟酒生产的宏观管理,除了应征税收外,还征收附加税.已知某种酒每瓶售价为70元,不收附加税时,每年大约销售100万瓶;若每销售100元国家要征附加税x 元(叫做税率x %),则每年销售量将减少10x 万瓶,如果要使每年在此项经营中所收取的附加税额不少于112万元,则x 的最小值为( )A .2B .6C .8D .10答案 A解析 由分析可知,每年此项经营中所收取的附加税额为104·(100-10x )·70·x 100,令104·(100-10x )·70·x 100≥112×104,解得2≤x ≤8.故x 的最小值为2. 13.某工厂采用高科技改革,在两年内产值的月增长率都是a ,则这两年内第二年某月的产值比第一年相应月产值的增长率为( )A .a 12-1B .(1+a )12-1C .aD .a -1答案 B解析 不妨设第一年8月份的产值为b ,则9月份的产值为b (1+a ),10月份的产值为b (1+a )2,依次类推,到第二年8月份是第一年8月份后的第12个月,即一个时间间隔是1个月,这里跨过了12个月,故第二年8月份产值是b (1+a )12.又由增长率的概念知,这两年内的第二年某月的产值比第一年相应月产值的增长率为b (1+a )12-b b=(1+a )12-1. 14.某化工厂打算投入一条新的生产线,但需要经环保部门审批后方可投入生产.已知该生产线连续生产n 年的累计产量为f (n )=12n (n +1)(2n +1)吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是________年.答案 7解析 设第n (n ∈N *)年的年产量为a n ,则a 1=12×1×2×3=3;当n ≥2时,a n =f (n )-f (n -1)=12n (n +1)·(2n +1)-12n (n -1)(2n -1)=3n 2.又a 1=3也符合a n =3n 2,所以a n =3n 2(n ∈N *).令a n ≤150,即3n 2≤150,解得-52≤n ≤52,所以1≤n ≤7,n ∈N *,故最长的生产期限为7年.15.某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x-1 450(万元).通过市场分析,若每件售价为500元时,该厂年内生产的商品能全部销售完.(1)写出年利润L (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?解 (1)当0<x <80,x ∈N *时,L (x )=500×1 000x 10 000-13x 2-10x -250 =-13x 2+40x -250; 当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x+1 450-250 =1 200-(x +10 000x), ∴L (x )=⎩⎨⎧ -13x 2+40x -250(0<x <80,x ∈N *),1 200-(x +10 000x )(x ≥80,x ∈N *).(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950, ∴当x =60时,L (x )取得最大值L (60)=950.当x ≥80,x ∈N *时,L (x )=1 200-(x +10 000x)≤1 200-2 x ·10 000x=1 200-200=1 000,∴当x =10 000x,即x =100时, L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000, 即年产量为100千件时,该厂在这一商品的生产中所获利润最大.。
第二章 函数概念与基本初等函数I 第7讲 函数的图象练习 理 新人教A 版基础巩固题组(建议用时:40分钟)一、选择题1.为了得到函数y =2x -2的图象,可以把函数y =2x 图象上所有的点( )A.向右平行移动2个单位长度B.向右平行移动1个单位长度C.向左平行移动2个单位长度D.向左平行移动1个单位长度解析 因为y =2x -2=2(x -1),所以只需将函数y =2x 的图象上所有的点向右平移1个单位长度即可得到y =2(x -1)=2x -2的图象.答案 B2.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是( )解析 小明匀速运动时,所得图象为一条直线,且距离学校越来越近,排除A.因交通堵塞停留了一段时间,与学校的距离不变,排除D.后来为了赶时间加快速度行驶,排除B.故选C.答案 C3.(2015·浙江卷)函数f (x )=⎝ ⎛⎭⎪⎫x -1x cos x (-π≤x ≤π且x ≠0)的图象可能为( )解析 (1)因为f (-x )=⎝ ⎛⎭⎪⎫-x +1x cos(-x )=-⎝ ⎛⎭⎪⎫x -1x cos x =-f (x ),-π≤x ≤π且x ≠0,所以函数f (x )为奇函数,排除A ,B.当x =π时,f (x )=⎝ ⎛⎭⎪⎫π-1πcos π<0,排除C ,故选D.答案 D4.(2017·桂林一调)函数y =(x 3-x )2|x |的图象大致是( )解析 由于函数y =(x 3-x )2|x |为奇函数,故它的图象关于原点对称.当0<x <1时,y <0;当x >1时,y >0.排除选项A ,C ,D ,选B.答案 B5.使log 2(-x )<x +1成立的x 的取值范围是( )A.(-1,0)B.[-1,0)C.(-2,0)D.[-2,0) 解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0),故选A.答案 A二、填空题6.已知函数f (x )的图象如图所示,则函数g (x )=log 2f (x )的定义域是________.解析 当f (x )>0时,函数g (x )=log 2f (x )有意义,由函数f (x )的图象知满足f (x )>0的x ∈(2,8]. 答案 (2,8]7.如图,定义在[-1,+∞)上的函数f (x )的图象由一条线段及抛物线的一部分组成,则f (x )的解析式为________.解析 当-1≤x ≤0时,设解析式为y =kx +b (k ≠0).则⎩⎪⎨⎪⎧-k +b =0,b =1,得⎩⎪⎨⎪⎧k =1,b =1,∴y =x +1. 当x >0时,设解析式为y =a (x -2)2-1(a ≠0).∵图象过点(4,0),∴0=a (4-2)2-1,得a =14. 答案 f (x )=⎩⎪⎨⎪⎧x +1,-1≤x ≤0,14(x -2)2-1,x >0 8.设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是________.解析 如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知:当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).答案 [-1,+∞)三、解答题9.已知函数f (x )=⎩⎪⎨⎪⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5]. (1)在如图所示给定的直角坐标系内画出f (x )的图象;(2)写出f (x )的单调递增区间;(3)由图象指出当x 取什么值时f (x )有最值.解 (1)函数f (x )的图象如图所示.(2)由图象可知,函数f (x )的单调递增区间为[-1,0],[2,5].(3)由图象知当x =2时,f (x )min =f (2)=-1,当x =0时,f (x )max =f (0)=3.10.已知f (x )=|x 2-4x +3|.(1)作出函数f (x )的图象;(2)求函数f (x )的单调区间,并指出其单调性;(3)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.解 (1)当x 2-4x +3≥0时,x ≤1或x ≥3,∴f (x )=⎩⎪⎨⎪⎧x 2-4x +3,x ≤1或x ≥3,-x 2+4x -3,1<x <3, ∴f (x )的图象为:(2)由函数的图象可知f (x )的单调区间是(-∞,1],(2,3),(1,2],[3,+∞),其中(-∞,1],(2,3)是减区间;(1,2],[3,+∞)是增区间.(3)由f (x )的图象知,当0<m <1时,f (x )=m 有四个不相等的实根,所以M ={m |0<m <1}.能力提升题组(建议用时:20分钟)11.已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x -1,x ≥0,x 2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是( )A.f (x 1)+f (x 2)<0B.f (x 1)+f (x 2)>0C.f (x 1)-f (x 2)>0D.f (x 1)-f (x 2)<0解析 函数f (x )的图象如图所示:且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数.又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.答案 D12.(2015·安徽卷)函数f (x )=ax +b (x +c )2的图象如图所示,则下列结论成立的是( )A.a >0,b >0,c <0B.a <0,b >0,c >0C.a <0,b >0,c <0D.a <0,b <0,c <0解析 函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0.令x =0,得f (0)=bc 2,又由图象知f (0)>0,∴b >0.令f (x )=0,得x =-b a ,结合图象知-b a>0,∴a <0.答案 C13.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,都有f (x )≤|k -1|成立,则实数k 的取值范围为________.解析 对任意x ∈R ,都有f (x )≤|k -1|成立,即f (x )max ≤|k -1|.因为f (x )的草图如图所示,观察f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1 的图象可知,当x =12时,函数f (x )max =14, 所以|k -1|≥14,解得k ≤34或k ≥54. 答案 ⎝ ⎛⎦⎥⎤-∞,34∪⎣⎢⎡⎭⎪⎫54,+∞ 14.已知函数f (x )的图象与函数h (x )=x +1x+2的图象关于点A (0,1)对称. (1)求函数f (x )的解析式;(2)若g (x )=f (x )+a x ,g (x )在区间(0,2]上的值不小于6,求实数a 的取值范围. 解 (1)设f (x )图象上任一点坐标为(x ,y ),∵点(x ,y )关于点A (0,1)的对称点(-x ,2-y )在h (x )的图象上,∴2-y =-x +1-x +2,∴y =x +1x ,即f (x )=x +1x. (2)由题意g (x )=x +a +1x , 且g (x )=x +a +1x≥6,x ∈(0,2]. ∵x ∈(0,2],∴a +1≥x (6-x ),即a ≥-x 2+6x -1.令q (x )=-x 2+6x -1,x ∈(0,2], q (x )=-x 2+6x -1=-(x -3)2+8,∴当x ∈(0,2]时,q (x )是增函数,q (x )max =q (2)=7.故实数a 的取值范围是[7,+∞).。
图象真题演练集训理新人教A版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.7 函数的图象真题演练集训理新人教A版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高考数学一轮复习第二章函数概念与基本初等函数Ⅰ2.7 函数的图象真题演练集训理新人教A版的全部内容。
的图象真题演练集训理新人教A版1.[2016·新课标全国卷Ⅰ]函数y=2x2-e|x|在[-2,2]的图象大致为()A BC D答案:D解析:当x≥0时,令函数f(x)=2x2-e x,则f′(x)=4x-e x,易知f′(x)在[0,ln 4)上单调递增,在[ln 4,2]上单调递减,又f′(0)=-1<0,f′错误!=2-错误!>0,f′(1)=4-e〉0,f′(2)=8-e2>0,所以存在x0∈错误!是函数f(x)的极小值点,即函数f(x)在(0,x0)上单调递减,在(x0,2)上单调递增,且该函数为偶函数,符合条件的图象为D.2.[2016·新课标全国卷Ⅱ]已知函数f(x)(x∈R)满足f(-x)=2-f(x),若函数y =错误!与y=f(x)图象的交点为(x1,y1),(x2,y2),…,(x m,y m),则错误!(x i+y i)=( ) A.0 B.mC.2m D.4m答案:B解析:因为f(x)+f(-x)=2,y=错误!=1+错误!,所以函数y=f(x)与y=错误!的图象都关于点(0,1)对称,所以错误!i=0,错误!i=错误!×2=m,故选B.3.[2015·安徽卷]函数f(x)=错误!的图象如图所示,则下列结论成立的是( )A.a>0,b〉0,c〈0B.a〈0,b〉0,c>0C.a〈0,b〉0,c〈0D.a<0,b<0,c〈0答案:C解析:函数的定义域为{x|x≠-c},结合图象知-c〉0,∴c<0.令x=0,得f(0)=错误!,又由图象知f(0)>0,∴b〉0。
第二篇函数与基本初等函数Ⅰ第1讲函数及其表示【2014年高考会这样考】1.主要考查函数的定义域、值域、解析式的求解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.考查简单的分段函数,并能简单应用.考点梳理1.函数的基本概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.(3)函数的三要素:定义域、值域和对应法则.(4)相等函数:如果两个函数的定义域和对应关系完全一致,那么这两个函数相等,这是判断两个函数相等的依据.(5)函数的表示法.表示函数的常用方法有:解析法、图象法、列表法.2.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.3.映射的概念设A、B是两个非空集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A 到集合B的一个映射.【助学·微博】一种方法求复合函数定义域的方法(1)已知函数f(x)的定义域为[a,b],则复合函数f(g(x))的定义域由不等式a≤g(x)≤b 求出.(2)已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域. 两个防范(1)解决函数的任意问题,把求函数的定义域放在首位,即遵循“定义域优先”的原则. (2)用换元法解题时,应注意换元前后的等价性.考点自测1.(人教A 版教材习题改编)下列各对函数中,表示同一函数的是( ). A .f (x )=lg x 2,g (x )=2lg x B .f (x )=lg x +1x -1,g (x )=lg(x +1)-lg(x -1) C .f (u )=1+u1-u,g (v )= 1+v1-vD .f (x )=(x )2,g (x )=x 2答案 C2.已知a ,b 为实数,集合M =⎩⎨⎧⎭⎬⎫ba,1,N ={a,0},f :x →x 表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( ). A .-1 B .1 C .0 D .±1解析 由集合性质结合已知条件可得a =1,b =0,∴a +b =1. 答案 B3.(2012·江西)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=A .lg 101B .2C .1D .0解析 f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 答案 B4.(2013·杭州模拟)函数y =16-4x的值域是( ). A .[0,+∞) B.[0,4] C .[0,4) D .(0,4)解析 由已知得0≤16-4x<16,0≤16-4x<16=4,即函数y =16-4x的值域是[0,4),选C. 答案 C5.(2012·江苏)函数f (x )=1-2log 6 x 的定义域为________.解析 由题意,知⎩⎪⎨⎪⎧1-2log 6x ≥0,x >0⇒⎩⎪⎨⎪⎧log 6x 2≤1=log 66,x >0⇒0<x ≤6,所以函数f (x )的定义域为(0,6].答案 (0,6]考向一 求函数的定义域【例1】►(1)函数f (x )=1xln(x 2-3x +2+-x 2-3x +4)的定义域为( ).A .(-∞,-4]∪[2,+∞) B.(-4,0)∪(0,1) C .[-4,0)∪(0,1] D .[-4,0)∪(0,1)(2)已知函数f (2x)的定义域是[1,2],则函数f (log 2x )的定义域为________. [审题视点] (1)理解各代数式有意义的前提,列不等式组解得. (2)根据求复合函数定义域的解法求解.解析 (1)⎩⎨⎧x ≠0,x 2-3x +2≥0,-x 2-3x +4≥0,x 2-3x +2+-x 2-3x +4>0⇒-4≤x <1且x ≠0,故选D.(2)在函数f (2x )中,定义域为[1,2],即1≤x ≤2,2≤2x≤4,∴f (x )的定义域为[2,4].要求f (log 2x )的定义域,则2≤log 2x ≤4,4≤x ≤16,∴f (log 2x )的定义域为[4,16]. 答案 (1)D (2)[4,16]求函数定义域的主要依据是:(1)分式的分母不为零;(2)偶次方根的被开方数大于或等于零;(3)对数的真数大于零,底数大于零且不等于1;(4)零次幂的底数不为零;(5)若函数f (x )的定义域为D ,则对于复合函数y =f [g (x )],其定义域由满足g (x )∈D 的x 来确定.【训练1】 (2012·山东)函数f (x )=1ln x +1+4-x 2的定义域为( ). A .[-2,0)∪(0,2] B .(-1,0)∪(0,2] C .[-2,2] D .(-1,2]解析 f (x )有意义,应满足⎩⎪⎨⎪⎧ln x +1≠0,4-x 2≥0,x +1>0,解得 ⎩⎪⎨⎪⎧x >-1,且x ≠0,-2≤x ≤2,∴f (x )的定义域为{x |-1<x ≤2且x ≠0}. 答案 B考向二 求函数的解析式【例2】►(1)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式; (3)定义在(-1,1)内的函数f (x )满足2f (x )-f (-x )=lg(x +1),求函数f (x )的解析式. [审题视点] (1)用换元法求解.(2)已知f (x )是一次函数,用待定系数法求解. (3)式中含有x ,-x ,故构造方程组求解. 解 (1)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)设f (x )=kx +b (k ≠0),∴3f (x +1)-2f (x -1)=3[k (x +1)+b ]-2[k (x -1)+b ]=kx +5k +b =2x +17.∴⎩⎪⎨⎪⎧k =2,5k +b =17,即⎩⎪⎨⎪⎧k =2,b =7,∴f (x )=2x +7.(3)x ∈(-1,1)时,有2f (x )-f (-x )=lg(x +1).① 以-x 代x ,得2f (-x )-f (x )=lg (-x +1).②由①②消去f (-x ),得f (x )=23lg(x +1)+13lg(1-x ),x ∈(-1,1).函数解析式的求法(1)凑配法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数等),可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)方程思想:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).【训练2】 已知f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,则f (x )的解析式可取为( ).A.x1+x2(x ≠-1) B .-2x1+x2(x ≠1) C.2x 1+x 2(x ≠-1) D .-x 1+x2(x ≠1) 解析 由f ⎝ ⎛⎭⎪⎫1-x 1+x =1-x 21+x 2,令1-x 1+x =t ⇒x =2t +1-1且t ≠-1⇒f (t )=1-⎝ ⎛⎭⎪⎫2t +1-121+⎝ ⎛⎭⎪⎫2t +1-12=2t t 2+1,∴f (x )=2xx 2+1,x ≠-1. 答案 C考向三 分段函数及其应用【例3】►(2012·江苏)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.[审题视点] 本题考查分段函数及函数的周期性等知识,题目中挖掘隐含条件f (-1)=f (1)对于解决本题至关重要.解析 因为f (x )是定义在R 上且周期为2的函数,所以f ⎝ ⎛⎭⎪⎫32=f ⎝ ⎛⎭⎪⎫-12,且f (-1)=f (1),故f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫-12, 从而12b +212+1=-12a +1,3a +2b =-2.①由f (-1)=f (1),得-a +1=b +22,故b =-2a .②由①②得a =2,b =-4,从而a +3b =-10. 答案 -10对于解决分段函数问题,其基本方法是“分段归类”即自变量涉及到哪一段就用这一段的解析式.【训练3】 已知函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,2x,x ≤0,若f (a )=12,则a 的值为( ).A .-1 B. 2 C .-1或12 D .-1或 2解析 若a >0,有log 2a =12,a =2;若a ≤0,有2a=12,a =-1.答案 D热点突破3——函数新定义问题【命题研究】 以高等数学知识为背景的新定义问题是近几年来高考命题的热点,在近年的高考题中常能找到它的影子,如2012年福建卷第10题、2012年湖北卷第7题等.此类试题着重考查考生的阅读理解能力、分析问题和解决问题的能力,求解时可通过选取满足题设条件的特殊函数,化抽象为直观,使得此类问题得以突破.预测2014年高考仍会有函数新定义题出现.【真题探究】► (2012·湖北)定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (a n )}仍是等比数列,则称f (x )为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f (x )=x 2;②f (x )=2x;③f (x )=|x |;④f (x )=ln |x |.则其中是“保等比数列函数”的f (x )的序号为( ). A .①② B .③④ C .①③ D .②④[教你审题] 本题是一道自主定义的新函数试题,如果“单刀直入,强行突破”,解题过程会很繁杂,因此,我们可以选择对四个选项中的函数逐一推理论证,看其是否满足“保等比数列函数”的定义(见法一);也可以利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,对所给函数选取特殊值进行验证(见法二).[解法] 法一 设数列{a n }的公比为q (q ≠0).对于①,f a n +1f a n =a 2n +1a 2n=q 2,是常数,故①符合条件;对于②,f a n +1f a n =2a n +12a n=2a n +1-a n ,不是常数,故②不符合条件;对于③,f a n +1f a n =|a n +1||a n |=⎪⎪⎪⎪⎪⎪a n +1a n =|q |,是常数,故③符合条件;对于④,f a n +1f a n =ln|a n +1|ln|a n |=log|a n ||a n +1|,不是常数,故④不符合条件.由“保等比数列函数”的定义,知选C.法二 取x 为1,2,4,则1,2,4成等比数列;对于函数f (x )=2x,有f (1)=2,f (2)=22,f (4)=24,所以f (1)·f (4)≠[f (2)]2,故函数f (x )=2x 不是“保等比数列函数”,可排除A ,D ;对于函数f (x )=ln|x |,有f (1)=0,f (2)=ln 2,f (4)=ln 4,所以f (1)·f (4)≠[f (2)]2,故函数f (x )=ln|x |不是“保等比数列函数”,可排除B.应选C.答案 C[反思] (1)本题以等比数列与基本初等函数知识为背景,给出了一个新的概念“保等比数列函数”,把函数与数列两知识块自然地融合在一起,考查了灵活运用数学知识分析问题和解决问题的能力.(2)求解新定义问题的关键是读懂新定义的意义,并将其运用到新的情境中.对特殊值的敏感,对已知选项的理解,可从中提取有效的信息.特殊值的选定,一要典型,能定性说明问题;二要简单,便于推理运算.【试一试】 若对于函数f (x )定义域内的任意一个自变量x 1,都存在唯一一个自变量x 2,使得fx 1f x 2=1成立,则称f (x )为好函数”.给出四个函数:①f (x )=10x ;②f (x )=lg 1x;③f (x )=sin x ,x ∈(0,π);④f (x )=2cos x ,x ∈(0,π).其中为“好函数”的函数的个数为( ). A .1 B .2 C .3 D .4解析 ①f (x 1)f (x 2)=10x 1+x 2=1,只需x 1+x 2=0,x 2唯一;②f (x 1)f (x 2)=lg 1x 1·lg 1x 2=1,只需lg x 1=1lg x 2,x 2唯一;③f (x 1)f (x 2)=sin x 1sin x 2=1,x 2不存在;④f (x 1)f (x 2)=2cos x 1+cos x 2=1,cos x 1+cos x 2=0,x 2唯一. 答案 CA 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分) 1.下列各对函数中,是同一个函数的是 ( ).A .f (x )=x 2,g (x )=3x 3B .f (x )=|x |x ,g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0C .f (x )=2n +1x 2n +1,g (x )=(2n -1x )2n -1,n ∈N *D .f (x )=x ·x +1,g (x )=x x +1解析 对于选项A ,由于f (x )=x 2=|x |,g (x )=3x 3=x ,故它们的值域及对应法则都不相同,所以它们不是同一个函数;对于选项B ,由于函数f (x )的定义域为(-∞,0)∪(0,+∞),而g (x )的定义域为R ,所以它们不是同一个函数;对于选项C ,由于当n ∈N *时,2n ±1为奇数,所以f (x )=2n +1x 2n +1=x ,g (x )=(2n -1x )2n -1=x ,它们的定义域、值域及对应法则都相同,所以它们是同一个函数;对于选项D ,由于函数f (x )=x ·x +1的定义域为[0,+∞),而g (x )=x x +1的定义域为(-∞,-1]∪[0,+∞),它们的定义域不同,所以它们不是同一个函数. 答案 C2.(2012·江西)下列函数中,与函数y =13x定义域相同的函数为 ( ).A .y =1sin xB .y =ln xxC .y =x e xD .y =sin x x解析 函数y =13x的定义域为{x |x ≠0,x ∈R }与函数y =sin x x的定义域相同,故选D.答案 D3.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y =x 2+1,值域为{1,3}的同族函数有 ( ). A .1个B .2个C .3个D .4个解析 由x 2+1=1,得x =0.由x 2+1=3,得x =±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个. 答案 C4.(2012·安徽)下列函数中,不满足f (2x )=2f (x )的是( ).A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析 因为f (x )=kx 与f (x )=k |x |均满足f (2x )=2f (x ),所以A ,B ,D 满足条件;对于C ,若f (x )=x +1,则f (2x )=2x +1≠2f (x )=2x +2. 答案 C二、填空题(每小题5分,共10分) 5.已知函数f (x ),g (x )分别由下表给出,则f [g (1)]的值为________________.解析 ∵g (1)=3,∴f [g (1)]=f (3)=1,由表格可以发现g (2)=2,f (2)=3,∴f (g (2))=3,g (f (2))=1. 答案 1 26.函数y =x +1-x -1的值域为________.解析 函数定义域为[1,+∞), ∵y =x +1-x -1=2x +1+x -1,当x ≥1时是减函数,∴0<y =2x +1+x -1≤22= 2.故函数的值域为(0,2]. 答案 (0,2] 三、解答题(共25分)7.(12分)记f (x )=lg(2x -3)的定义域为集合M ,函数g (x )=1-2x -1的定义域为集合N ,求:(1)集合M ,N ;(2)集合M ∩N ,M ∪N .解 (1)M ={x |2x -3>0}=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >32, N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-2x -1≥0=⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -3x -1≥0={x |x ≥3,或x <1}. (2)M ∩N ={x |x ≥3},M ∪N =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <1或x >32. 8.(13分)二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x+1)+1-(ax 2+bx +1)=2ax +a +b ,由题意,得⎩⎪⎨⎪⎧2a =2,a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-1,故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减, 所以g (x )min =g (1)=-1,故m <-1.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分) 1.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图可知0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ), ∴|lg a |=|lg b |,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b,∴ab =1,10<abc =c <12.故应选C. 答案 C2.定义两种运算:a ⊕b =a 2-b 2,a ⊗b =a -b2,则函数f (x )=2⊕xx ⊗2-2的解析式为( ).A .f (x )=4-x2x,x ∈[-2,0)∪(0,2]B .f (x )=x 2-4x ,x ∈(-∞,-2]∪[2,+∞)C .f (x )=-x 2-4x,x ∈(-∞,-2]∪[2,+∞)D .f (x )=-4-x2x,x ∈[-2,0)∪(0,2]解析 ∵2⊕x =4-x 2,x ⊗2=x -22=|x -2|,∴f (x )=4-x2|x -2|-2.注意到定义域:⎩⎪⎨⎪⎧4-x 2≥0,|x -2|≠2⇒⎩⎪⎨⎪⎧-2≤x ≤2,x ≠0且x ≠4⇒x ∈[-2,0)∪(0,2],∴f (x )=-4-x2x,x ∈[-2,0)∪(0,2].答案 D二、填空题(每小题5分,共10分)3.设f (x )=1-x 21+x 2,则f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫12+f (1)+f (2)+f (3)+f (4)=________.解析 因为f (x )=1-x 21+x 2,所以f ⎝ ⎛⎭⎪⎫1x =-1-x 21+x 2,f ⎝ ⎛⎭⎪⎫1x +f (x )=0,所以f ⎝ ⎛⎭⎪⎫14+f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫12+f (1)+f (2)+f (3)+f (4)=f (1)=0.答案 04.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由题意有⎩⎪⎨⎪⎧1-x 2>0,2x <0或⎩⎪⎨⎪⎧1-x 2>2x ,2x ≥0解得-1<x <0或0≤x <2-1,∴所求x的取值范围为(-1,2-1). 答案 (-1,2-1) 三、解答题(共25分)5.(12分)设函数f (x )=⎩⎪⎨⎪⎧1,1≤x ≤2,x -1,2<x ≤3,g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ).(1)求函数h (a )的解析式;(2)画出函数y =h (x )的图象并指出h (x )的最小值.解 (1)由题意知g (x )=⎩⎪⎨⎪⎧1-ax ,1≤x ≤2,1-a x -1,2<x ≤3,当a <0时,函数g (x )是[1,3]上的增函数,此时g (x )max =g (3)=2-3a ,g (x )min =g (1)=1-a ,所以h (a )=1-2a ;当a >1时,函数g (x )是[1,3]上的减函数,此时g (x )min =g (3)=2-3a ,g (x )max =g (1)=1-a ,所以h (a )=2a -1;当0≤a ≤1时,若x ∈[1,2],则g (x )=1-ax ,有g (2)≤g (x )≤g (1);若x ∈(2,3],则g (x )=(1-a )x -1,有g (2)<g (x )≤g (3),因此g (x )min =g (2)=1-2a ,而g (3)-g (1)=(2-3a )-(1-a )=1-2a ,故当0≤a ≤12时,g (x )max =g (3)=2-3a ,有h (a )=1-a ;当12<a ≤1时,g (x )max =g (1)=1-a ,有h (a )=a . 综上所述,h (a )=⎩⎪⎨⎪⎧1-2a ,a <0,1-a ,0≤a ≤12,a ,12<a ≤1,2a -1,a >1.(2)画出y =h (x )的图象,如图所示,数形结合可得h (x )min =h ⎝ ⎛⎭⎪⎫12=12.[6.(13分)(2012·江苏)设集合P n ={1,2,…,n },n ∈N *.记f (n )为同时满足下列条件的集合A 的个数:①A ⊆P n ;②若x ∈A ,则2x ∉A ;③若x ∈∁P n A ,则2x ∉∁P n A . (1)求f (4);(2)求f (n )的解析式(用n 表示).解 (1)当n =4时,符合条件的集合A 为:{2},{1,4},{2,3},{1,3,4},故f (4)=4. (2)任取偶数x ∈P n ,将x 除以2,若商仍为偶数,再除以2,…,经过k 次以后,商必为奇数,此时记商为m ,于是x =m ·2k,其中m 为奇数,k ∈N *. 由条件知,若m ∈A ,则x ∈A ⇔k 为偶数; 若m ∉A ,则x ∈A ⇔k 为奇数.于是x 是否属于A 由m 是否属于A 确定.设Q n 是P n 中所有奇数的集合,因此f (n )等于Q n的子集个数.当n 为偶数(或奇数)时,P n 中奇数的个数是n 2(或n +12),所以f (n )=⎩⎪⎨⎪⎧2n2,n 为偶数,2n +12,n 为奇数.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.第2讲 函数的单调性与最值【2014年高考会这样考】1.考查求函数单调性和最值的基本方法. 2.利用函数的单调性求单调区间.3.利用函数的单调性求最值和参数的取值范围.4.函数的单调性和其它知识结合综合考查求函数最值、比较大小、解不等式等相关问题.考点梳理1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f(x)的定义域为I,如果对于定义域I内某个区间D上的任意两个自变量x1,x2当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.2.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M.(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M.结论M为最大值M为最小值【助学·微博】一个防范单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用符号“∪”联结,也不能用“或”联结.两种形式设任意x1,x2∈[a,b]且x1<x2,那么①f x1-f x2x1-x2>0⇔f(x)在[a,b]上是增函数;f x1-f x2x1-x2<0⇔f(x)在[a,b]上是减函数.②(x1-x2)[f(x1)-f(x2)]>0⇔f(x)在[a,b]上是增函数;(x1-x2)[f(x1)-f(x2)]<0⇔f(x)在[a ,b ]上是减函数. 两条结论(1)闭区间上的连续函数一定存在最大值和最小值.当函数在闭区间上单调时最值一定在端点取到.(2)开区间上的“单峰”函数一定存在最大(小)值.考点自测1.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则( ). A .f (3)<f (-2)<f (1) B .f (1)<f (-2)<f (3) C .f (-2)<f (1)<f (3) D .f (3)<f (1)<f (-2)解析 因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,f (1)<f (2)<f (3).又函数f (x )=log a |x |为偶函数,所以f (2)=f (-2),所以f (1)<f (-2)<f (3).答案 B2.(2013·西安调研)设f (x )为定义在R 上的奇函数,且当x ≥0时,f (x )单调递减,若x 1+x 2>0,则f (x 1)+f (x 2)的值( ).A .恒为正值B .恒等于零C .恒为负值D .无法确定正负解析 f (x )为奇函数且x ≥0时f (x )为减函数,故f (x )在R 上是减函数,由x 1+x 2>0,得x 1>-x 2,故f (x 1)<f (-x 2),即f (x 1)-f (-x 2)<0,即f (x 1)+f (x 2)<0.答案 C3.(2012·广东)下列函数中,在区间(0,+∞)上为增函数的是( ). A .y =ln(x +2) B .y =-x +1 C .y =⎝ ⎛⎭⎪⎫12xD .y =x +1x解析 采用验证法,易知函数y =ln(x +2)在(-2,+∞)上是增函数,因此在(0,+∞)上是增函数,故选A. 答案 A4.(2013·金华模拟)若函数f (x )=-x 2+2ax 与g (x )=(a +1)1-x在区间[1,2]上都是减函数,则a 的取值范围是( ). A .(-1,0) B .(-1,0)∪(0,1] C .(0,1) D .(0,1]解析 f (x )=-x 2+2ax 的对称轴为x =a ,要使f (x )在[1,2]上为减函数,必须有a ≤1,又g (x )=(a +1)1-x 在[1,2]上是减函数,所以a +1>1,即a >0,故0<a ≤1.答案 D5.(人教A 教材习题改编)函数f (x )=2xx +1在[1,2]的最大值和最小值分别是________. 解析 f (x )=2x x +1=2x +1-2x +1=2-2x +1在[1,2]上是增函数,∴f (x )max =f (2)=43,f (x )min =f (1)=1.答案 43,1考向一 函数单调性的判断及应用【例1】►试讨论函数f (x )=axx -1(a ≠0)在(-1,1)上的单调性. [审题视点] 可利用定义或导数法讨论函数的单调性. 解 设-1<x 1<x 2<1,f (x )=a x -1+1x -1=a ⎝ ⎛⎭⎪⎫1+1x -1,f (x 1)-f (x 2)=a ⎝ ⎛⎭⎪⎫1+1x 1-1-a ⎝ ⎛⎭⎪⎫1+1x 2-1=ax 2-x 1x 1-1x 2-1当a >0时,f (x 1)-f (x 2)>0,即f (x 1)>f (x 2), 函数f (x )在(-1,1)上递减;当a <0时,f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 函数f (x )在(-1,1)上递增.证明函数的单调性用定义法的步骤:取值—作差—变形—确定符号—下结论.【训练1】 已知f (x )=xx -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1<x 2<-2, 则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2x 1-x 2x 1+2x 2+2.∵(x 1+2)(x 2+2)>0,x 1-x 2<0,∴f (x 1)<f (x 2),∴f (x )在(-∞,-2)内单调递增. (2)解 任设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a =a x 2-x 1x 1-a x 2-a.∵a >0,x 2-x 1>0.∴要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所知0<a ≤1,即a 的取值范围为(0,1].考向二 求函数的单调区间【例2】►求函数y =x 2+x -6的单调区间.[审题视点] 先确定定义域,再利用复合函数的单调性求解.解 令u =x 2+x -6,y =x 2+x -6可以看作有y =u 与u =x 2+x -6的复合函数. 由u =x 2+x -6≥0,得x ≤-3或x ≥2.∵u =x 2+x -6在(-∞,-3]上是减函数,在[2,+∞)上是增函数,而y =u 在(0,+∞)上是增函数.∴y =x 2+x -6的单调减区间为(-∞,-3],单调增区间为[2,+∞).求复合函数y =f (g (x ))的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数; (3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.【训练2】 (2013·大连模拟)求函数y =log 12(x 2-3x +2)的单调区间.解 令u =x 2-3x +2,则原函数可以看作y =log 12u 与u =x 2-3x +2的复合函数.令u =x 2-3x +2>0,则x <1或x >2.∴函数y =log 12(x 2-3x +2)的定义域为(-∞,1)∪(2,+∞).又u =x 2-3x +2的对称轴x =32,且开口向上.∴u =x 2-3x +2在(-∞,1)上是单调减函数, 在(2,+∞)上是单调增函数.而y =log 12u 在(0,+∞)上是单调减函数,∴y =log 12(x 2-3x +2)的单调减区间为(2,+∞),单调增区间为(-∞,1).考向三 抽象函数的单调性及最值【例3】►已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.[审题视点] 抽象函数单调性的判断,仍须紧扣定义,结合题目作适当变形.(1)证明 法一 ∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ),∴令x =y =0,得f (0)=0.再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0.f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2). 因此f (x )在R 上是减函数. 法二 设x 1>x 2,则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2)=f (x 1-x 2). 又∵x >0时,f (x )<0,而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3).而f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2.对于抽象函数的单调性的判断仍然要紧扣单调性的定义,结合题目所给性质和相应的条件,对任意x 1,x 2在所给区间内比较f (x 1)-f (x 2)与0的大小,或f x 1f x 2与1的大小.有时根据需要,需作适当的变形:如x 1=x 2·x 1x 2或x 1=x 2+x 1-x 2等.【训练3】 已知定义在区间(0,+∞)上的函数f (x )满足f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值; (2)判断f (x )的单调性;(3)若f (3)=-1,求f (x )在[2,9]上的最小值. 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0. (2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0所以f ⎝ ⎛⎭⎪⎫x 1x 2<0,即f (x 1)-f (x 2)<0,因此f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上是单调递减函数. (3)∵f (x )在[0,+∞)上是单调递减函数. ∴f (x )在[2,9]上的最小值为f (9).由f ⎝ ⎛⎭⎪⎫x 1x 2=f (x 1)-f (x 2),得f ⎝ ⎛⎭⎪⎫93=f (9)-f (3), 而f (3)=-1,所以f (9)=-2. ∴f (x )在[2,9]上的最小值为-2.规范解答1——利用函数的单调性求参数的范围【命题研究】 从近三年的高考试题来看,函数单调性的判断和应用以及函数的最值问题是高考的热点,题型既有选择题、填空题,又有解答题,难度中等偏高;客观题主要考查函数的单调性、最值的灵活确定与简单应用,主观题在考查基本概念、重要方法的基础上,又注重考查函数方程、等价转化、数形结合、分类讨论的思想方法.预测2014年高考仍将以利用导数求函数的单调区间,研究单调性及利用单调性求最值或求参数的取值范围为主要考点,重点考查转化与化归思想及逻辑推理能力. 【真题探究】► (本小题满分13分)(2011·北京)已知函数f (x )=(x -k )2e x k. (1)求f (x )的单调区间;(2)若对于任意的x ∈(0,+∞),都有f (x )≤1e,求k 的取值范围.[教你审题] (1)根据导函数大于零和小于零即可得出函数的单调区间,但求解过程中要注意对参数k 进行分类讨论.(2)利用函数单调性求出函数最大值f (x )max ,使f (x )max ≤1e 即可解出k 的取值范围.[规范解答] (1)f ′(x )=1k (x 2-k 2)e xk.令f ′(x )=0,得x =±k .(2分)当k >0时,f (x )与f ′(x )的变化情况如下:x (-∞,-k )-k (-k ,k ) k(k ,+∞)f ′(x ) +-+f (x )4k 2e -1所以f (x )的单调递增区间是(-∞,-k )和(k ,+∞),单调递减区间是(-k ,k ).(4分) 当k <0时,f (x )与f ′(x )的变化情况如下:x (-∞,-k )k(k ,-k ) -k (-k ,+∞)f ′(x ) -+-f (x )4k 2e -1分) (2)当k >0时,因为f (k +1)=ek +1k >1e, 所以不会有∀x ∈(0,+∞),f (x )≤1e.(8分)当k <0时,由(1)知f (x )在(0,+∞)上的最大值是f (-k )=4k2e .(10分)所以∀x ∈(0,+∞),f (x )≤1e 等价于f (-k )=4k 2e ≤1e ,解得-12≤k <0.(12分)故当∀x ∈(0,+∞),f (x )≤1e 时,k 的取值范围是⎣⎢⎡⎭⎪⎫-12,0.(13分) [阅卷老师手记] (1)导数法是研究函数单调性的重要工具,利用导数研究函数单调性应注意三个方面:一是求导之后函数的定义域可能会发生变化,要在函数的定义域内分析导函数的符号;二是若求函数的单调区间可直接转化为f ′(x )>0(或f ′(x )<0)的解集求解,若函数在区间M 上的单调递增(递减),则应转化为f ′(x )≥0(或f ′(x )≤0)在区间M 上的恒成立问题求解;三是当含有参数时,要注意对参数的取值范围进行分类讨论. (2)数学解题的核心是转化,本题的关键是将∀x ∈(0,+∞)都有f (x )≤1e 转化为当x ∈(0,+∞)时有f (x )max ≤1e ,利用函数单调性求函数最值,通过解不等式求得k 的取值范围.(3)利用导数法求解函数最值的实质是利用函数的单调性确定最值.应该注意三个问题:一是在利用导函数判断函数单调性时要注意函数定义域;二是准确求导;三是要注意极值与最值的区别.第一步:求函数的定义域.若题设中有对数函数一定先求定义域,若题设中有三次函数、指数函数可不考虑定义域.第二步:求函数f (x )的导数f ′(x ),并令f ′(x )=0,求其根.第三步:利用f ′(x )=0的根和不可导点的x 的值从小到大顺次将定义域分成若干个小开区间,并列表.第四步:由f ′(x )在小开区间内的正、负值判断f (x )在小开区间内的单调性;求极值、最值.第五步:将不等式恒成立问题转化为f (x )max ≤a 或f (x )min ≥a ,解不等式求参数的取值范围.第六步:明确规范地表述结论. 【试一试】 已知函数f (x )=2x 2-kx +k e x. (1)当k 为何值时,f (x )在R 上是减函数; (2)试确定实数k 的值,使f (x )的极小值为0. 解 (1)∵f (x )=2x 2-kx +kex, ∴f ′(x )=(4x -k )e -x+(2x 2-kx +k )·(-1)·e -x=-2⎝ ⎛⎭⎪⎫x -k 2·(x -2)·e -x,当k =4时,f ′(x )=-(x -2)2·e -x≤0, ∴当k =4时,f (x )在R 上是减函数.(2)当k ≠4时,令f ′(x )=0,得x 1=2,x 2=k2.①当k <4时,即k2<2时有令f ⎝ ⎛⎭⎪⎫2=0得2·⎝ ⎛⎭⎪⎫22-k ·2+k =0,∴k =0.②当k >4时,即k2>2时有令f(2)=0,得2×4-2k+k=0,∴k=8.∴当k=0或k=8时,f(x)有极小值为0.A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.(2013·长沙一模)下列函数中,既是偶函数又在(0,+∞)内单调递减的函数是( ).A.y=x2B.y=|x|+1C.y=-lg|x| D.y=2|x|解析对于C中函数,当x>0时,y=-lg x,故为(0,+∞)上的减函数,且y=-lg |x|为偶函数.答案 C2.(2011·辽宁)函数f(x)的定义域为R,f(-1)=2,对任意x∈R,f′(x)>2,则f(x)>2x +4的解集为 ( ).A.(-1,1) B.(-1,+∞)C.(-∞,-1) D.(-∞,+∞)解析法一由x∈R,f(-1)=2,f′(x)>2,可设f(x)=4x+6,则由4x+6>2x+4,得x>-1,选B.法二设g(x)=f(x)-2x-4,则g(-1)=f(-1)-2×(-1)-4=0,g′(x)=f′(x)-2>0,g(x)在R上为增函数.由g(x)>0,即g(x)>g(-1).∴x>-1,选B.答案 B3.(2012·浙江)设a>0,b>0. ( ).A.若2a+2a=2b+3b,则a>bB.若2a+2a=2b+3b,则a<bC.若2a-2a=2b-3b,则a>bD.若2a-2a=2b-3b,则a<b解析利用原命题与逆否命题的真假性相同求解.当0<a≤b时,显然2a≤2b,2a≤2b<3b,∴2a+2a<2b+3b,即2a+2a≠2b+3b成立.∴它的逆否命题:若2a+2a=2b+3b,则a>b成立,故A正确,B错误.当0<a≤b时,由2a≤2b,2a<3b,知2a-2a与2b-3b的大小关系不确定,∴C不正确,同理D不正确.答案 A4.(2013·苏州调研)设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是( ).A .(-∞,0]B .[0,1)C .[1,+∞)D .[-1,0]解析 g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).故选B. 答案 B二、填空题(每小题5分,共10分)5.设函数y =x 2-2x ,x ∈[-2,a ],若函数的最小值为g (a ),则g (a )=________. 解析 ∵函数y =x 2-2x =(x -1)2-1,∴对称轴为直线x =1.当-2≤a <1时,函数在[-2,a ]上单调递减,则当x =a 时,y min =a 2-2a ;当a ≥1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y min =-1.综上,g (a )=⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1,-1,a ≥1.答案 ⎩⎪⎨⎪⎧a 2-2a ,-2≤a <1-1,a ≥16.奇函数f (x )(x ∈R )满足:f (-4)=0,且在区间[0,3]与[3,+∞)上分别递减和递增,则不等式(x 2-4)f (x )<0的解集为________.解析 当x 2-4>0,即x <-2或x >2时,f (x )<0.由f (x )的图象知,x <-4或2<x <4;当x 2-4<0,即-2<x <2时,f (x )>0,则-2<x <0.故x ∈(-∞,-4)∪(-2,0)∪(2,4).答案 (-∞,-4)∪(-2,0)∪(2,4) 三、解答题(共25分)7.(12分)设函数f (x )对任意的a ,b ∈R ,都有f (a +b )=f (a )+f (b )-1,且当x >0时,f (x )>1. (1)求证:f (x )是R 上的增函数;(2)若f (4)=5,解不等式f (3m 2-m -2)<3.(1)证明 设x 1<x 2,∴Δx =x 2-x 1>0,∴f (Δx )>1, ∴f (x 2)=f (x 1+Δx )=f (x 1)+f (Δx )-1>f (x 1), ∴f (x )是R 上的增函数.(2)解 f (4)=f (2)+f (2)-1=5,∴f (2)=3, ∴f (3m 2-m -2)<3=f (2).又由(1)的结论知f (x )是R 上的增函数, ∴3m 2-m -2<2,∴-1<m <43.8.(13分)已知函数f (x )=x 2+a x(x ≠0,a ∈R ). (1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围. 解 (1)当a =0时,f (x )=x 2(x ≠0)为偶函数; 当a ≠0时,f (-x )≠f (x ),f (-x )≠-f (x ), ∴f (x )既不是奇函数也不是偶函数.(2)设x 2>x 1≥2,则f (x 1)-f (x 2)=x 21+a x 1-x 22-a x 2=x 1-x 2x 1x 2[x 1x 2(x 1+x 2)-a ],由x 2>x 1≥2,得x 1x 2(x 1+x 2)>16,x 1-x 2<0,x 1x 2>0.要使f (x )在区间[2,+∞)上是增函数, 只需f (x 1)-f (x 2)<0,即x 1x 2(x 1+x 2)-a >0恒成立,则a ≤16.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y )+2xy (x ,y ∈R ),f (1)=2,则f (-3)等于( ).A .2B .3C .6D .9解析 f (1)=f (0+1)=f (0)+f (1)+2×0×1=f (0)+f (1),∴f (0)=0.f (0)=f (-1+1)=f (-1)+f (1)+2×(-1)×1=f (-1)+f (1)-2,∴f (-1)=0. f (-1)=f (-2+1)=f (-2)+f (1)+2×(-2)×1=f (-2)+f (1)-4,∴f (-2)=2. f (-2)=f (-3+1)=f (-3)+f (1)+2×(-3)×1=f (-3)+f (1)-6,∴f (-3)=6.答案 C2.(2013·太原质检)设函数y =f (x )在(-∞,+∞)内有定义,对于给定的正数K ,定义函数f K (x )=⎩⎪⎨⎪⎧f x,f x ≤K ,K ,fx >K ,取函数f (x )=2-|x |,当K =12时,函数f K (x )的单调递增区间 为( ).A .(-∞,0)B .(0,+∞)C .(-∞,-1)D .(1,+∞)解析 f 12(x )=⎩⎪⎨⎪⎧ 2-|x |,2-|x |≤12,12,2-|x |>12⇔f 12(x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12|x |,x ≤-1或x ≥1,12,-1<x <1.f 12(x )的图象如右图所示,因此f 12(x )的单调递增区间为(-∞,-1).答案 C二、填空题(每小题5分,共10分)3.设奇函数f (x )的定义域为[-5,5],若当x ∈[0,5]时,f (x )的图象如右图,则不等式f (x )<0的解集是________.解析 法一 奇函数关于原点对称.∵当0<x <2时,f (x )>0⇒-2<x <0时,f (x )<0; 当2<x ≤5时,f (x )<0⇒-5≤x <-2时,f (x )>0. ∴综上,f (x )<0的解集为{x |-2<x <0或2<x ≤5}.法二 由于f (x )为在[-5,5]上的奇函数,通过数形结合可解决问题. 作图可得{x |-2<x <0或2<x ≤5}. 答案 {x |-2<x <0或2<x ≤5}4.已知函数f (x )=⎩⎪⎨⎪⎧e -x-2,x ≤0,2ax -1,x >0(a 是常数且a >0).对于下列命题:①函数f (x )的最小值是-1; ②函数f (x )在R 上是单调函数;③若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则a 的取值范围是a >1; ④对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝⎛⎭⎪⎫x 1+x 22<f x 1+f x 22.其中正确命题的序号是____________.解析 根据题意可画出草图,由图象可知,①显然正确;函数f (x )在R 上不是单调函数,故②错误;若f (x )>0在⎣⎢⎡⎭⎪⎫12,+∞上恒成立,则2a ×12-1>0,a >1,故③正确;由图象可知在(-∞,0)上对任意的x 1<0,x 2<0且x 1≠x 2,恒有f ⎝ ⎛⎭⎪⎫x 1+x 22<f x 1+f x 22成立,故④正确.答案 ①③④ 三、解答题(共25分)5.(12分)(2011·上海)已知函数f (x )=a ·2x+b ·3x,其中常数a ,b 满足ab ≠0. (1)若ab >0,判断函数f (x )的单调性;(2)若ab <0,求f (x +1)>f (x )时的x 的取值范围.解 (1)当a >0,b >0时,因为a ·2x,b ·3x 都单调递增,所以函数f (x )单调递增;当a <0,b <0时,因为a ·2x ,b ·3x 都单调递减,所以函数f (x )单调递减.(2)f (x +1)-f (x )=a ·2x+2b ·3x>0.(i)当a <0,b >0时,⎝ ⎛⎭⎪⎫32x>-a 2b ,解得x >log 32⎝ ⎛⎭⎪⎫-a 2b ;(ii)当a >0,b <0时,⎝ ⎛⎭⎪⎫32x<-a 2b ,解得x <log 32⎝ ⎛⎭⎪⎫-a 2b .6.(13分)(2012·潍坊一模)已知函数f (x )在(-1,1)上有定义,f ⎝ ⎛⎭⎪⎫12=-1,当且仅当0<x <1时,f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f ⎝ ⎛⎭⎪⎫x +y 1+xy ,试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减.证明 (1)函数f (x )的定义域为(-1,1), 再由f (x )+f (y )=f ⎝⎛⎭⎪⎫x +y 1+xy ,令x =y =0,得f (0)=0, 令y =-x ,得f (x )+f (-x )=f ⎝⎛⎭⎪⎫x -x 1-x 2=f (0)=0,∴f (x )=-f (-x ),即f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f ⎝⎛⎭⎪⎫x 2-x 11-x 1x 2.∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,即x 2-x 11-x 2x 1>0.又∵(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0,∴x 2-x 1<1-x 2x 1,∴0<x 2-x 11-x 2x 1<1.由题意,知f ⎝⎛⎭⎪⎫x 2-x 11-x 1x 2<0,即f (x 2)<f (x 1),∴f (x )在(0,1)上单调递减,又f (x )为奇函数且f (0)=0, ∴f (x )在(-1,1)上单调递减.特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.【2014年高考会这样考】 1.判断函数的奇偶性.2.利用函数奇偶性、周期性求函数值及求参数值. 3.考查函数的单调性与奇偶性的综合应用.4.对三种性质的综合考查;借助函数图象解决问题.考点梳理1.奇、偶函数的概念一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x ),那么函数f (x )就叫做偶函数.一般地,如果对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x ),那么函数f (x )就叫做奇函数.奇函数的图象关于原点对称;偶函数的图象关于y 轴对称. 2.奇、偶函数的性质(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反. (2)在公共定义域内①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积都是偶函数; ③一个奇函数和一个偶函数的积是奇函数. 3.周期性。
1.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质解析式f (x )=ax 2+bx +c (a >0)f (x )=ax 2+bx +c (a <0)图象定义域 (-∞,+∞)(-∞,+∞)值域⎣⎡⎭⎫4ac -b 24a ,+∞⎝⎛⎦⎤-∞,4ac -b 24a单调性在x ∈⎝⎛⎦⎤-∞,-b 2a 上单调递减;在x ∈⎝⎛⎦⎤-∞,-b2a 上单调递增;在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递增在x ∈⎣⎡⎭⎫-b2a ,+∞上单调递减对称性函数的图象关于x =-b2a对称2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图象比较(3)幂函数的性质①幂函数在(0,+∞)上都有定义; ②幂函数的图象过定点(1,1);③当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;④当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 【思考辨析】推断下面结论是否正确(请在括号中打“√”或“×”) (1)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值肯定是4ac -b 24a.( × ) (2)二次函数y =ax 2+bx +c ,x ∈R ,不行能是偶函数.( × )(3)在y =ax 2+bx +c (a ≠0)中,a 打算了图象的开口方向和在同始终角坐标系中的开口大小.( √ ) (4)函数y =2x 12是幂函数.( × )(5)假如幂函数的图象与坐标轴相交,则交点肯定是原点.( √ ) (6)当n <0时,幂函数y =x n 是定义域上的减函数.( × )1.若关于x 的方程x 2+mx +14=0有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-∞,-1)∪(1,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2) 答案 B解析 ∵方程x 2+mx +14=0有两个不相等的实数根,∴Δ=m 2-4×14×1>0,即m 2>1,解得m <-1或m >1,故选B.2.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( ) A.⎝⎛⎭⎫0,120 B.⎝⎛⎭⎫-∞,-120 C.⎝⎛⎭⎫120,+∞ D.⎝⎛⎭⎫-120,0 答案 C解析 由题意知⎩⎪⎨⎪⎧ a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.3.函数y =x 13的图象是( )答案 B解析 明显f (-x )=-f (x ),说明函数是奇函数,同时由当0<x <1时,x 13>x ;当x >1时,x 13<x ,知只有B 选项符合.4.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则m 的取值范围为________. 答案 [1,2]解析 如图,由图象可知m 的取值范围是[1,2].5.(教材改编)已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则此函数的解析式为________;在区间________上递减. 答案 y =x -12(0,+∞)题型一 求二次函数的解析式例1 已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式. 解 方法一 (利用一般式): 设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎨⎧4a +2b +c =-1,a -b +c =-1,4ac -b24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.∴所求二次函数为f (x )=-4x 2+4x +7.方法二 (利用顶点式): 设f (x )=a (x -m )2+n . ∵f (2)=f (-1),∴抛物线的图象的对称轴为x =2+(-1)2=12.∴m =12.又依据题意函数有最大值8,∴n =8,∴y =f (x )=a ⎝⎛⎭⎫x -122+8. ∵f (2)=-1,∴a ⎝⎛⎭⎫2-122+8=-1,解得a =-4, ∴f (x )=-4⎝⎛⎭⎫x -122+8=-4x 2+4x +7. 方法三 (利用零点式):由已知f (x )+1=0的两根为x 1=2,x 2=-1,故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数的最大值是8,即4a (-2a -1)-(-a )24a =8.解得a =-4,∴所求函数的解析式为f (x )=-4x 2+4x +7.思维升华 求二次函数的解析式,关键是机敏选取二次函数解析式的形式,利用所给出的条件,依据二次函数的性质进行求解.(1)二次函数的图象过点(0,1),对称轴为x =2,最小值为-1,则它的解析式是_____________________________.(2)若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.答案 (1)f (x )=12x 2-2x +1 (2)-2x 2+4解析 (1)依题意可设f (x )=a (x -2)2-1,又其图象过点(0,1), ∴4a -1=1,∴a =12.∴f (x )=12(x -2)2-1.∴f (x )=12x 2-2x +1.(2)由f (x )是偶函数知f (x )图象关于y 轴对称, ∴b =-2,∴f (x )=-2x 2+2a 2, 又f (x )的值域为(-∞,4], ∴2a 2=4,故f (x )=-2x 2+4.题型二 二次函数的图象与性质命题点1 二次函数的单调性例2 已知函数f (x )=x 2+2ax +3,x ∈[-4,6],(1)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数; (2)当a =-1时,求f (|x |)的单调区间.解 (1)函数f (x )=x 2+2ax +3的图象的对称轴为x =-2a2=-a ,∴要使f (x )在[-4,6]上为单调函数,只需-a ≤-4或-a ≥6,解得a ≥4或a ≤-6. 故a 的取值范围是(-∞,-6]∪[4,+∞). (2)当a =-1时,f (|x |)=x 2-2|x |+3=⎩⎪⎨⎪⎧x 2+2x +3=(x +1)2+2,x ≤0,x 2-2x +3=(x -1)2+2,x >0,其图象如图所示.又∵x ∈[-4,6],∴f (|x |)在区间[-4,-1)和[0,1)上为减函数,在区间[-1,0)和[1,6]上为增函数. 命题点2 二次函数的最值例3 已知函数f (x )=x 2-2x ,若x ∈[-2,3],则函数f (x )的最大值为________. 答案 8解析 f (x )=(x -1)2-1,∵-2≤x ≤3(如图), ∴[f (x )]max =f (-2)=8. 引申探究已知函数f (x )=x 2-2x ,若x ∈[-2,a ],求f (x )的最小值. 解 ∵函数y =x 2-2x =(x -1)2-1, ∴对称轴为直线x =1,∵x =1不肯定在区间[-2,a ]内,∴应进行争辩,当-2<a ≤1时,函数在[-2,a ]上单调递减,则当x =a 时,y 取得最小值,即y min =a 2-2a ;当a >1时,函数在[-2,1]上单调递减,在[1,a ]上单调递增,则当x =1时,y 取得最小值,即y min =-1.综上,当-2<a ≤1时,y min =a 2-2a , 当a >1时,y min =-1.命题点3 二次函数中的恒成立问题例4 (1)设函数f (x )=ax 2-2x +2,对于满足1<x <4的一切x 值都有f (x )>0,则实数a 的取值范围为________. (2)已知a 是实数,函数f (x )=2ax 2+2x -3在x ∈[-1,1]上恒小于零,则实数a 的取值范围为________. 答案 (1)⎝⎛⎭⎫12,+∞ (2)⎝⎛⎭⎫-∞,12 解析 (1)由题意得a >2x -2x 2对1<x <4恒成立,又2x -2x 2=-2⎝⎛⎭⎫1x -122+12,14<1x <1, ∴⎝⎛⎭⎫2x -2x 2max =12,∴a >12. (2)2ax 2+2x -3<0在[-1,1]上恒成立. 当x =0时,适合;当x ≠0时,a <32⎝⎛⎭⎫1x -132-16,由于1x ∈(-∞,-1]∪[1,+∞),当x =1时,右边取最小值12,所以a <12. 综上,实数a 的取值范围是⎝⎛⎭⎫-∞,12. 思维升华 (1)二次函数最值问题解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,依据函数的单调性及分类争辩的思想即可完成. (2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分别参数;二是不分别参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分别.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .已知函数f (x )=x 2+2ax +2,x ∈[-5,5].(1)当a =-1时,求函数f (x )的最大值和最小值;(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,x ∈[-5,5], 所以当x =1时,f (x )取得最小值1; 当x =-5时,f (x )取得最大值37.(2)函数f (x )=(x +a )2+2-a 2的图象的对称轴为直线x =-a , 由于y =f (x )在区间[-5,5]上是单调函数, 所以-a ≤-5或-a ≥5,即a ≤-5或a ≥5. 故a 的取值范围是(-∞,-5]∪[5,+∞).题型三 幂函数的图象和性质例5 (1)已知幂函数f (x )=k ·x α的图象过点⎝⎛⎭⎫12,22,则k +α等于( )A.12B .1C.32D .2 (2)若(2m +1)12>(m 2+m -1)12,则实数m 的取值范围是( ) A.⎝ ⎛⎦⎥⎤-∞,-5-12B.⎣⎢⎡⎭⎪⎫5-12,+∞C .(-1,2) D.⎣⎢⎡⎭⎪⎫5-12,2答案 (1)C (2)D解析 (1)由幂函数的定义知k =1. 又f ⎝⎛⎭⎫12=22,所以⎝⎛⎭⎫12α=22,解得α=12,从而k +α=32. (2)由于函数y =x 12的定义域为[0,+∞),且在定义域内为增函数,所以不等式等价于⎩⎪⎨⎪⎧2m +1≥0,m 2+m -1≥0,2m +1>m 2+m -1.解2m +1≥0,得m ≥-12;解m 2+m -1≥0,得m ≤-5-12或m ≥5-12.解2m +1>m 2+m -1,得-1<m <2, 综上所述,5-12≤m <2.思维升华 (1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式. (2)在区间(0,1)上,幂函数中指数越大,函数图象越靠近x 轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x 轴.(1)已知幂函数f (x )=(m 2-m -1)·x-5m -3在(0,+∞)上是增函数,则m =________.(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 答案 (1)-1 (2)[-1,23)解析 (1)∵函数f (x )=(m 2-m -1)·x -5m -3是幂函数,∴m 2-m -1=1,解得m =2或m =-1. 当m =2时,-5m -3=-13,函数y =x -13在(0,+∞)上是减函数; 当m =-1时,-5m -3=2,函数y =x 2在(0,+∞)上是增函数. ∴m =-1.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解之得-1≤a <23.3.分类争辩思想在二次函数最值中的应用典例 (12分)已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.思维点拨 参数a 的值确定f (x )图象的外形;a ≠0时,函数f (x )的图象为抛物线,还要考虑开口方向和对称轴与所给范围的关系. 规范解答解 (1)当a =0时,f (x )=-2x 在[0,1]上递减, ∴f (x )min =f (1)=-2.[2分](2)当a >0时,f (x )=ax 2-2x 图象的开口方向向上,且对称轴为x =1a.[3分]①当1a ≤1,即a ≥1时,f (x )=ax 2-2x 图象的对称轴在[0,1]内,∴f (x )在[0,1a ]上递减,在[1a ,1]上递增.∴f (x )min =f (1a )=1a -2a =-1a.[6分]②当1a >1,即0<a <1时,f (x )=ax 2-2x 图象的对称轴在[0,1]的右侧,∴f (x )在[0,1]上递减.∴f (x )min =f (1)=a -2.[9分](3)当a <0时,f (x )=ax 2-2x 的图象的开口方向向下, 且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上递减. ∴f (x )min =f (1)=a -2.[11分]综上所述,f (x )min =⎩⎪⎨⎪⎧a -2, a <1,-1a ,a ≥1.[12分]温馨提示 (1)本题在求二次函数最值时,用到了分类争辩思想,求解中既对系数a 的符号进行争辩,又对对称轴进行争辩.在分类争辩时要遵循分类的原则:一是分类的标准要全都,二是分类时要做到不重不漏,三是能不分类的要尽量避开分类,绝不无原则的分类争辩.(2)在有关二次函数最值的求解中,若轴定区间动,仍应对区间进行分类争辩.[方法与技巧]1.二次函数的三种形式(1)已知三个点的坐标时,宜用一般式.(2)已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关的量时,常使用顶点式. (3)已知二次函数与x 轴有两个交点,且横坐标已知时,选用零点式求f (x )更便利. 2.争辩二次函数的性质要留意: (1)结合图象分析;(2)含参数的二次函数,要进行分类争辩. 3.利用幂函数的单调性比较幂值大小的技巧在比较幂值的大小时,必需结合幂值的特点,转化为同指数幂,再选择适当的函数,借助其单调性进行比较. [失误与防范]1.对于函数y =ax 2+bx +c ,要认为它是二次函数,就必需满足a ≠0,当题目条件中未说明a ≠0时,就要争辩a =0和a ≠0两种状况.2.幂函数的图象肯定会消灭在第一象限内,肯定不会消灭在第四象限,至于是否消灭在其次、三象限内,要看函数的奇偶性;幂函数的图象最多能同时消灭在两个象限内;假如幂函数图象与坐标轴相交,则交点肯定是原点.A 组 专项基础训练 (时间:35分钟)1.假如函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4 D .a ≥-4答案 A解析 函数图象的对称轴为x =a 2,由题意得a2≥4,解得a ≥8.2.函数f (x )=(m 2-m -1)x m 是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( )A .-1B .2C .3D .-1或2答案 B解析 f (x )=(m 2-m -1)x m 是幂函数⇒m 2-m -1=1⇒m =-1或m =2.又在x ∈(0,+∞)上是增函数,所以m =2.3.设函数f (x )=x 2+x +a (a >0),且f (m )<0,则( ) A .f (m +1)≥0 B .f (m +1)≤0 C .f (m +1)>0 D .f (m +1)<0答案 C解析 ∵f (x )的对称轴为x =-12,f (0)=a >0,∴f (x )的大致图象如图所示. 由f (m )<0,得-1<m <0, ∴m +1>0,∴f (m +1)>f (0)>0.4.若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( ) A .-1 B .1 C .2 D .-2 答案 B解析 ∵函数f (x )=x 2-ax -a 的图象为开口向上的抛物线, ∴函数的最大值在区间的端点取得, ∵f (0)=-a ,f (2)=4-3a ,∴⎩⎪⎨⎪⎧ -a ≥4-3a ,-a =1,或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 5.二次函数f (x )的图象经过点⎝⎛⎭⎫0,32,且f ′(x )=-x -1,则不等式f (10x )>0的解集为( ) A .(-3,1) B .(-lg3,0) C.⎝⎛⎭⎫11000,1 D .(-∞,0)答案 D解析 由题意设f (x )=ax 2+bx +32 (a ≠0),则f ′(x )=2ax +b ,∵f ′(x )=-x -1,∴⎩⎪⎨⎪⎧2a =-1,b =-1, ∴⎩⎪⎨⎪⎧a =-12,b =-1,∴f (x )=-12x 2-x +32,令f (x )>0,得-3<x <1,∵10x >0,∴不等式f (10x )>0可化为0<10x <1,∴x <0,故选D.6.对于任意实数x ,函数f (x )=(5-a )x 2-6x +a +5恒为正值,则a 的取值范围是________. 答案 (-4,4)解析 由题意得⎩⎪⎨⎪⎧5-a >0,36-4(5-a )(a +5)<0,解得-4<a <4.7.当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________________.答案 h (x )>g (x )>f (x )解析 如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知,h (x )>g (x )>f (x ).8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________. 答案 -1或3解析 由于函数f (x )的值域为[1,+∞), 所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1, 即a 2-2a -3=0,解得a =3或a =-1.9.已知函数f (x )=ax 2+bx +1(a ,b 为实数,a ≠0,x ∈R ).(1)若函数f (x )的图象过点(-2,1),且方程f (x )=0有且只有一个根,求f (x )的表达式; (2)在(1)的条件下,当x ∈[-1,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围. 解 (1)由于f (-2)=1,即4a -2b +1=1,所以b =2a .由于方程f (x )=0有且只有一个根,所以Δ=b 2-4a =0. 所以4a 2-4a =0,所以a =1,所以b =2.所以f (x )=x 2+2x +1.(2)g (x )=f (x )-kx =x 2+2x +1-kx =x 2-(k -2)x +1 =⎝⎛⎭⎪⎫x -k -222+1-(k -2)24.由g (x )的图象知:要满足题意,则k -22≥2或k -22≤-1,即k ≥6或k ≤0,所以所求实数k 的取值范围为(-∞,0]∪[6,+∞).10.已知函数f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围. 解 要使f (x )≥0恒成立,则函数在区间[-2,2]上的最小值不小于0,设f (x )的最小值为g (a ). (1)当-a 2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73,故此时a 不存在.(2)当-a 2∈[-2,2],即-4≤a ≤4时,g (a )=f ⎝⎛⎭⎫-a 2=3-a -a 24≥0,得-6≤a ≤2,又-4≤a ≤4,故-4≤a ≤2. (3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0,得a ≥-7,又a <-4,故-7≤a <-4, 综上得-7≤a ≤2. B 组 专项力量提升 (时间:20分钟)11.已知函数f (x )=ax 2+2ax +4(0<a <3),x 1<x 2,x 1+x 2=1-a ,则( ) A .f (x 1)=f (x 2) B .f (x 1)<f (x 2) C .f (x 1)>f (x 2)D .f (x 1)与f (x 2)的大小不能确定 答案 B解析 函数的对称轴为x =-1, 设x 0=x 1+x 22,由0<a <3得到-1<1-a 2<12.又x 1<x 2,用单调性和离对称轴的远近作推断得f (x 1)<f (x 2).12.已知幂函数f (x )=x α,当x >1时,恒有f (x )<x ,则α的取值范围是________. 答案 (-∞,1)解析 当x >1时,恒有f (x )<x ,即当x >1时,函数f (x )=x α的图象在y =x 的图象的下方,作出幂函数f (x )=x α在第一象限的图象,由图象可知α<1时满足题意.13.已知函数f (x )=mx 2+(2-m )x +n (m >0),当-1≤x ≤1时,|f (x )|≤1恒成立,则f ⎝⎛⎭⎫23=________. 答案 -19解析 由题意得:|f (0)|≤1⇒|n |≤1⇒-1≤n ≤1; |f (1)|≤1⇒|2+n |≤1⇒-3≤n ≤-1, 因此n =-1, ∴f (0)=-1,f (1)=1.由f (x )的图象可知:要满足题意,则图象的对称轴为直线x =0,∴2-m =0,m =2, ∴f (x )=2x 2-1,∴f ⎝⎛⎭⎫23=-19. 14.若函数f (x )=cos2x +a sin x 在区间⎝⎛⎭⎫π6,π2是减函数,则a 的取值范围是________. 答案 (-∞,2]解析 f (x )=cos2x +a sin x =1-2sin 2x +a sin x ,令t =sin x ,x ∈⎝⎛⎭⎫π6,π2,则t ∈⎝⎛⎭⎫12,1,原函数化为y =-2t 2+at +1,由题意及复合函数单调性的判定可知y =-2t 2+at +1在⎝⎛⎭⎫12,1上是减函数,结合二次函数图象可知,a 4≤12,所以a ≤2. 15.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解 (1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2, ∴f (x )=(x +1)2.∴F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又1x -x 的最小值为0,-1x -x 的最大值为-2. ∴-2≤b ≤0.故b 的取值范围是[-2,0].。
§2.5 指数与指数函数1.分数指数幂(1)规定:正数的正分数指数幂的意义是=n a m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是=1n a m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理数指数幂的运算性质:a r a s =a r +s,(a r )s =a rs ,(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质y =a xa >10<a <1图象定义域 (1)R 值域(2)(0,+∞) 性质(3)过定点(0,1)(4)当x >0时,y >1; 当x <0时,0<y <1(5)当x >0时,0<y <1; 当x <0时,y >1(6)在(-∞,+∞)上是增函数 (7)在(-∞,+∞)上是减函数【思考辨析】推断下面结论是否正确(请在括号中打“√”或“×”) (1)(4(-4))4=-4.( × ) (2)(-1)=(-1)=-1.( × ) (3)函数y =a -x 是R 上的增函数.( × ) (4)函数y =(a >1)的值域是(0,+∞).( × )(5)函数y =2x -1是指数函数.( × )(6)函数y =(14)1-x 的值域是(0,+∞).( √ )1.若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是( )A .1 B.14 C.22D.23答案 D解析 a =(2+3)-1=2-3,b =(2-3)-1=2+3, ∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2 =112-63+112+63=23.2.设函数f (x )=a-|x |(a >0,且a ≠1),f (2)=4,则( )A .f (-2)>f (-1)B .f (-1)>f (-2)C .f (1)>f (2)D .f (-2)>f (2)答案 A解析 ∵f (x )=a -|x |(a >0,且a ≠1),f (2)=4, ∴a -2=4,∴a =12,∴f (x )=⎝⎛⎭⎫12-|x |=2|x |, ∴f (-2)>f (-1).3.函数f (x )=a x -1a(a >0,a ≠1)的图象可能是( )答案 D解析 函数f (x )的图象恒过(-1,0)点,只有图象D 适合. 4.已知0≤x ≤2,则y =-3·2x +5的最大值为________.答案 52解析 令t =2x ,∵0≤x ≤2,∴1≤t ≤4,m na m na -241221x a +124x -又y =22x -1-3·2x +5,∴y =12t 2-3t +5=12(t -3)2+12, ∵1≤t ≤4,∴t =1时,y max =52.题型一 指数幂的运算 例1 化简:(1)(a >0,b >0);(2)(-278)+(0.002)-10(5-2)-1+(2-3)0.思维点拨 可先将根式化成分数指数幂,再利用幂的运算性质进行计算.解 (1)原式==ab -1.(2)原式=-105-2+1=-10(5+2)+1 =49+105-105-20+1=-1679. 思维升华 (1)指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,还应留意:①必需同底数幂相乘,指数才能相加;②运算的先后挨次. (2)当底数是负数时,先确定符号,再把底数化为正数.(3)运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.(1)化简416x 8y 4(x <0,y <0)得( )A .2x 2yB .2xyC .4x 2yD .-2x 2y(2)=________.答案 (1)D (2)85解析 (1)416x 8y 4====2(-x )2(-y )=-2x 2y .(2)原式=题型二 指数函数的图象和性质 例2 (1)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0 (2)已知函数f (x )=2|2x-m |(m 为常数),若f (x )在区间[2,+∞)上是增函数,则m 的取值范围是________.答案 (1)D (2)(-∞,4]解析 (1)由f (x )=a x -b 的图象可以观看出函数f (x )=a x -b 在定义域上单调递减,所以0<a <1.函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.(2)令t =|2x -m |,则t =|2x -m |在区间[m 2,+∞)上单调递增,在区间(-∞,m2]上单调递减.而y =2t 为R 上的增函数,所以要使函数f (x )=2|2x -m |在[2,+∞)上单调递增,则有m2≤2,即m ≤4,所以m 的取值范围是(-∞,4].思维升华 (1)对与指数函数有关的函数的图象的争辩,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(2)对复合函数的性质进行争辩时,要搞清复合而成的两个函数,然后对两层函数分别进行争辩.(1)若函数y =2-x +1+m 的图象不经过第一象限,则m 的取值范围是________.3322111143342()a b ab a b a b-23-12-12131111323321122633311233()a b a b abab a b+-++---=2132271()()8500---+21328()50027-+1132113321(4)()4(0.1)()ab a b ----⋅⋅⋅()184416x y 14844[2()()]x y ⋅--1114844442()()x y ⨯⨯⨯⨯⋅--3332223322248.510a b a b--⨯=。
第二章函数与基本初等函数I第1讲函数及其表示一、选择题1.下列函数中,与函数y=13x定义域相同的函数为().A.y=1sin x B.y=ln xxC.y=x e x D.y=sin x x解析函数y=13x的定义域为{x|x≠0,x∈R}与函数y=sin xx的定义域相同,故选D.答案 D2.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有().A.1个B.2个C.3个D.4个解析由x2+1=1,得x=0.由x2+1=3,得x=±2,所以函数的定义域可以是{0,2},{0,-2},{0,2,-2},故值域为{1,3}的同族函数共有3个.答案 C3.若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( ).解析根据函数的定义,观察得出选项B.答案 B4.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( ).A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析 a ,b ,c 互不相等,不妨设a <b <c ,∵f (a )=f (b )=f (c ),由图可知0<a <1,1<b <10,10<c <12. ∵f (a )=f (b ), ∴|lg a |=|lg b |,∴lg a =-lg b ,即lg a =lg 1b ⇒a =1b , ∴ab =1,10<abc =c <12.故应选C. 答案 C5.对实数a 和b ,定义运算“⊗”:a ⊗b =⎩⎨⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x -x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ). A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞解析 当(x 2-2)-(x -x 2)≤1,即-1≤x ≤32时,f (x )=x 2-2;当x 2-2-(x -x 2)>1,即x <-1或x >32时,f (x )=x -x 2,∴f (x )=⎩⎪⎨⎪⎧x 2-2⎝⎛⎭⎪⎫-1≤x ≤32,x -x 2⎝⎛⎭⎪⎫x <-1或x >32,f (x )的图象如图所示,c ≤-2或-1<c <-34.答案 B6.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数的图象为( )解析 注意本题中选择项的横坐标为小王从出发到返回原地所用的时间,纵坐标是经过的路程,故选D. 答案 D 二、填空题7.已知函数f (x ),g (x )分别由下表给出,则f [g (1)]的值为________________.解析 ∵g (1)=3,∴f [g (1)]=f (3)=1,由表格可以发现g (2)=2,f (2)=3,∴f (g (2))=3,g (f (2))=1. 答案 1 28.已知函数f (x )=⎩⎨⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析 由题意有⎩⎨⎧ 1-x 2>0,2x <0或⎩⎨⎧1-x 2>2x ,2x ≥0解得-1<x <0或0≤x <2-1,∴所求x 的取值范围为(-1,2-1). 答案 (-1,2-1)9.已知函数f(x)的图象如图所示,则函数g(x)= f(x)的定义域是______.解析 要使函数有意义,须f(x)>0,由f(x)的图象可知, 当x ∈(2,8]时,f(x)>0. 答案 (2,8]10.函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如,函数f (x )=2x +1(x ∈R)是单函数.下列命题: ①函数f (x )=x 2(x ∈R)是单函数;②若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ③若f :A →B 为单函数,则对于任意b ∈B ,它至多有一个原象; ④函数f (x )在某区间上具有单调性,则f (x )一定是单函数. 其中的真命题是________.(写出所有真命题的编号)解析 对①,f (x )=x 2,则f (-1)=f (1),此时-1≠1,则f (x )=x 2不是单函数,①错;对②,当x 1,x 2∈A ,f (x 1)=f (x 2)时有x 1=x 2,与x 1≠x 2时,f (x 1)≠f (x 2)互为逆否命题,②正确;对③,若b ∈B ,b 有两个原象时.不妨设为a 1,a 2可知a 1≠a 2,但f (a 1)=f (a 2),与题中条件矛盾,故③正确;对④,f (x )=x 2在(0,+∞)上是单调递增函数,但f (x )=x 2在R 上就不是单函数,④错误;综上可知②③正确. 答案 ②③ 三、解答题11.设函数f (x )=⎩⎨⎧1,1≤x ≤2,x -1,2<x ≤3,g (x )=f (x )-ax ,x ∈[1,3],其中a ∈R ,记函数g (x )的最大值与最小值的差为h (a ). (1)求函数h (a )的解析式;(2)画出函数y =h (x )的图象并指出h (x )的最小值. 解 (1)由题意知g (x )=⎩⎨⎧1-ax ,1≤x ≤2,(1-a )x -1,2<x ≤3,当a <0时,函数g (x )是[1,3]上的增函数,此时g (x )max =g (3)=2-3a ,g (x )min =g (1)=1-a ,所以h (a )=1-2a ;当a >1时,函数g (x )是[1,3]上的减函数,此时g (x )min =g (3)=2-3a ,g (x )max =g (1)=1-a ,所以h (a )=2a -1;当0≤a ≤1时,若x ∈[1,2],则g (x )=1-ax ,有g (2)≤g (x )≤g (1);若x ∈(2,3],则g (x )=(1-a )x -1,有g (2)<g (x )≤g (3),因此g (x )min =g (2)=1-2a ,而g (3)-g (1)=(2-3a )-(1-a )=1-2a ,故当0≤a ≤12时,g (x )max =g (3)=2-3a ,有h (a )=1-a ; 当12<a ≤1时,g (x )max =g (1)=1-a ,有h (a )=a . 综上所述,h (a )=⎩⎪⎨⎪⎧1-2a ,a <0,1-a ,0≤a ≤12,a ,12<a ≤1,2a -1,a >1.(2)画出y =h (x )的图象,如图所示,数形结合可得h (x )min =h ⎝ ⎛⎭⎪⎫12=12.12.求下列函数的定义域: (1)f (x )=-x x -3;(2)y =25-x 2-lg cos x ; (3)y =lg(x -1)+lg x +1x -1+19-x. 解 (1)⎩⎨⎧4-x >0x -3≠0,⇒x <4且x ≠3,故该函数的定义域为(-∞,3)∪(3,4).(2)⎩⎨⎧25-x 2≥0,cos x >0,即⎩⎨⎧-5≤x ≤5,2k π-π2<x <2k π+π2,k ∈Z ,故所求定义域为⎣⎢⎡⎭⎪⎫-5,-3π2∪⎝ ⎛⎭⎪⎫-π2,π2∪⎝⎛⎦⎥⎤3π2,5.(3)⎩⎪⎨⎪⎧x -1>0,x +1x -1>0,9-x >0,即⎩⎨⎧x >1,x >1,x <9或x <-1,解得1<x <9.故该函数的定义域为(1,9).13. 设x ≥0时,f(x)=2;x <0时,f(x)=1,又规定:g(x)= (x >0),试写出y=g(x)的解析式,并画出其图象. 解 当0<x <1时,x-1<0,x-2<0, ∴g(x)= =1.当1≤x <2时,x-1≥0,x-2<0, ∴g(x)= ;当x ≥2时,x-1>0,x-2≥0, ∴g(x)= =2. 故g(x)=其图象如图所示.14.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式;(2)在区间[-1,1]上,函数y =f (x )的图象恒在直线y =2x +m 的上方,试确定实数m 的取值范围.解 (1)由f (0)=1,可设f (x )=ax 2+bx +1(a ≠0),故f (x +1)-f (x )=a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2ax +a +b ,由题意,得⎩⎨⎧ 2a =2,a +b =0,解得⎩⎨⎧a =1,b =-1,故f (x )=x 2-x +1.(2)由题意,得x 2-x +1>2x +m ,即x 2-3x +1>m ,对x ∈[-1,1]恒成立.令g (x )=x 2-3x +1,则问题可转化为g (x )min >m ,又因为g (x )在[-1,1]上递减, 所以g (x )min =g (1)=-1,故m <-1.。
45分钟阶段测试(二)
(范围:§2.1~§2.3)
一、选择题
1.函数y =2-x lg x
的定义域是( ) A .{x |0<x <2}
B .{x |0<x <1或1<x <2}
C .{x |0<x ≤2}
D .{x |0<x <1或1<x ≤2}
答案 D
解析 由题意知,要使函数有意义只需⎩⎪⎨⎪⎧ 2-x ≥0,x >0,
lg x ≠0,
解得0<x <1或1<x ≤2,所以函数y =2-x lg x 的定义域为{x |0<x <1或1<x ≤2}.
2.已知f (x )=⎩⎪⎨⎪⎧
log 3x , x >0,a x +b ,x ≤0且f (0)=2,f (-1)=3,则f (f (-3))等于( ) A .-2
B .2
C .3
D .-3
答案 B 解析 f (0)=a 0+b =1+b =2,解得b =1;f (-1)=a -1+b =a -1+1=3,解得a =12
. 故f (-3)=(12
)-3+1=9, f (f (-3))=f (9)=log 39=2.
3.已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f (13
)的x 的取值范围是( )
A .(13,23
) B .[13,23) C .(12,23
) D .[12,23) 答案 D
解析 由已知,得⎩
⎪⎨⎪⎧
2x -1≥0,2x -1<13,即12≤x <23.
4.(2014·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )
A.1x 2+1>1y 2+1
B .ln(x 2+1)>ln(y 2+1)
C .sin x >sin y
D .x 3>y 3 答案 D
解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12
<1,A 不成立.B 中,当x =0,y =-1时,ln1<ln2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D.
5.设偶函数f (x )的定义域为R ,当x ∈[0,+∞)时f (x )是增函数,则f (-2),f (π),f (-3)的大小关系是( )
A .f (π)>f (-3)>f (-2)
B .f (π)>f (-2)>f (-3)
C .f (π)<f (-3)<f (-2)
D .f (π)<f (-2)<f (-3)
答案 A
解析 因为π>3>2,且当x ∈[0,+∞)时f (x )是增函数,所以f (π)>f (3)>f (2).
又函数f (x )为R 上的偶函数,
所以f (-3)=f (3),f (-2)=f (2),
故f (π)>f (-3)>f (-2).
二、填空题
6.(2013·四川)已知f (x )是定义域为R 的偶函数,当x ≥0时,f (x )=x 2-4x ,那么,不等式f (x +2)<5的解集是________.
答案 {x |-7<x <3}
解析 令x <0,则-x >0,∵x ≥0时,f (x )=x 2-4x ,∴f (-x )=(-x )2-4(-x )=x 2+4x ,又f (x )为偶函数,∴f (-x )=f (x ),∴x <0时,f (x )=x 2+4x ,
故有f (x )=⎩⎪⎨⎪⎧
x 2-4x ,x ≥0,x 2+4x ,x <0. 再求f (x )<5的解,由⎩⎪⎨⎪⎧ x ≥0,x 2-4x <5,得0≤x <5;由⎩⎪⎨⎪⎧
x <0,x 2+4x <5,得-5<x <0,即f (x )<5的解为(-5,5).由于f (x )向左平移两个单位即得f (x +2),故f (x +2)<5的解集为{x |-7<x <3}.
7.设函数f (x )是定义在R 上的周期为2的偶函数,当x ∈[0,1]时,f (x )=x +1,则f (2015.5)=________.
答案 1.5
解析 f (2015.5)=f (-0.5)=f (0.5)=0.5+1=1.5.
8.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +
2)=-f (x );③当1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,则f (2015)、f (2016)、f (2017)从大到小的顺序为________________.
答案 f (2017)>f (2016)>f (2015)
解析 由f (x +2)=-f (x )得f (x +4)=f (x ),所以f (x )的周期是4,所以f (2015)=f (3),f (2016)=f (0),f (2017)=f (1).因为直线x =1是函数f (x )的一条对称轴,所以f (2016)=f (0)=f (2).由1≤x 1<x 2≤3时,[f (x 2)-f (x 1)]·(x 2-x 1)<0,可知当1≤x ≤3时,函数单调递减,所以f (2017)>f (2016)>f (2015).
三、解答题
9.已知函数f (x )=2|x -2|+ax (x ∈R )有最小值.
(1)求实数a 的取值范围;
(2)设g (x )为定义在R 上的奇函数,且当x <0时,g (x )=f (x ),求g (x )的解析式.
解 (1)f (x )=⎩
⎪⎨⎪⎧ (a +2)x -4,x ≥2,(a -2)x +4,x <2, 要使函数f (x )有最小值,需⎩⎪⎨⎪⎧
a +2≥0,a -2≤0, ∴-2≤a ≤2.
即当a ∈[-2,2]时,f (x )有最小值.
故a 的取值范围为[-2,2].
(2)∵g (x )为定义在R 上的奇函数,
∴g (-0)=-g (0),∴g (0)=0.
设x >0,则-x <0.
∴g (x )=-g (-x )=(a -2)x -4,
∴g (x )=⎩⎪⎨⎪⎧ (a -2)x -4, x >0,0,x =0,
(a -2)x +4,x <0.
10.设函数f (x )在(-∞,+∞)上满足f (2-x )=f (2+x ),f (7-x )=f (7+x ),且在闭区间[0,7]上只有f (1)=f (3)=0.
(1)试判断函数y =f (x )的奇偶性;
(2)试求方程f (x )=0在闭区间[-2 005,2 005]上的根的个数,并证明你的结论.
解 (1)∵f (1)=0,且f (x )在[0,7]上只有f (1)=f (3)=0,
又∵f (2-x )=f (2+x ),令x =-3,f (-1)=f (5)≠0,
∴f (-1)≠f (1),且f (-1)≠-f (1).
∴f (x )既不是奇函数,也不是偶函数.
(2)f (10+x )=f [2+8+x ]=f [2-(8+x )]
=f(-6-x)=f[7-(13+x)]=f[7+13+x]
=f(20+x),
∴f(x)以10为周期.
又f(x)的图象关于x=7对称知,f(x)=0在(0,10)上有两个根,则f(x)=0在(0,2005]上有201×2=402个根;
在[-2 005,0]上有200×2=400个根;
因此f(x)=0在闭区间上共有802个根.。