高中数学第五届全国青年教师观摩与评比活动《平面向量(1)》教学设计说明
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
基本不等式(第一课时)一、内容和内容解析本节课是人教版高中数学必修5中第三章第4节的内容。
主要是二元均值不等式。
它是在系统地学习了不等关系和不等式性质,掌握了不等式性质的基础上展开的,作为重要的基本不等式之一,为后续的学习奠定基础。
要进一步了解不等式的性质及运用,研究最值问题,此时基本不等式是必不可缺的。
基本不等式在知识体系中起了承上启下的作用,同时在生活及生产实际中有着广泛的应用,因此它也是对学生进行情感价值观教育的优良素材,所以基本不等式应重点研究。
教学中注意用新课程理念处理教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探究、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程。
就知识的应用价值上来看,基本不等式是从大量数学问题和现实问题中抽象出来的一个模型,在公式推导中所蕴涵的数学思想方法如数形结合、抽象归纳、演绎推理、分析法证明等在各种不等式的研究中均有着广泛的应用;另外,在解决函数最值问题中,基本不等式也起着重要的作用。
就内容的人文价值上来看,基本不等式的探究与推导需要学生观察、分析、归纳,有助于培养学生创新思维和探索精神,是培养学生数形结合意识和提高数学能力的良好载体。
二、教学目标和目标解析教学目标:了解基本不等式的几何背景,能在教师的引导下探究基本不等式的证明过程,理解基本不等式的几何解释,并能解决简单的最值问题;借助于信息技术强化数形结合的思想方法。
在教师的逐步引导下,能从较为熟悉的几何图形中抽象出基本不等式,实现对基本不等式几何背景的初步了解。
学生已经学习了不等式的基本性质,可以运用作差法给出基本不等式的证明,同时,介绍并渗透分析法证明的思想方法,从而完成基本不等式的代数证明。
进一步通过探究几何图形,给出基本不等式的几何解释,加强学生数形结合的意识。
通过应用问题的解决,明确解决应用题的一般过程。
这是一个过程性目标。
第五届全国高中数学青年教师观摩与评比活动-《向量的加法》教学设计说明第一篇:第五届全国高中数学青年教师观摩与评比活动-《向量的加法》教学设计说明《向量的加法》教学设计说明《向量的加法》是人教版高一下第五章第二节第一课时《向量的加法》。
下面,我从三个方面来对本节课的设计进行说明:1.教材分析教材的地位和作用向量是近代数学中重要和基本的数学概念,它是沟通代数、几何、三角的一种工具,其工具作用主要体现在向量的运算方面.向量的加法运算是向量运算的基础,它在学生已学物理知识后,以力的合成、位移的合成等物理模型为背景抽象出的一种数学运算.向量的加法不同于数的加法,运算中包含大小与方向两个方面,向量加法的法则––––画图求和法,是一种全新的数学技术,从这个角度来看,研究向量加法是学生学习过程中的一种突破.是学习向量的减法、数乘以及平面向量的坐标运算等内容的知识基础,为进一步理解其他的数学运算(如函数、映射、变换、矩阵的运算等等)创造了条件,因此我认为,向量的加法在这里起着承上启下的作用。
教学目标根据学生已有的知识结构及本节课教材的作用和地位,依据新课程标准的具体要求,我从三方面确定本节课的教学目标:(1)知识与技能方面:使是学生经历从实际问题抽象为数学问题的过程,掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算,养成敢高于探索勇于创新的良好习惯,以及善于用数学方法解决实际问题的能力(2)能力目标在具体的分析过程中,使学生经历向量加法法则的探究和应用过程,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。
(3)情感目标注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。
教学重点和难点重点:向量加法的两个法则及其应用;难点:对向量加法定义的理解。
《从位移、速度、力到向量》教学设计本节课的内容是北师大版数学必修4,第二章《平面向量》的引言和第一节《从位移、速度、力到向量》两部分,所需课时为1课时。
一、教材分析向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的起始课,具有“统领全局”的作用。
本节概念课,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。
二、学情分析在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
三、目标定位根据以上的分析,本节课的教学目标定位:1)、知识目标⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;⑶理解零向量、单位向量、相等向量、平行向量的含义。
2)、能力目标⑴培养用联系的观点,类比的方法研究向量;⑵获得研究数学新问题的基本思路,学会概念思维;3)、情感目标⑴运用实例,激发爱国热情;⑵使学生自然的、水到渠成的实现“概念的形成”;⑶让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
重难点:重点:向量概念、向量的几何表示、以及相等向量概念;难点:让学生感受向量、平行或共线向量等概念形成过程;四、教学过程概述:4.1 向量概念的形成4.1.1 让学生感受引入概念的必要性引子:在世博园内,有位同学在参观完了中国馆后将要去德国馆参观,由位置的变化引出位移。
全国青年教师素养大赛一等奖平面向量基本定理教学设计教学过程设计:一、背景分析1.教材分析向量是代数、几何和三角函数之间联系的重要工具,具有广泛的实际应用。
在之前的教学中,我们已经研究了向量的基本概念和线性运算,重点强调了向量的几何特征。
本节课我们将研究“平面向量基本定理”的概念和应用,它是研究向量的正交分解和向量的坐标运算的基础。
通过平面向量基本定理,我们可以建立平面向量与它的坐标之间的一一对应关系,将“数”的运算与“形”的问题完美结合起来,这在整个向量知识体系中处于承上启下的核心地位。
本节课的教学重点是“平面向量基本定理的探究过程和应用”。
2.学情分析从学生的知识层面来看,我们已经研究了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算以及向量共线的充要条件等。
此外,我们还初步了解了向量的物理背景。
从学生的能力层面来看,通过之前的研究,我们已经初步具备类比归纳概括的能力,并能在教师的引导下解决问题。
在教学中,我们将引入生活实例类比向量的分解,让学生通过课件的直观感受和动手探索总结归纳出平面向量基本定理。
尤其是将图形语言转化为文字语言,对学生的能力要求比较高。
因此,我认为平面向量的分解及对这种分解唯一性的理解是本节课的教学难点。
二、研究目标1.知识与技能目标1.了解平面向量基本定理及其意义,能够选择基底来表示平面中的任意向量。
2.能够使用平面向量基本定理进行简单的应用。
2.过程与方法目标1.通过平面向量基本定理的探究,让学生体验数学定理的产生、形成过程,培养学生观察发现问题、由特殊到一般的归纳总结问题的能力。
2.通过对平面向量基本定理的运用,增强学生对向量应用的意识,让学生进一步体会向量作为处理几何问题的强有力工具之一。
3.情感、态度与价值观目标1.通过现实的实例,激发学生的研究兴趣,培养学生不断发现、探索新知的精神,发展学生的数学应用意识。
2.通过定理的产生过程,让学生体验由特殊到一般的数学思想方法,在探究活动中形成锲而不舍的钻研精神和科学态度。
高中数学第五届全国青年教师观摩与评比活动《向量的加法》教学设计.doc5.2 向量的加法教学目标1.知识目标掌握向量的加法定义,会用向量加法的三角形法则和平行四边形法则作出两个向量的和向量;掌握向量加法的运算律,并会用它们进行向量计算。
2.能力目标使学生经历向量加法法则的探究和应用过程,体会数形结合、分类讨论等数学思想方法,进一步培养学生归纳、类比、迁移能力,增强学生的数学应用意识和创新意识。
3.情感目标注重培养学生积极参与、大胆探索的精神以及合作意识;通过让学生体验成功,培养学生学习数学的信心。
教学重点、难点重点:向量加法的两个法则及其应用;难点:对向量加法定义的理解。
突破难点的关键是抓住实例,借助多媒体动画演示,不断渗透数形结合的思想,使学生从感性认识升华到理性认识。
教学方法结合学生实际,主要采用“问题探究”式教学方法。
通过创设问题情境,使学生对向量加法有一定的感性认识;通过设置一条问题链,引导学生在自主学习与合作交流中经历知识的形成过程;通过层层深入的例题与习题的配置,引导学生积极思考,灵活掌握知识,使学生从“懂”到“会”到“悟” ,提高思维品质,力求把传授知识与培养能力融为一体。
采用计算机辅助教学,通过直观演示体现形、动、思于一体的教学效果,优化课堂结构,提高教学质量。
教学过程教学教学内容师生互动设计意图环节一、复习旧知:我们已经学过向量。
(1)什么是向量?教师提问,学生重温旧知,为学习新既有大小又有方向的量叫向量,一般用有向线段表思考回答。
知识做铺垫。
复示习(2)什么是平行向量?引方向相同或相反的非零向量叫平行向量,零向量与入任意向量平行(3)如果两个向量要相等,必须具备什么条件?长度相等且方向相同的向量叫相等向量(4)向量和数的区别在哪里?二、新课讲授:1. 设置情境,提出问题向量和数有区别吗?数可以做加法,而且对于任意两个数 x y y x ;( x y) z x ( y z) 即使学生对本节课所必备的基础知识有一个学生回答求合交换律和结合律。
诚西郊市崇武区沿街学校向量法教学设计一、教材内容分析向量法这节课安排在新课标实验教材选修2-1的第三章空间向量与立体几何内容之后,在对本章知识进展归纳总结的根底上,使学生对空间向量的根本内容有一个系统的认识,着重突出了用空间向量解决立体几何问题的根本思想和方法,并通过典型例子,使学生感受向量法解决立体几何问题的优势,进步学生主动应用向量法的意识以及应用向量法解决立体几何典型问题的才能。
二、学情分析学生在学习完必修4平面向量、必修2空间几何体和点、直线、平面之间的位置关系、选修2-1空间向量与立体几何之后,对向量的概念和立体几何知识有了初步的理解和把握,但是,由于所学内容时间是是间隔较长,学生学习程度参差不齐,又存在才能差异,因此,要进展本堂课的教学,首先要有意识地进展课前安排学生复习根底知识,进步才能,对需要学生打破的重点和难点,需要给学生足够的时间是是去考虑,交流,让学生在互帮互助中形成一一共识,提升思维程度。
三、教学目的〔知识,技能,情感态度、价值观〕知识与技能1、通过对空间向量的根底内容的复习,可以纯熟掌握空间向量的根本概念和根本运算。
2、可以初步建立空间向量根底知识的知识体系。
3、可以纯熟应用利用向量方法解决立体几何问题的一般方法〔三步曲〕。
过程与方法1、经历归纳梳理知识的全过程,初步形成空间向量根底知识体系2、进步学生主动应用向量法的意识以及应用向量法解决典型问题的才能情感态度与价值观体会把立方体几何几何转化为向量问题优势,培养探究精神。
三、教学重点、难点教学重点:1、可以初步建立空间向量根底知识的知识体系。
2、可以纯熟应用利用向量方法解决立体几何问题的一般方法〔三步曲〕教学难点:建立立体图形与空间向量之间的联络,把立体几何问题转化为向量问题。
四、教学策略分析教学方法的选择是以教学内容为载体,以学生参与为标志,以启迪学生思维、培养学生创新才能为核心,以育人为宗旨的。
在教学我采用以问题为主线,以小组探究为主体,学生自我展示,教师适当点拨为辅助的教学形式。
高中数学《平面向量》的教案人教版高中数学《平面向量》的教案作为一位优秀的人民教师,常常要根据教学需要编写教案,教案有利于教学水平的提高,有助于教研活动的开展。
那么优秀的教案是什么样的呢?下面是小编帮大家整理的人教版高中数学《平面向量》的教案,欢迎阅读与收藏。
高中数学《平面向量》的教案篇1第一教时教材:向量目的:要求学生掌握向量的意义、表示方法以及有关概念,并能作一个向量与已知向量相等,根据图形判定向量是否平行、共线、相等。
过程:一、开场白:本P93(略)实例:老鼠由A向西北逃窜,猫在B处向东追去,问:猫能否追到老鼠?(画图)结论:猫的速度再快也没用,因为方向错了。
二、提出题:平面向量1.意义:既有大小又有方向的量叫向量。
例:力、速度、加速度、冲量等注意:1数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小。
2从19世纪末到20世纪初,向量就成为一套优良通性的数学体系,用以研究空间性质。
2.向量的表示方法:1几何表示法:点—射线有向线段——具有一定方向的线段有向线段的三要素:起点、方向、长度记作(注意起讫)2字母表示法:可表示为(印刷时用黑体字)P95 例用1cm表示5n mail(海里)3.模的概念:向量的大小——长度称为向量的模。
记作:模是可以比较大小的4.两个特殊的向量:1零向量——长度(模)为0的向量,记作。
的方向是任意的。
注意与0的区别2单位向量——长度(模)为1个单位长度的向量叫做单位向量。
例:温度有零上零下之分,“温度”是否向量?答:不是。
因为零上零下也只是大小之分。
例:与是否同一向量?答:不是同一向量。
例:有几个单位向量?单位向量的大小是否相等?单位向量是否都相等?答:有无数个单位向量,单位向量大小相等,单位向量不一定相等。
三、向量间的关系:1.平行向量:方向相同或相反的非零向量叫做平行向量。
记作:∥ ∥规定:与任一向量平行2.相等向量:长度相等且方向相同的向量叫做相等向量。
高一数学平面向量概念教案3篇高一数学平面向量概念教案篇1一、教材分析1、教材的地位和作用:函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。
本课中对函数概念理解的程度会直接影响其它知识的学习,所以函数的第一课时非常的重要。
2、教学目标及确立的依据:教学目标:(1) 教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。
(2) 能力训练目标:通过教学培养的抽象概括能力、逻辑思维能力。
(3) 德育渗透目标:使懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。
教学目标确立的依据:函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。
加强函数教学可帮助学好其他的内容。
而掌握好函数的概念是学好函数的基石。
3、教学重点难点及确立的依据:教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。
教学难点:映射的概念,函数近代概念,及函数符号的理解。
重点难点确立的依据:映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的来说不易理解。
而且由于函数在高考中可以以低、中、高挡题出现,所以近年来有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。
二、教材的处理:将映射的定义及类比手法的运用作为本课突破难点的关键。
函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。
为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使真正对函数的概念有很准确的认识。
《平面向量》优秀说课稿(通用3篇)作为一位不辞辛劳的人民教师,就不得不需要编写说课稿,通过说课稿可以很好地改正讲课缺点。
那么什么样的说课稿才是好的呢?下面是小编为大家整理的《平面向量》优秀说课稿(通用3篇),希望对大家有所帮助。
《平面向量》说课稿1一、说教材平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。
本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。
为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。
本节内容也是全章重要内容之一。
二、说学习目标和要求通过本节的学习,要让学生掌握(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三、说教法在教学过程中,我主要采用了以下几种教学方法:(1)启发式教学法因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!主要辅助教学的手段(powerpoint)(3)讨论式教学法主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四、说学法学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。
通过精讲多练,充分调动学生自主学习的积极性。
如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!五、说教学过程这节课我准备这样进行:首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:(1)模的计算公式(2)平面两点间的距离公式。
平面向量的概念教学设计作为一名教职工,时常需要用到教学设计,教学设计是一个系统化规划教学系统的过程。
教学设计要怎么写呢?下面是小编收集整理的平面向量的概念教学设计,欢迎大家分享。
平面向量的概念教学设计1一、教材分析:1、教材的地位和作用向量是高中阶段学习的一个新的矢量,向量概念是《平面向量》的最基本内容,它的学习直接影响到我们对向量的进一步研究和学习,如向量间关系、向量的加法、减法以及数乘等运算,还有向量的坐标运算等,因此为后面的学习奠定了基础.结合本节课的特点及学生的实际情况我制定了如下的教学目标及教学重难点:2、教学目标(1) 知识与技能目标1)识记平面向量的定义,会用有向线段和字母表示向量,能辨别数量与向量;2)识记向量模的定义,会用字母和线段表示向量的模.3)知道零向量、单位向量的概念.(2) 过程与方法目标学生通过对向量的学习,能体会出向量来自于客观现实,提高观察、分析、抽象和概括等方面的能力,感悟数形结合的思想.(3)情感态度与价值观目标通过构建和谐的课堂教学氛围,激发学生的学习兴趣,使学生勇于提出问题,同时培养学生团队合作的精神及积极向上的学习态度.3、教学重难点教学重点:向量的定义,向量的几何表示和符号表示,以及零向量和单位向量教学难点:向量的几何表示的理解,对零向量和单位向量的理解二、学情分析(1)能力分析:对于我校的学生,基础知识较薄弱,虽然他们的智力发展已到了形成运演阶段,但并不具备较强的抽象思维能力、概括能力及数形结合的思想.(2)认知分析:之前,学生有了物理中的矢量概念,这为学习向量作了最好的铺垫。
(3)情感分析:部分学生具有积极的学习态度,强烈的探究欲望,能主动参与研究.三、教法学法教法:启发教学法,引探教学法,问题驱动法,并借助多媒体来辅助教学学法:在学法上,采用的是探究,发现,归纳,练习。
从问题出发,引导学生分析问题,让学生经历观察分析、概括、归纳、类比等发现和探索过程.四、教学过程课前:为了打造高效课堂,以生为本我选择生本式的教学方式,以穿针引线的方式设计了前置性作业。
关注概念生成过程,促进学生主动建构
本节课的内容是北师大版数学必修4,第二章《平面向量》的引言和第一节《从位移、速度、力到向量》两部分,所需课时为1课时。
一、教材内容分析
向量是近代数学最重要和最基本的数学概念之一,它是沟通代数、几何与三角函数的桥梁,对更新和完善中学数学知识结构起着重要的作用。
向量集数与形于一身,有着极其丰富的实际背景,在现实生活中随处可见的位移、速度、力等既有大小又有方向的量是它的物理背景,有向线段是它的几何背景。
向量就是从这些实际对象中抽象概括出来的数学概念,经过研究,建立起完整的知识体系之后,向量又作为数学模型,广泛地应用于解决数学、物理学科及实际生活中的问题,因此它在整个高中数学的地位是不言而喻的。
本课是“平面向量”的起始课,具有“统领全局”的作用。
本节内容,重要的不是向量的形式化定义及几个相关概念,而是能让学生去体会认识与研究数学新对象的方法和基本思路,进而提高提出问题,解决问题的能力。
二、教学目标分析
根据以上的分析,本节课的教学目标定位:
1)、知识目标
⑴通过对位移、速度、力等实例的分析,形成平面向量的概念;
⑵学会平面向量的表示方法,理解向量集形与数于一身的基本特征;
⑶理解零向量、单位向量、相等向量、平行向量的含义。
2)、能力目标
⑴培养用联系的观点,类比的方法研究向量;
⑵获得研究数学新问题的基本思路,学会概念思维;
3)、情感目标
⑴运用实例,激发爱国热情;
⑵使学生自然的、水到渠成的实现“概念的形成”;
⑶让学生积极参与到概念本质特征的概括活动中,享受寓教于乐。
重难点:
重点:向量概念、向量的几何表示、以及相等向量概念;
难点:让学生感受向量、平行或共线向量等概念形成过程;
三、教学诊断分析
本节是平面向量的第一堂课,属于“概念课”,概念的理解无疑是重点,也是难点。
为了帮助学生建立向量的概念,与数、形的相关概念类比与联系是值得重视的。
在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
具体教学中,要设计一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。
使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。
这也是本堂课的核心目标。
由于数学概念的高度抽象性,学生往往要费很多周折才能理解,教师应从学生的认知水平出发,针对学生的理解困难来展开教学,保证学生参与概念本质特征的概括活动,确保学生有自己想明白的机会和时间,这是至关重要的。
本课的教学,我们力求使学生理了解向量概念的背景和形成过程,了解为什么要引入这个概念,怎样定义这个概念,怎样入手研究一个新的问题。
因此,在教学中教师应注意从宏观上为学生勾勒研究框架和总体思路,使学生能“抬头看路”,知道往哪里走,这是起始课的重要任务;微观上,引导学生通过类比,有序地给出向量的定义、讨论向量的表示、定义特殊向量、研究特殊向量的关系。
在引导学生展开对向量及其相关概念的学习过程中,应强调“让学生参与到定义概念的活动中来”,不轻易打断学生的思维和活动,恰如其分地“以问题引导学习”,在质疑——反思的过程中深化概念的理解,使概念的理解成为学生自己主动思维的结果。
本课中出现的特殊向量——零向量,很多教师都会在“零向量与任意向量平行上”花太多时间,原因是“这是考试中的一个陷阱”。
这其实是对零向量的意义和作用理解不到位的表现:首先,规定零向量与任何向量平行是完善概念系统的需要;其次,就像数零的作用在于运算一样,零向量的作用在于运算及其表达的几何意义。
因此孤立地讨论零向量与任何向量平行没有多少意义,也不必耗费过多时间。
四、本课教学特点及预期效果分析
在学生建立向量的概念之初,与数、形的相关概念类比与联系是值得重视的。
在学生的已有经验中,与本课内容相关的有:数的抽象过程、实数的绝对值(线段的长度)、数的相等、单位长度、0和1的特殊性、线段的平行与共线等。
因此在具体教学中,我设计了一个能让学生开展概括活动的过程,引导他们经历从具体事例中领悟向量概念的本质特征,类比数的概念获得向量概念的定义及表示,类比数的集合认识向量的集合,类比直线的基本关系认识向量的基本关系。
使学生从中体会到认识一个数学概念的基本思路,而不是停留在某个具体的概念学习上。
在向量的几何表示中,我让学生大胆探索,而不是“全包全揽”,教师引导,学生补充改进,最终明确向量几何表示的正确方法。
整个过程全体同学热情参与,自我教育,互帮互学,课堂气氛生动活泼。
当同学们能将向量正确的几何表示时,我又适时地提出问题:大家画出的线段长短不一,怎么解决?由此自然过渡到单位长度上,使得单位向量的引入也就顺理成章了。
为了帮助学生学习相等向量、平行(共线)向量的概念,本课设计了“传花游戏”,通过学生之间传递花朵所产生的位移向量,让学生积极参与,仔细观察,自己概括出概念的本质特征,将课堂气氛推向一个新的高潮。
在结束本课之前,为了让同学对向量加深印象,我让学生先欣赏一首关于向量的诗歌,再让学生在课外动笔写出自己对向量的感受。
本节课是从现实世界的常见实例出发,以学生自主探究的教学方式为主。
在课堂上,创建了一个以全班学生共同参与的向量游戏平台,让学生在轻松愉悦的课堂环境中,共同参与,共同讨论,共同分析,让学生自然地、水到渠成的完成本节内容的学习。
整节课,我留给学生充足的时间,让学生参与概念本质特征的概括活动过程,从而达到培养学生创新精神和实践能力的最终目的!。