2008年浙江省高中数学竞赛试卷答案
- 格式:doc
- 大小:539.50 KB
- 文档页数:9
2008年全国高中数学联赛受中国数学会委托,2008年全国高中数学联赛由重庆市数学会承办。
中国数学会普及工作委员会和重庆市数学会负责命题工作。
2008年全国高中数学联赛一试命题范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。
主要考查学生对基础知识和基本技能的掌握情况,以及综合和灵活运用的能力。
全卷包括6道选择题、6道填空题和3道大题,满分150分。
答卷时间为100分钟。
全国高中数学联赛加试命题范围与国际数学奥林匹克接轨,在知识方面有所扩展,适当增加一些竞赛教学大纲的内容。
全卷包括3道大题,其中一道平面几何题,试卷满分150分。
答卷时问为120分钟。
一 试一、选择题(每小题6分,共36分)1.函数254()2x x f x x-+=-在(,2)-∞上的最小值是 ( )。
(A )0 (B )1 (C )2 (D )32.设[2,4)A =-,2{40}B x x ax =--≤,若B A ⊆,则实数a 的取值范围为( )。
(A )[1,2)- (B )[1,2]- (C )[0,3] (D )[0,3)3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为 ( )。
(A )24181 (B )26681 (C )27481(D ) 6702434.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564 cm 2,则这三个正方体的体积之和为 ( )。
(A )764 cm 3或586 cm 3 (B ) 764 cm 3(C )586 cm 3或564 cm 3 (D ) 586 cm 3 5.方程组0,0,0x y z xyz z xy yz xz y ++=⎧⎪+=⎨⎪+++=⎩的有理数解(,,)x y z 的个数为 ( )。
2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页,第II 卷3至9页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷考生注意:1.答题前,考生在答题卡上务必用0.5毫米黑色墨水签字笔将自己的姓名、准考证号、填写清楚 ,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效..........3.本卷共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 参考公式: 如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径()(1)(01,2)kkn kn n P k C P P k n -=-= ,,,一、选择题1.函数y =的定义域为( )A .{}|0x x ≥B .{}|1x x ≥C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在A B C △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b c B .5233-c b C .2133-b c D .1233+b c4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln 1y =的图像关于直线y x =对称,则()f x =( ) A .21x e -B .2x eC .21x e +D .22x e +7.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x y ab+=通过点(cos sin )M αα,,则( )A .221a b +≤ B .221a b +≥C .22111ab+≤D .22111ab+≥11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为A B C △的A .B .C .D .中心,则1A B 与底面ABC 所成角的正弦值等于( )A .13B.3C.3D .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96B .84C .60D .482008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.第Ⅱ卷共7页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试..题卷上作答无效........ 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效.........) 13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在A B C △中,A B B C =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形A B D E 有一公共边A B ,二面角C A B D --的余弦值为3,M N ,分别是A C B C ,的中点,则E M A N ,所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设A B C △的内角A B C ,,所对的边长分别为a b c ,,,且3cos cos 5a B b A c -=.(Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A B C D E -中,底面B C D E 为矩形,侧面A B C ⊥底面B C D E ,2B C =,CD =,A B A C =.(Ⅰ)证明:AD C E ⊥;(Ⅱ)设C E 与平面A B E 所成的角为45 ,求二面角C A D E --的大小.19.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知函数32()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫--⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)(注意:在试题卷上作答无效.........) 已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳DE AB性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验. (Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率; (Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)(注意:在试题卷上作答无效.........) 双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知O A AB O B 、、成等差数列,且BF与FA 同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设A B 被双曲线所截得的线段的长为4,求双曲线的方程.22.(本小题满分12分)(注意:在试题卷上作答无效.........) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试 理科数学(必修+选修Ⅰ)参考答案1. C. 由()10,0,1,0;x x x x x -≥≥≥=得或2. A .根据汽车加速行驶212s at =,匀速行驶s vt =,减速行驶212s at =-结合函数图像可知;3. A. 由()2AD AB AC AD -=-,322AD AB AC c b =+=+ ,1233A D c b =+ ;4. D. ()()()22221210,1a i i a ai i a a i a +=+-=-+->=-;5. C. 由243511014,104,3,104595a a a a a d S a d +=+=⇒=-==+=;6. B.由()()()()21212ln 1,1,y x xy x e f x ef x e --=⇒=-==;7.D.由()3212211,','|,2,21121x x y y y a a x x x =+==+=-=--==----;8.A.55cos 2sin 2sin 2,3612y x x x πππ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭只需将函数s in 2y x =的图像向左平移5π12个单位得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像. 9.D .由奇函数()f x 可知()()2()0f x f x f x xx--=<,而(1)0f =,则(1)(1)0f f -=-=,当0x >时,()0(1)f x f <=;当0x <时,()0(1)f x f >=-,又()f x 在(0)+∞,上为增函数,则奇函数()f x 在(,0)-∞上为增函数,01,10x x <<-<<或.10.D .由题意知直线1x y ab+=与圆221x y +=221111ab+≤1,≥.另解:设向量11(cos ,sin ),(,)a bααm =n =,由题意知cos sin 1abαα+=由⋅≤m n m n可得cos sin 1abαα=+≤11.C.由题意知三棱锥1A ABC-为正四面体,设棱长为a,则1AB=,棱柱的高13A O a===(即点1B到底面ABC的距离),故1A B与底面ABC所成角的正弦值为113A OA B=.另解:设1,,AB AC AA为空间向量的一组基底,1,,AB AC AA的两两间的夹角为060长度均为a,平面ABC的法向量为111133O A A A A B A C=--,11AB AB AA=+211112,33O A AB a O A AB⋅===则1A B与底面ABC所成角的正弦值为11113O A ABA O AB⋅=12.B.分三类:种两种花有24A种种法;种三种花有342A种种法;种四种花有44A种种法.共有234444284A A A++=.另解:按A B C D---顺序种花,可分A C、13.答案:9.如图,作出可行域,作出直线:20l x y-=,将l平移至过点A处时,函数2z x y=-有最大值9.14. 答案:2.由抛物线21y ax=-的焦点坐标为1(0,1)4a-为坐标原点得,14a=,则2114y x=-与坐标轴的交点为(0,1),(2,0),(2,0)--,则以这三点围成的三角形的面积为14122⨯⨯=15.答案:38.设1A B B C==,7cos18B=-则222252cos9AC AB BC AB BC B=+-⋅⋅= 53A C=,582321,21,3328ca c ea=+====.16.答案:16.设2A B=,作CO ABDE⊥面,O H AB⊥,则C H A B⊥,C H O∠为二面角C A B D--cos1C H O H C H C H O==⋅∠=,结合等边三角形ABC与正方形A B D E可知此四棱锥为正四棱锥,则AN EM C H ===11(),22A N A C A B E M A C A E =+=- ,11()()22A N E M A B A C A C A E ⋅=+⋅-=12故E M A N ,所成角的余弦值16A N E M A N E M⋅=另解:以O 为坐标原点,建立如图所示的直角坐标系,则点(1,1,0),(1,1,0),(1,1,0),(0,A B E C ----,1111(,,(,,222222M N ---,则31131(,,(,,),,2222222AN EM AN EM ==-⋅= 故E M A N ,所成角的余弦值16A N E MA NE M ⋅= .17.解析:(Ⅰ)在A B C △中,由正弦定理及3cos cos 5a B b A c -=可得3333sin cos sin cos sin sin()sin cos cos sin 5555A B B A C A B A B A B -==+=+即sin cos 4cos sin A B A B =,则tan cot 4A B =;(Ⅱ)由tan cot 4A B =得tan 4tan 0A B =>2tan tan 3tan 3tan()1tan tan 14tan cot 4tan A B BA B A BB B B --===+++≤34当且仅当14tan cot ,tan ,tan 22B B B A ===时,等号成立,故当1tan 2,tan 2A B ==时,tan()A B -的最大值为34.18.解:(1)取B C 中点F ,连接D F 交C E 于点O , A B A C =,∴AF BC ⊥,又面A B C ⊥面B C D E ,∴A F ⊥面B C D E , ∴AF C E ⊥.tan tan 2C ED FD C ∠=∠=,∴90OED ODE ∠+∠= ,90DOE ∴∠=,即C E D F ⊥,C E ∴⊥面AD F ,CE A D ∴⊥.(2)在面A C D 内过C 点作A D 的垂线,垂足为G .C G AD ⊥,CE AD ⊥,A D ∴⊥面C EG ,E G A D ∴⊥, 则C G E ∠即为所求二面角的平面角.3AC C D C G AD==,3D G =,3EG ==,C E =222cos 210C G G E C EC G E C G G E+-∠==-,πarccos 10C G E ⎛∴∠=- ⎝⎭,即二面角C A D E --的大小πarccos 10⎛- ⎝⎭. 19. 解:(1)32()1f x x ax x =+++求导:2()321f x x ax '=++ 当23a ≤时,0∆≤,()0f x '≥,()f x 在R 上递增当23a >,()0f x '=求得两根为3x =即()f x在3⎛-∞ ⎝⎭递增,33⎛⎝⎭递减,3⎛⎫+∞⎪ ⎪⎝⎭递增 (2)233133a a ⎧---⎪⎪⎨-+⎪-⎪⎩≤,且23a >解得:74a ≥20.解:对于乙:0.20.40.20.80.210.210.64⨯+⨯+⨯+⨯=.(Ⅱ)ξ表示依方案乙所需化验次数,ξ的期望为20.430.440.2 2.8E ξ=⨯+⨯+⨯=. 21. 解:(Ⅰ)设O A m d =-,AB m =,O B m d =+ 由勾股定理可得:222()()m d m m d -+=+ 得:14d m =,tan b A O F a∠=,4tan tan 23A B A O B A O F O A∠=∠==由倍角公式∴22431b ab a =⎛⎫- ⎪⎝⎭,解得12b a=,则离心率2e =(Ⅱ)过F 直线方程为()a y x c b=--,与双曲线方程22221x y ab-=联立将2a b =,c =代入,化简有22152104x x bb-+=124x =-=将数值代入,有4=解得3b = 故所求的双曲线方程为221369xy-=。
2008年浙江省高等数学(微积分)竞赛试题(经管类)一、计算题(每题12分,共60分) 1.求123sin 0lim 3x x xxx e e e →⎛⎫++⎪⎝⎭2.计算cos(3)sin(5)dxx x +⋅+⎰3.设3(2008)()arcsin ,(0)f x x x f =求4.求曲线2() 1ln 2ds tts x t y t e -=⎧⎪⎨=+⎪⎩⎰在1t =处的切线方程。
5.求曲线[]sin ,,2y x x x ππ=∈与x 轴围成的平面图形绕y 轴旋转所得的旋转体体积。
二、(20分)(1)证明()2n n f x x nx =+-(n 为正整数)在(0,)+∞上有唯一正根n a ; (2)计算lim(1)nn x a →∞+。
三、(20分)已知t 为常数,且[0,2]max cos x x x t ππ∈+-=,求t 的值。
四、(20分)分析级数321sin 1n n n π∞=⎛⎫⎪+⎝⎭∑的收敛性。
五、(15分)证明:对234, 102!3!4!x x x x x ∀∈++++>R 。
六、(15分)已知120,0a a >> (1)若存在数列{}n y 满足条件:1122()0;()lim 0;()n n n n n n a y b y c y a y a y ++→∞>==+ 1,2,3n =⋅⋅⋅证明: 121a a +>;(2)若121a a +>,证明存在满足条件(a )、(b )、(c )的数列{}n y 。
参考答案(经管类)一、1.解:原极限2301limln()sin 3x x xx e e e x e→++=而232300113lim ln()lim 2sin 33x x x x x x x x e e e e e e x x →→++++-== ∴原极限2e =2.解:()()()()()cos 3sin 5cos 3sin 3cos 2cos 3sin 2x x x x x ++=++++⎡⎤⎣⎦∴原积分()()()2111ln tan 3tan 2tan 3cos 2sin 2cos 3cos 2dx x C x x ==++++++⎰3.解:()arcsin x '=,()2121!!12!n n n n x n +∞=-=+∑∴()()21121!!arcsin 2!21n nn n x x x n n +∞+=-=++∑ ()()()244121!!2!21n n n n f x x x n n +∞+=-=++∑ ∴()()()200810022003!!02008!21002!2005f=4. 解:1dx t dt -= ()4()22 122tt ts dy ee t sds dt --=++⎰112t dye dx-=∴=+ 12t y == 10t x==∴曲线在1t =处的切线方程为()122y e x --=+5. 解: 2 222 222sin 2cos V x y dx x xdx x xπππππππππ==-=⎰⎰2 233 4cos 104sin 108x xdx xdx πππππππππ-=+=-⎰⎰二.(1)证明:1()n n f x nxn -'=+ >0 ()f x ∴在()0,+∞上严格单调增且1()n f n <0,2()n f n>0,n f ∴在()0,+∞上有唯一的零点n a (2)易知,当充分大时22n >222()n n n -2222(,)n a n n n ∴∈- ∴由夹逼定理知()2lim 1nn n a e →∞+=三、解:记()cos f x x x t =+-,()1sin 0f x x '=-≥[]{}{}0,2 1 max ()max (0),(2)max 1,2121 x t t f x f f t t t t ππππππ∈->⎧∴==-+-=⎨+-≤⎩[]0,2max ()1x f x t πππ∈∴=⇒=+四、解:()331222sin sin 1sin 111n n n n n n n n n πππ-⎛⎫⎛⎫+-==- ⎪ ⎪+++⎝⎭⎝⎭当n →∞时3221sin 0sin 11n n n n n ππ+∞=∴++∑ 收敛 当n →∞时3221sin sin 11n n n n n n πππ+∞=∴++∑ 发散 ∴原级数条件收敛。
2008年浙江省高中数学竞赛试卷(2008年4月13日(星期日)上午9:00---11:00)一、 选择题 (本大题满分36分,每小题6分)1.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( )A .{}1,AB y y => B.{}2A B y y =>C.{}21A B y y ⋃=-<<D. {}21A B y y y ⋃=<>-或2.当01x <<时,()lg xf x x=,则下列大小关系正确的是( ) A .22()()()f x f x f x <<B. 22()()()f x f x f x <<C. 22()()()f x f x f x <<D. 22()()()f x f x f x <<3.设()f x 在[0,1]上有定义,要使函数()()f x a f x a -++有定义,则a 的取值范围为( )A .1(,)2-∞-; B. 11[,]22-; C. 1(,)2+∞; D. 11(,][,)22-∞-⋃+∞ 4.已知P 为三角形ABC 内部任一点(不包括边界),且满足()(2)0PB PA PB PA PC -+-=,则△ABC 一定为( )A .直角三角形; B. 等边三角形;C. 等腰直角三角形;D. 等腰三角形5.已知()()2222212f x x a b x a ab b =++-++-是偶函数,则函数图象与y 轴交点的纵坐标的最大值是( )A B. 2C.D. 46.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
若AM ⊥MP ,则P 点形成的轨迹的长度为( )A. B.C . 3 D.32二、填空题 (本题满分54分,每小题9分)7.= 。
2008年全国高中数学联合竞赛加试(A 卷)一、(本题满分50分)如题一图,给定凸四边形A B C D ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是A B C ∆外接圆O 的 AB 上一点,满足:32A E A B=,31B C E C=-,12E C B E C A ∠=∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)n a n =⋅⋅⋅都是()f x 的周期.三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n = ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n k n k k n k k k x x a x a x -+++==-=-∑∑,1,2,3,n = .2008年全国高中数学联合竞赛加试(A 卷)试题参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分;2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不要增加其他中间档次.一、(本题满分50分)如题一图,给定凸四边形A B C D ,180B D ∠+∠< ,P 是平面上的动点,令()f P PA BC PD CA PC AB =⋅+⋅+⋅.(Ⅰ)求证:当()f P 达到最小值时,P A B C ,,,四点共圆; (Ⅱ)设E 是A B C ∆外接圆O 的 AB 上一点,满足:32A E A B=,31B C E C=-,12E C B E C A ∠=∠,又,DA DC 是O 的切线,2AC =,求()f P 的最小值.[解法一] (Ⅰ)如答一图1,由托勒密不等式,对平面上的任意点P ,有PA BC PC AB PB AC ⋅+⋅≥⋅. 因此 ()f P PA BC PC AB PD CA =⋅+⋅+⋅P B C A P D C A ≥⋅+⋅()PB PD CA =+⋅.因为上面不等式当且仅当,,,P A B C 顺次共圆时取等号,因此当且仅当P在A B C ∆的外接圆且在A C 上时, ()()f P PB PD CA =+⋅. …10分又因PB PD BD +≥,此不等式当且仅当,,B P D 共线且P 在BD 上时取等号.因此当且仅当P 为A B C ∆的外接圆与BD 的交点时,()f P 取最小值min ()f P AC BD =⋅.故当()f P 达最小值时,,,,P A B C 四点共圆. …20分 (Ⅱ)记E C B α∠=,则2E C A α∠=,由正弦定理有sin 23sin 32AE ABαα==,从而3sin 32sin 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以答一图123343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos 2α=或1cos 23α=-(舍去),故30α= ,60ACE ∠= .由已知31B C E C=-=()sin 30sin E A C E A C∠-∠,有sin(30)(31)sin EAC EAC ∠-=-∠,即31sin cos (31)sin 22EAC EAC EAC ∠-∠=-∠,整理得231s i n c o s22EAC EAC -∠=∠,故1t a n 2323EAC ∠==+-,可得75EAC ∠=, …40分 从而45E ∠= ,45DAC DCA E ∠=∠=∠= ,A D C ∆为等腰直角三角形.因2AC =,则1C D =.又A B C ∆也是等腰直角三角形,故2BC =,212212cos1355BD =+-⋅⋅= ,5BD =. 故min ()5210f P BD AC =⋅=⋅=. …50分 [解法二] (Ⅰ)如答一图2,连接BD 交A B C ∆的外接圆O 于0P 点(因为D在O 外,故0P 在BD 上).过,,A C D 分别作000,,P A P C P D 的垂线,两两相交得111A B C ∆,易知0P 在AC D ∆内,从而在111A B C ∆内,记A B C ∆之三内角分别为x y z ,,,则0180AP C y z x ∠=︒-=+,又因110B C P A ⊥,110B A P C ⊥,得1B y ∠=,同理有1A x ∠=,1C z ∠=, 所以111A B C ∆∽A B C ∆. …10分设11B C BC λ=,11C A C A λ=,11A B AB λ=,则对平面上任意点M ,有 000()()f P P A B C P D C A P C A Bλλ=⋅+⋅+⋅ 01101101P A B C P D C A P C A B =⋅+⋅+⋅ 1112AB C S ∆=11111M A B C M D C A M C A B≤⋅+⋅+⋅ ()MA BC MD CA MC AB λ=⋅+⋅+⋅ ()f M λ=, 从而 0()()f P f M ≤. 由M 点的任意性,知0P 点是使()f P 达最小值的点.由点0P 在O 上,故0,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ),()f P 的最小值 11102()A B Cf P S λ∆=2ABC S λ∆=,记E C B α∠=,则2E C A α∠=,由正弦定理有s i n 23s i n 32AE ABαα==,从而3s i n 32s i n 2αα=,即33(3sin 4sin )4sin cos αααα-=,所以23343(1cos )4cos 0αα---=,整理得243cos 4cos 30αα--=, …30分 解得3cos 2α=或1cos 23α=-(舍去),故30α= ,60ACE ∠= . 由已知31B C E C=-=()sin 30sin E A C E A C∠-∠,有sin(30)(31)sin EAC EAC∠-=-∠ ,即31sin cos (31)sin 22EAC EAC EAC ∠-∠=-∠,整理得231s i n c o s22EAC EAC -∠=∠,故1t a n 2323EAC ∠==+-,可得75EAC ∠=, …40分 所以45E ∠=︒,A B C ∆为等腰直角三角形,2AC =,1ABC S ∆=,因为145AB C ∠=︒,1B 点在O 上,190AB B ∠=︒,所以11B BD C 为矩形,1112212cos1355B C BD ==+-⋅⋅︒=,故52λ=,所以m in 5()21102f P =⋅⋅=. …50分答一图2[解法三] (Ⅰ)引进复平面,仍用,,A B C 等代表,,A B C 所对应的复数.由三角形不等式,对于复数12,z z ,有 1212z z z z +≥+,当且仅当1z 与2z (复向量)同向时取等号.有 P A B C P C A B P A B C P C A B⋅+⋅≥⋅+⋅, 所以 ()()()()A P CBC P B A --+-- ()()()()A P C B C P B A ≥--+-- (1) P C A B C B P A=-⋅-⋅+⋅+⋅ ()()B P C A P B A C =--=⋅ ,从而 P A B C P C A B P D C A ⋅+⋅+⋅ P B A C P D A C≥⋅+⋅ ()PB PD AC =+⋅BD AC ≥⋅. (2) …10分(1)式取等号的条件是复数 ()()A P C B --与()()C P B A -- 同向,故存在实数0λ>,使得 ()()()(A P C B C P B A λ--=--, A P B A C P C Bλ--=--,所以 a r g ()a r g ()A PB AC P C B--=--, 向量PC 旋转到PA 所成的角等于BC 旋转到AB所成的角,从而,,,P A B C 四点共圆.(2)式取等号的条件显然为,,B P D 共线且P 在BD 上.故当()f P 达最小值时P 点在A B C ∆之外接圆上,,,,P A B C 四点共圆. …20分(Ⅱ)由(Ⅰ)知min ()f P BD AC =⋅. 以下同解法一.二、(本题满分50分)设()f x 是周期函数,T 和1是()f x 的周期且01T <<.证明: (Ⅰ)若T 为有理数,则存在素数p ,使1p是()f x 的周期;(Ⅱ)若T 为无理数,则存在各项均为无理数的数列{}n a 满足110n n a a +>>> (1,2,)n =⋅⋅⋅,且每个(1,2,)na n =⋅⋅⋅都是()f x 的周期.[证] (Ⅰ)若T 是有理数,则存在正整数,m n 使得n T m=且(,)1m n =,从而存在整数,a b ,使得1m a n b +=. 于是11m a nba bT ab T m m+==+=⋅+⋅是()f x 的周期. …10分 又因01T <<,从而2m ≥.设p 是m 的素因子,则m pm '=,m *'∈N ,从而11m p m'=⋅是()f x 的周期. …20分(Ⅱ)若T 是无理数,令111a T T ⎡⎤=-⎢⎥⎣⎦,则101a <<,且1a 是无理数,令 21111a a a ⎡⎤=-⎢⎥⎣⎦, ……111n n n a a a +⎡⎤=-⎢⎥⎣⎦,……. …30分由数学归纳法易知n a 均为无理数且01n a <<.又111n n a a ⎡⎤-<⎢⎥⎣⎦,故11n n n a a a ⎡⎤<+⎢⎥⎣⎦,即111n n n n a a a a +⎡⎤=-<⎢⎥⎣⎦.因此{}n a 是递减数列. …40分最后证:每个n a 是()f x 的周期.事实上,因1和T 是()f x 的周期,故111a T T ⎡⎤=-⎢⎥⎣⎦亦是()f x 的周期.假设k a 是()f x 的周期,则111k k k a a a +⎡⎤=-⎢⎥⎣⎦也是()f x 的周期.由数学归纳法,已证得na 均是()f x 的周期. …50分三、(本题满分50分)设0k a >,1,2,,2008k = .证明:当且仅当200811k k a =>∑时,存在数列{}n x 满足以下条件:(ⅰ)010n n x x x +=<<,1,2,3,n = ; (ⅱ)lim n n x →∞存在;(ⅲ)20082007111n n kn k k n kk k x x ax ax -+++==-=-∑∑,1,2,3,n = .[证] 必要性:假设存在{}n x 满足(ⅰ),(ⅱ),(iii ).注意到(ⅲ)中式子可化为 2008111()n n k n k n k k x x a x x -++-=-=-∑,n ∈*N ,其中00x =.将上式从第1项加到第n 项,并注意到00x =得 11122220082008()()()n n n n x a x x a x x a x x +++=-+-++-. …10分由(ⅱ)可设lim n n b x →∞=,将上式取极限得1122200820()()()b a b x a b x a b x =-+-++-20081122200820081()k k b a a x a x a x ==⋅-+++∑20081k k b a =<⋅∑,因此200811k k a =>∑. …20分充分性:假设200811k k a =>∑.定义多项式函数如下:20081()1kkk f s as ==-+∑,[0,1]s ∈,则()f s 在[0,1]上是递增函数,且(0)10f =-<,20081(1)10kk f a==-+>∑.因此方程()0f s =在[0,1]内有唯一的根0s s =,且001s <<,即0()0f s =. …30分 下取数列{}n x 为01nkn k x s==∑,1,2,n = ,则明显地{}n x 满足题设条件(ⅰ),且10011n nkn k s s x ss +=-==-∑.因001s <<,故10l i m 0n n s+→∞=,因此1000lim lim11n n n n s s sx s s +→∞→∞-==--,即{}n x 的极限存在,满足(ⅱ). …40分最后验证{}n x 满足(ⅲ),因0()0f s =,即2008011k k k a s ==∑,从而20082008200810001111()()nk n n k n n k k k n kn kk k k x x s a s s a s a x x +-++-===-====-∑∑∑.综上,存在数列{}n x 满足(ⅰ),(ⅱ),(ⅲ). …50分。
浙江省高中数学竞赛(a卷)参考答案2007年浙江省高中数学竞赛(A卷)参考答案一、选择题1.如果23()1log 2log 9log 64x x x f x =-+-,则使()0f x <的x 的取值范围为( B )A. 01x << B. 813x << C. 1x <<+∞ D. 8 3x <<+∞ 解:显然0x >,且1x ≠。
23()1log 2log 9log 64x x x f x =-+-1log 2log 3log 4x x x =-+-3log 8x x =。
要使()0f x <。
当1x >时,318x <,即813x <<;当01x <<时,318x >,此时无解。
由此可得,使()0f x <的x 的取值范围为813x <<。
2.已知集合{}c o s 22)s i n A x x x xR =++-+>∈,{}sin cos ,B x x x x R =≥∈,则A B ?=( C )A. 4xx ππ??<<B. RC. ?D. 2(21),4xk x k k πππ??+<<+∈Z解:cos 22(11)0x x ++->2sin (10x x ?-+(sin 1)0x x ?-<没有实数x 可以使上述不等式成立。
故A =?。
从而有A B ?=?。
3.以( B )A. 2B. 3C. 4D. 6解:以这些边为三角形仅有四种:(1,1,1),,,。
固定四面体的一面作为底面:当底面的三边为(1,1,1)时,另外三边的取法只有一种情况,即;当底面的三边为时,另外三边的取法有两种情形,即,。
其余情形得到的四面体均在上述情形中。
由此可知,四面体个数有3个。
4.从1至169的自然数中任意取出3个数构成以整数为公比的递增等比数列的取法有( C )种。
高中数学2008年普通高等学校招生全国统一考试(浙江卷)(理科) 试题 2019.091,已知圆C 的圆心与点(2,1)P -关于直线1y x =+对称.直线34110x y +-=与圆C 相交于B A ,两点,且6=AB ,则圆C 的方程为_______________________.2,有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________________种(用数字作答).3,已知函数22s (in cos s 1)2co f x x x x ωωω++=(,0x R ω∈>)的最小值正周期是2π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的最大值,并且求使()f x 取得最大值的x 的集合.4,甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为21与p ,且乙投球2次均未命中的概率为161. (Ⅰ)求乙投球的命中率p ;(Ⅱ)求甲投球2次,至少命中1次的概率;(Ⅲ)若甲、乙两人各投球2次,求两人共命中2次的概率. 5,如图,在四棱锥ABCD P -中,底面ABCD 是矩形.已知60,22,2,2,3=∠====PAB PD PA AD AB .(Ⅰ)证明⊥AD 平面PAB ;(Ⅱ)求异面直线PC 与AD 所成的角的大小; (Ⅲ)求二面角A BD P --的大小.6,在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;(Ⅲ)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*n N ∈,na 是3n a +与6n a +的等差中项.7,已知函数432()2f x x ax x b =+++(x R ∈),其中R b a ∈,. (Ⅰ)当103a =-时,讨论函数()f x 的单调性; (Ⅱ)若函数()f x 仅在0x =处有极值,求a 的取值范围;(Ⅲ)若对于任意的[2,2]a ∈-,不等式()1f x ≤在[1,1]-上恒成立,求b 的取值范围.8,已知中心在原点的双曲线C 的一个焦点是()0,31-F ,一条渐近线的方程是025=-y x .(Ⅰ)求双曲线C 的方程;(Ⅱ)若以()0≠k k 为斜率的直线l 与双曲线C 相交于两个不同的点M ,N ,且线段MN 的垂直平分线与两坐标轴围成的三角形的面积为281,求k 的取值范围.9,已知a 是实数,1a ii -+是纯虚数,则a =( )(A )1 (B )-1 (C )2(D )-210,已知U=R ,A={}0|>x x ,B={}1|-≤x x ,则()()u u A C B B C A = ( ) (A )∅ (B ){}|0x x ≤(C ){}|1x x >- (D ){}|01x x x >≤-或11,已知a ,b 都是实数,那么“22b a >”是“a >b ”的( ) (A )充分而不必要条件(B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件12,在)5)(4)(3)(2)(1(-----x x x x x 的展开式中,含4x 的项的系数是( ) (A )-15 (B )85(C )-120 (D )27413,在同一平面直角坐标系中,函数])20[)(232cos(ππ,∈+=x x y 的图象和直线21=y 的交点个数是( )(A )0(B )1 (C )2 (D )4 14,已知{}n a 是等比数列,41252==a a ,,则12231n n a a a a a a ++++=( )(A )16(n --41) (B )16(n--21)(C )332(n --41)(D )332(n--21)15,若双曲线12222=-b y a x 的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )(A )3(B )5 (C )3 (D )516,若cos 2sin αα+=则tan α=( )(A )21 (B )2 (C )21-(D )2-17,已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足()()0a c b c -⋅-=,则c的最大值是( )(A )1 (B )2 (C )2 (D )2218,如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是( )(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线19,已知a >0,若平面内三点A (1,-a ),B (2,2a ),C (3,3a )共线,则a =______20,已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B两点若1222=+B F A F ,则AB =____________。
2008年全国高中数学联合竞赛一试试题一、选择题(本题满分36分,每小题6分)1.函数f (x )=5−4x +x 22−x在(−∞,2)上的最小值是()A.0 B.1 C.2 D.3解答f (x )=2−x +12−x⩾2,等号成立时x =1.所以选C .2.设A =[−2,4),B ={x |x 2−ax −4⩽0},若B ⊆A ,则实数a 的取值范围为()A.[−1,2)B.[−1,2]C.[0,3]D.[0,3)解答设f (x )=x 2−ax −4,依题意f (x )=0的两根x 1,x 2∈[−2,4).由于∆=a 2+16>0,于是 f (−2)=2a ⩾0,f (4)=12−4a >0,a 2∈[−2,4)⇒a ∈[0,3).所以选D .3.甲、乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望Eξ为()A.24181 B.26681 C.27481 D.670243解答由于比赛不满6局时胜者比对方多2分,则比赛局数只能是2,4,6.其中2局分胜负的情况为甲或乙胜2局;4局分胜负的情况为甲或乙胜3局负1局,且负的1局在前2局.于是需要比赛6局的情况是在前4局中,甲或乙在1,2局和3,4局中均为1胜1负.相应分布列为局数ξ246概率P (23)2+(13)2C 12·13(23)3+C 12·23(13)34(13)2(23)2于是Eξ=2×59+4×2081+6×1681=26681.所以选B .4.若三个棱长均为整数(单位:cm )的正方体的表面积之和为564cm 2,则这三个正方体的体积之和为()A.764cm 3或586cm 3B.764cm 3C.586cm 3或564cm 3D.586cm 3解答设三个正方体的棱长分别为a,b,c ,则6(a 2+b 2+c 2)=564⇒a 2+b 2+c 2=94.由于(3k ±1)2≡1(mod 3),于是a,b,c 中必有2个数为3的倍数,不妨设为a,b .检验得32+62=45⇒c =7;32+92=90⇒c =2.从而a 3+b 3+c 3=586或764.所以选A .5.方程组 x +y +z =0,xyz +z =0,xy +yz +xz +y =0的有理数解(x,y,z )的个数为()A.1B.2C.3D.4解答xyz +z =z (xy +1)=0⇒z =0或xy =−1.当z =0时, x +y =0,xy +y =y (x +1)=0⇒ x =0,y =0或 x =−1,y =1.当xy =−1时, (x +y )2=y −1,xy =−1⇒(y −1y )2=y −1⇒y 2+1y 2=y +1⇒y 4−y 3−y 2+1=(y −1)(y 3−y −1)=0.由于y 3−y −1=0没有有理根,则y =1⇒x =−1.于是有理解(x,y,z )的个数为2,所以选B .6.设△ABC 的内角A 、B 、C 所对的边a 、b 、c 成等比数列,则sin A cot C +cos A sin B cot C +cos B的取值范围是()A.(0,+∞) B.(0,√5+12)C.(√5−12,√5+12) D.(√5−12,+∞)解答设等比数列a,b,c 的公比为q ,则b =aq,c =aq 2.于是 a +b >c,b +c >a ⇒ q 2−q −1<0,q 2+q −1>0⇒√5−12<q <√5+12.sin A cot C +cos A sin B cot C +cos B =sin A cos C +cos A sin C sin B cos C +cos B sin C =sin (A +C )sin (B +C )=sin B sin A =b a =q ∈(√5−12,√5+12).所以选C .二、填空题(本题满分54分,每小题9分)7.设f (x )=ax +b ,其中a,b 为实数,f 1(x )=f (x ),f n +1(x )=f (f n (x )),n =1,2,···,若f 7(x )=128x +381,则a +b =.解答f 2(x )=a (ax +b )+b =a 2x +ab +b =a 2x +b (1−a 2)1−a ,f 3(x )=a (a 2x +ab +b )+b =a 3x +a 2b +ab +b =a 3x +b (1−a 3)1−a ,···,f 7(x )=a 7x +b (1−a 7)1−a =128x +381⇒a =2,b =3.所以a +b =5.8.设f (x )=cos 2x −2a (1+cos x )的最小值为−12,则a =.解答设t =cos x ∈[−1,1],则f (x )=2t 2−1−2a (1+t )=2t 2−2at −2a −1=2(t −a 2)2−a 22−2a −1.于是 a 2∈[−1,1],−a 22−2a −1=−12或 a 2>1,1−4a =−12或 a 2<−1,1=−12.解得a =−2±√3(−2−√3舍去).所以a =−2+√3.9.将24个志愿者名额分配给3所学校,则每校至少有一个名额且各校名额互不相同的分配方法共有种.解答将24个志愿者名额分配给3所学校,每校至少有一个名额的分配方法有C 223=253种;3所学校名额相同的分配方法有1种;有且仅有2所学校名额相同的分配方法(即满足2x +z =24且x =z 的正整数解)有10×3=30种.所以3所学校名额互不相同的分配方法共有253−1−30=222种.10.设数列{a n }的前n 项和S n 满足:S n +a n =n −1n (n +1),n =1,2,···,则通项a n =.解答S n +a n =2S n −S n −1=n −1n (n +1)=2n +1−1n ⇒2(S n −1n +1)=S n −1−1n ⇒数列{S n −1n +1}是公比为12的等比数列,且S 1−12=−12,于是S n −1n +1=−(12)n ⇒S n =1n +1−(12)n (n ∈N ∗).所以a n =S n −S n −1=1n +1−(12)n −1n +(12)n −1=(12)n −1n (n +1).11.设f (x )是定义在R 上的函数,若f (0)=2008,且对任意x ∈R ,满足f (x +2)−f (x )⩽3·2x ,f (x +6)−f (x )⩾63·2x ,则f (2008)=.解答f (2008)=f (0)+[f (2)−f (0)]+[f (4)−f (2)]+···+[f (2008)−f (2006)]⩽2008+3(20+22+···+22006)=2008+41004−1=22008+2007;f (2004)=f (0)+[f (6)−f (0)]+[f (12)−f (6)]+···+[f (2004)−f (1998)]⩾2008+63(20+26+···+21998)=2008+64334−1=22004+2007,又 f (x +6)−f (x )⩾63·2x ,f (x )−f (x +2)⩾−3·2x⇒f (x +6)−f (x +2)⩾60·2x ⇒f (2008)−f (2004)⩾60·22002⇒f (2008)⩾f (2004)+60·22002=64·22002+2007=22008+2007.所以f (2008)=22008+2007.12.一个半径为1的小球在一个内壁棱长为4√6的正四面体容器内可向各个方向自由运动,则该小球永远不可能接触到的容器内壁的面积是.解答如图,小球O 是正四面体P −DEF 的内切球.设AC 的中点为G ,作OM ⊥P G 于M .则有r =1⇒P O =3⇒P M =2√2=13P G ,同理AN =2√2=13AF ⇒MN =2√6.于是小球在正四面体一个面内能接触到的区域是以MN 为边长的正三角形及内部,其面积为正四面体一个面面积的14.所以该小球永远不可能接触到的容器内壁的面积为正四面体表面积的34,即S =34×4×√34×(4√6)2=72√3.三、解答题(本题满分60分,每小题20分)13.已知函数f (x )=|sin x |的图像与直线y =kx (k >0)有且仅有三个交点,交点的横坐标的最大值为α,求证:cos αsin α+sin 3α=1+α24α.解答如图,直线y =kx (k >0)与f (x )=|sin x |的图像相切于点A (α,−sin α)(π<α<3π2),由于(−sin x )′=−cos x,于是有−sin αα=−cos α⇒α=tan α.所以cos αsin α+sin 3α=cos α2sin 2αcos α=12sin 2α=1+tan 2α4tan α=1+α24α.14.解不等式log 2(x 12+3x 10+5x 8+3x 6+1)<1+log 2(x 4+1).解答解析一:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+5x 8+3x 6−2x 4−1<0⇒(x 4+x 2−1)(x 8+2x 6+4x 4+x 2+1)<0⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).解析二:原不等式⇒x 12+3x 10+5x 8+3x 6+1<2(x 4+1)⇒x 12+3x 10+3x 8+x 6+2(x 8+x 6)<2x 4+1⇒x 6+3x 4+3x 2+1+2(x 2+1)<2x 2+1x 6⇒(x 2+1)3+2(x 2+1)<(1x 2)3+2x 2⇒x 2+1<1x 2⇒x 4+x 2−1<0⇒0⩽x 2<√5−12⇒x ∈(− √5−12, √5−12).15.如图,P 是抛物线y 2=2x 上的动点,点B 、C 在y 轴上,圆(x −1)2+y 2=1内切于△P BC ,求△P BC 面积的最小值.解答如图,设P (2t 2,2t ),M (1,0),过P 的直线y −2t =k (x −2t 2)与圆M 相切,则有|k (1−2t 2)+2t |√1+k2=1⇒4t 2(t 2−1)k 2−4t (2t 2−1)k +4t 2−1=0设直线P B,P C 的斜率为k 1,k 2,于是y B =2t −2t 2k 1,y C =2t −2t 2k 2,S △P BC =12·2t 2|y B−y C |=2t 4|k 1−k 2|=2t 4·√16t 2(2t 2−1)2−16t 2(t 2−1)(4t 2−1)4t 2(t 2−1)=2t 2·|t |√(2t 2−1)2−(t 2−1)(4t 2−1)t 2−1=2t 4t 2−1=2(t 4−1+1t 2−1)=2(t 2+1+1t 2−1)=2(t 2−1+1t 2−1+2)⩾2(2+2)=8,等号成立时t 2=2⇒t =±√2.所以△P BC 面积的最小值是8.。
2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)本试题卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共4页,第Ⅰ卷1至2页,第Ⅱ卷3至4页.满分150分,考试时间120分钟.请考生按规定用笔将所有试题的答案涂、写在答题纸上.第Ⅰ卷(共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题纸上.2.每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.不能答在试题卷上.参考公式:如果事件A B ,互斥,那么球的表面积公式24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么球的体积公式34π3V R =()()()P A B P A P B =其中R 表示球的半径如果事件A 在一次试验中发生的概率是p 那么n 次独立重复试验中恰好发生 k 次的概率:()(1)k kn k n n P k C p p -=-一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知a 是实数,1a ii-+是纯虚数,则a =( ) A .1B .1-C 2D .2-2.已知U =R ,{}|0A x x =>,{}|1B x x =-≤,则()()UUA B BA =( )A .∅B .{}|0x x ≤C .{}|1x x >-D .{}|01x x x >-或≤3.已知a b ,都是实数,那么“22a b >”是“a b >”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.在(1)(2)(3)(4)(5)x x x x x -----的展开式中,含4x 的项的系数是( ) A .15-B .85C .120-D .2745.在同一平面直角坐标系中,函数3πcos 22x y ⎛⎫=+ ⎪⎝⎭([02π]x ∈,)的图象和直线12y =的交点个数是( ) A .0B .1C .2D .46.已知{}n a 是等比数列,22a =,514a =,则12231n n a a a a a a ++++=( ) A .16(14)n--B .16(12)n-- C .32(14)3n -- D .32(12)3n --7.若双曲线2222x y a b-=的两个焦点到一条准线的距离之比为3:2,则双曲线的离心率是( )A .3B .5C .3D .58.若cos 2sin 5αα+=,则tan α=( ) A .12B .2C .12-D .2-9.已知,a b 是平面内两个互相垂直的单位向量,若向量c 满足()()0--=a c b c ,则c 的最大值是( ) A .1B .2C .2D .2210.如图,AB 是平面α的斜线段...,A 为斜足,若点P 在平面α内运动,使得ABP △的面积为定值,则动点P 的轨迹是( ) A .圆 B .椭圆 C .一条直线 D .两条平行直线A B P α(第10题)2008年普通高等学校招生全国统一考试数 学(理科)第Ⅱ卷(共100分)注意事项: 1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上. 2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑. 二、填空题:本大题共7小题,每小题4分,共28分.11.已知0a >,若平面内三点23(1)(2)(3)A a B a C a -,,,,,共线,则a = . 12.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点,若2212F A F B +=,则AB = .13.ABC △中,角A B C ,,所对的边分别为a b c ,,.若(3)cos cos b c A a C -=,则cos A .14.如图,已知球O 的面上四点A B C D ,,,,DA ⊥平面ABC ,AB BC ⊥,3DA AB BC ===,则球O 的体积等于 .15.已知t 为常数,函数22y x x t =--在区间[03],上的最大值为2,则t = .16.用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是 (用数字作答)17.若00a b ,≥≥,且当001x y x y ⎧⎪⎨⎪+⎩,,≥≥≤时,恒有1ax by +≤,则以a b ,为坐标的点()P a b ,所形成的平面区域的面积等于 .三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本题14分)如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE CF ∥,90BCF CEF ∠=∠=,3AD =2EF =.(Ⅰ)求证:AE ∥平面DCF ;(Ⅱ)当AB 的长为何值时,二面角A EF C --的大小为60?ABCD (第14题)DA BEFC(第18题)19.(本题14分)一个袋中装有若干个大小相同的黑球,白球和红球.已知从袋中任意摸出1个球,得到黑球的概率是25;从袋中任意摸出2个球,至少得到1个白球的概率是79. (Ⅰ)若袋中共有10个球,(ⅰ)求白球的个数;(ⅱ)从袋中任意摸出3个球,记得到白球的个数为ξ,求随机变量ξ的数学期望E ξ. (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于710.并指出袋中哪种颜色的球个数最少.20.(本题15分) 已知曲线C 是到点1328P ⎛⎫- ⎪⎝⎭,和到直线58y =-距离相等的点的轨迹. l 是过点(10)Q -,的直线,M 是C 上(不在l 上)的动点;A B ,在l 上,MA l ⊥,MB x ⊥轴(如图). (Ⅰ)求曲线C 的方程; (Ⅱ)求出直线l 的方程,使得2QBQA为常数.21.(本题15分)已知a 是实数,函数()()f x x x a =-.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)设()g a 为()f x 在区间[02],上的最小值. (ⅰ)写出()g a 的表达式;(ⅱ)求a 的取值范围,使得6()2g a --≤≤.AB OQyxlM (第20题)22.(本题14分)已知数列{}n a ,0n a ≥,10a =,22*111()n n n a a a n +++-=∈N .记:12n n S a a a =+++,112121111(1)(1)(1)(1)(1)n n T a a a a a a =+++++++++.求证:当*n ∈N 时, (Ⅰ)1n n a a +<; (Ⅱ)2n S n >-; (Ⅲ)3n T <2008年普通高等学校招生全国统一考试(浙江卷)数 学(理科)参考答案一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分 1.A 2.D 3.D 4.A 5.C 6.C 7.D 8.B 9.C 10.B二、填空题:本题考查基本知识和基本运算.每小题4分,满分28分. 11.12 12.8 13.33 14. 9π215.1 16.40 17.1 三、解答题18.本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推理运算能力.满分14分. 方法一:(Ⅰ)证明:过点E 作EG CF ⊥交CF 于G ,连结DG ,可得四边形BCGE 为矩形,又ABCD 为矩形, 所以AD EG∥,从而四边形ADGE 为平行四边形, 故AE DG ∥.因为AE ⊄平面DCF ,DG ⊂平面DCF , 所以AE ∥平面DCF .(Ⅱ)解:过点B 作BH EF ⊥交FE 的延长线于H ,连结AH . 由平面ABCD ⊥平面BEFC ,AB BC ⊥,得 AB ⊥平面BEFC , 从而AH EF ⊥.所以AHB ∠为二面角A EF C --的平面角. 在Rt EFG △中,因为3EG AD ==2EF =,所以60CFE ∠=,1FG =.又因为CE EF ⊥,所以4CF =, 从而3BE CG ==.于是33sin BH BE BEH =∠=.因为tan AB BH AHB =∠,所以当AB 为92时,二面角A EF C --的大小为60.方法二:如图,以点C 为坐标原点,以CB CF ,和CD 分别作为x 轴,y 轴和z 轴,建立空间直角坐标系C xyz -.设AB a BE b CF c ===,,,D A B ECHG DA BEFCz x则(000)C ,,,3)A a ,,,30)B ,,,(30)E b ,,,(00)F c ,,. (Ⅰ)证明:(0)AE b a =-,,,(30)CB =,,,(00)BE b =,,, 所以0CB CE =,0CB BE =,从而CB AE ⊥,CB BE ⊥, 所以CB ⊥平面ABE .因为CB ⊥平面DCF ,所以平面ABE ∥平面DCF . 故AE ∥平面DCF .(Ⅱ)解:因为(30)EF c b =--,,,(30)CE b =,,, 所以0EF CE =,||2EF =,从而23()03()2b c b c b -+-=⎧+-=,,解得34b c ==,.所以(30)E ,,,(040)F ,,.设(1)n y z =,,与平面AEF 垂直, 则0n AE =,0n EF =,解得33(13)n a=,,. 又因为BA ⊥平面BEFC ,(00)BA a =,,, 所以2||331|cos |2||||427BA n a n BA BA n a a <>===+,,得到92a =. 所以当AB 为92时,二面角A EF C --的大小为60. 19.本题主要考查排列组合、对立事件、相互独立事件的概率和随机变量分布列和数学期望等概念,同时考查学生的逻辑思维能力和分析问题以及解决问题的能力.满分14分. (Ⅰ)解:(i )记“从袋中任意摸出两个球,至少得到一个白球”为事件A ,设袋中白球的个数为x ,则2102107()19x C P A C -=-=,得到5x =.故白球有5个.(ii )随机变量ξ的取值为0,1,2,3,分布列是ξ 0 1 2 3P112 512 512 112ξ的数学期望155130123121212122E ξ=⨯+⨯+⨯+⨯=. (Ⅱ)证明:设袋中有n 个球,其中y 个黑球,由题意得25y n =, 所以2y n <,21y n -≤,故112y n -≤. 记“从袋中任意摸出两个球,至少有1个黑球”为事件B ,则23()551yP B n =+⨯- 231755210+⨯=≤. 所以白球的个数比黑球多,白球个数多于25n ,红球的个数少于5n . 故袋中红球个数最少.20.本题主要考查求曲线的轨迹方程、两条直线的位置关系等基础知识,考查解析几何的基本思想方法和综合解题能力.满分15分.(Ⅰ)解:设()N x y ,为C 上的点,则2213||28NP x y ⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭,N 到直线58y =-的距离为58y +.由题设得22135288x y y ⎛⎫⎛⎫++-=+ ⎪ ⎪⎝⎭⎝⎭.化简,得曲线C 的方程为2()2y x x =+. (Ⅱ)解法一:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||11|QB k x ++.在Rt QMA △中,因为AB OQ y M222||(1)14x QM x ⎛⎫=++ ⎪⎝⎭,2222(1)2||1x x k MA k⎛⎫+- ⎪⎝⎭=+. 所以222222(1)||||||(2)4(1)x QA QM MA kx k +=-=++ . 21||2|||21kx QA k+=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||55||QB QA =, 从而所求直线l 方程为220x y -+=.解法二:设22x x M x ⎛⎫+ ⎪⎝⎭,,直线:l y kx k =+,则()B x kx k +,,从而2||1|1|QB k x =++.过Q (10)-,垂直于l 的直线11:(1)l y x k=-+. 因为||||QA MH =,所以2|1||2|||21x kx QA k++=+,222||2(1)112||||QB k k x QA k x k+++=+.当2k =时,2||5||QB QA = 从而所求直线l 方程为220x y -+=.21.本题主要考查函数的性质、求导、导数的应用等基础知识,同时考查分类讨论思想以及综合运用所学知识分析问题和解决问题的能力.满分15分. (Ⅰ)解:函数的定义域为[0)+∞,,AB OQ yM Hl 1()22f x x x x'==(0x >). 若0a ≤,则()0f x '>,()f x 有单调递增区间[0)+∞,.若0a >,令()0f x '=,得3ax =, 当03ax <<时,()0f x '<, 当3ax >时,()0f x '>. ()f x 有单调递减区间03a ⎡⎤⎢⎥⎣⎦,,单调递增区间3a ⎛⎫+∞ ⎪⎝⎭,. (Ⅱ)解:(i )若0a ≤,()f x 在[02],上单调递增, 所以()(0)0g a f ==.若06a <<,()f x 在03a ⎡⎤⎢⎥⎣⎦,上单调递减,在23a ⎛⎤ ⎥⎝⎦,上单调递增, 所以2()333a a a g a f ⎛⎫==-⎪⎝⎭. 若6a ,()f x 在[02],上单调递减, 所以()(2)2(2)g a f a ==-.综上所述,002()06332(2)6a a ag a a a a ⎧⎪⎪=-<<⎨⎪⎪-⎩,≤,,,,≥. (ii )令6()2g a --≤≤. 若0a ≤,无解.若06a <<,解得36a <≤. 若6a ≥,解得6232a +≤≤ 故a 的取值范围为3232a +≤≤22.本题主要考查数列的递推关系,数学归纳法、不等式证明等基础知识和基本技能,同时考查逻辑推理黄牛课件网 能力.满分14分.(Ⅰ)证明:用数学归纳法证明. ①当1n =时,因为2a 是方程210x x +-=的正根,所以12a a <.②假设当*()n k k =∈N 时,1k k a a +<,因为221k k a a +-222211(1)(1)k k k k a a a a ++++=+--+- 2121()(1)k k k k a a a a ++++=-++, 所以12k k a a ++<.即当1n k =+时,1n n a a +<也成立.根据①和②,可知1n n a a +<对任何*n ∈N 都成立.(Ⅱ)证明:由22111k k k a a a +++-=,121k n =-,,,(2n ≥), 得22231()(1)n n a a a a n a ++++--=.因为10a =,所以21n n S n a =--.由1n n a a +<及2211121n n n a a a ++=+-<得1n a <,所以2n S n >-.(Ⅲ)证明:由221112k k k k a a a a +++=+≥,得 111(2313)12k k ka k n n a a ++=-+≤,,,,≥ 所以23421(3)(1)(1)(1)2n n n a a a a a a -+++≤≥, 于是2222232211(3)(1)(1)(1)2()22n n n n n n a a n a a a a a ---=<++++≤≥, 故当3n ≥时,21111322n n T -<++++<,又因为123T T T <<,所以3n T <.。
2008年浙江省高中数学竞赛试卷一、选择题 (本大题满分36分,每小题6分)1.已知集合{}{}221,,20R A y y x x B x x x =+=+-∈=>,则下列正确的是( ) A .{}1,A B y y => B.{}2A B y y => C.{}21A B y y ⋃=-<< D. {}21A B y y y ⋃=<>-或解:因为{}{}1,1, 2A y y B x x x =≥=><-或,所以有{}1,A B y y => 正确答案为 A 。
2.当01x <<时,()lg xf x x=,则下列大小关系正确的是( ) A .22()()()f x f x f x << B. 22()()()f x f x f x << C. 22()()()f x f x f x << D. 22()()()f x f x f x <<解:当01x <<时,()0lg x f x x =<,222()0lg x f x x =<,22()0lg x f x x ⎛⎫=> ⎪⎝⎭。
又因为2222(2)0lg lg 2lg 2lg x x x x x x x x x x ---==<。
所以 22()()()f x f x f x <<。
选 C 。
3.设()f x 在[0,1]上有定义,要使函数()()f x a f x a -++有定义,则a 的取值范围为( )A .1(,)2-∞-; B. 11[,]22-; C. 1(,)2+∞; D. 11(,][,)22-∞-⋃+∞解:函数()()f x a f x a -++的定义域为 [,1][,1]a a a a +⋂--。
当0a ≥时,应有1a a ≤-,即12a ≤;当0a ≤时,应有1a a -≤+,即12a ≥-。
因此,选 B 。
4.已知P 为三角形ABC 内部任一点(不包括边界),且满足()(2)0PB PA PB PA PC -+-=,则△ABC 一定为( )A .直角三角形;B. 等边三角形;C. 等腰直角三角形;D. 等腰三角形解:因为,2PB PA AB PB PA PC CB CA -=+-=+,所以已知条件可改写为()0AB CB CA ⋅+=。
容易得到此三角形为等腰三角形。
因此 选 D 。
5.已知()()2222212f x x a b x a ab b =++-++-是偶函数,则函数图象与y 轴交点的纵坐标的最大值是( )A . B. 2 C. D. 4解:由已知条件可知,2210a b +-=,函数图象与y 轴交点的纵坐标为222a ab b +-。
令,s cos in b a θθ==,则22222sin cos sin cos2sin 2c s 2o a ab b θθθθθθ+=+=--+≤。
因此 选 A 。
6.圆锥的轴截面SAB 是边长为2的等边三角形,O 为底面中心,M 为SO 的中点,动点P 在圆锥底面内(包括圆周)。
若AM ⊥MP ,则P 点形成的轨迹的长度为( )A.B.C. 3D.32解:建立空间直角坐标系。
设A(0,-1,0), B(0,1,0),S , (0,0,2M ,P(x,y ,0).于是有(0,1,),(,,22AM MP x y ==- 由于AM ⊥MP ,所以(,,0x y ⋅=,即34y =,此为P 点形成的轨迹方程,其在底面圆盘内的长度为2=。
因此 选 B 。
二、填空题 (本题满分54分,每小题9分)7.= 。
解:根据题意要求,2605x x +≥+,20571x x +≤+≤。
于是有2715x x +=+。
因此cos 01==。
因此答案为 1。
8.设,,,a b c d 为非负实数,满足a b c db c d a c d a b d a b c===++++++++,则a b b c c d d ac d a d a b b c+++++++++++= 。
解:显然0a b c d +++≠,由于a b c db c d a c d a b d a b c===++++++++,有 1111b c d a c d a b d a b c===++++++++。
于是有a b c d ===,故 4a b b c c d d ac d a d a b b c+++++++=++++。
9.设lg lg lg 111()121418x x xf x =+++++,则1()()_________f x f x+=。
解: lg lg lg lg lg lg 1111111()()3121418121418x x x x x x f x f x ---+=+++++=++++++。
10. 设实系数一元二次方程2220x ax b ++-=有两个相异实根,其中一根在区间(0,1)内,另一根在区间(1,2)内,则41b a --的取值范围是 。
解: 根据题意,设两个相异的实根为12,x x ,且12012x x <<<<,则1213x x a <+=-<,120222x x b <=-<。
于是有 31,12a b -<<-<<,也即有111, 342214b a <<--<-<---。
故有143212b a -<-<,即取值范围为13,22⎛⎫⎪⎝⎭。
11.已知,R αβ∈,直线1sin sin sin cos x y αβαβ+=++与1cos sin cos cos x yαβαβ+=++的交点在直线y x =-上,则cos sin c in s s o ααββ+++= 。
解:由已知可知,可设两直线的交点为00(,)x x -,且,in s s co αα为方程001sin cos x x t t ββ-+=++,的两个根,即为方程20sin c (cos )sin os (cos )i 0s n t t x ββββββ-++-=+的两个根。
因此cos (sin sin cos )ααββ+=-+,即cos sin c in s s o ααββ+++=0。
12.在边长为1的正三角形ABC 的边AB 、AC 上分别取D 、E 两点,使沿线段DE 折叠三角形时,顶点A 正好落在边BC 上。
AD 的长度的最小值为 。
解:设,AD x ADE α=∠=,作△ADE 关于DE 的对称图形,A 的对称点G 落在BC 上。
在△DGB 中,1sinsin(233)x x ππα--=2sin(2)3x α-⇒=当sin(2)13πα-=时,即3min x ==。
三、解答题(本题满分60分,每小题20分。
解答应写出文字说明,证明过程或演算步骤。
)解:(1)设c 为椭圆的焦半径,则2425,54a c c a ==。
于是有a =5,b =3。
(2) 解法一:设B 点坐标为(,)s t ,P 点坐标为(,)x y 。
于是有6(6)AB s t AP x y =-=-(,), ,。
因为AB AP ⊥,所以有6(6)(6)(6)0s t x y s x ty --=--+=(,),。
(A1 )又因为ABP 为等腰直角三角形,所以有 AB=AP ,即=。
(A2 )13.已知椭圆C :22221x y a b +=(0a b >≥),其离心率为45,两准线之间的距离为252。
(1)求,a b 之值;(2)设点A 坐标为(6, 0),B 为椭圆C 上的动点,以A 为直角顶点,作等腰直角△ABP (字母A , B ,P 按顺时针方向排列),求P 点的轨迹方程。
由(A1)推出22226(6)6(6)ty t y s s x x -=-⇒-=--,代入(A2),得 226t x =-()从而有 226y s =-(),即6s y =+(不合题意,舍去)或6s y =-。
代入椭圆方程,即得动点P 的轨迹方程22661925x y --+=()()。
解法二: 设11(,)B x y ,(,),P x y AB r =,则以A 为圆心,r 为半径的圆的参数方程为6cos sin x r y r αα=+⎧⎨=⎩。
设AB 与x 轴正方向夹角为θ,B 点的参数表示为116cos sin x r y r θθ=+⎧⎨=⎩, P 点的参数表示为6cos(90)6sin ,cos sin(90)x r x r y r y r θθθθ⎧=+-=+⎧⎪⎨⎨=-=-⎪⎩⎩即. 从上面两式,得到1166x yy x =-⎧⎨=-⎩。
又由于B 点在椭圆上,可得22(6)(6)1925x y --+=。
此即为P 点的轨迹方程。
解:(I )1x ≥2x ≥-。
于是有(1){220022ax x a x x ⎧-⎪⇒≥≥≤≤-。
14.11x ≥--。
因此 当0a ≤时,有12x ≤≤;当01a ≤≤时,有12x ≤≤;当14a ≤≤2x ≤≤;当4a >时,空集。
(2)22020214aax x x x a x ⎧⎧-⎪⎪⎪⇒⎨⎪≥≥≥≥≥-≥⎩+⎪。
此时有 当0a ≤时,有2x ≥;当01a ≤≤时,有2x ≥;当14a ≤≤时,有2x ≥;当4a >时,14x a≥+。
(II )1x <x ≥-。
于是有(3){22000a x x x x a ≥≥≥-⎧-⎪⇒。
因此 当0a ≤时,有01x ≤<;当01a ≤≤1x <;当1a >时,空集。
(4)222200a x x x a x a x x⎧⎧-⎪⎪⇒⎨≥≥≤≥-≤⎪-⎩。
因此 当0a ≤时,有0x ≤;当0a >时,空集。
综合(1)-(4)可得当0a ≤时,有x R ∈;当04a ≤≤时,有x ≥4a >时,14x a≥+。
解:设非负等差数列{}n a 的首项为10a ≥,公差为0d ≥。
(1)因为2m n p +=,所以2222m n p +≥,2p mn ≥,2m n p a a a +=。
15.设非负等差数列{}n a 的公差0d ≠,记n S 为数列{}n a 的前n项和,证明:1)若*,,m n p N ∈,且2m n p +=,则112m n pS S S +≥; 2)若5031,1005a ≤则2007112008n nS =>∑。
从而有2(·)p m n a a a ≥。
因为112()2(1)n n n a a n n S n d a +-==+,所以有 122121(1)(1)()2 222 22222n m pn n m m S S m n a dn m ppa d p ppa d S -+-+=+++-=+-+=≥()()()211112221211·22()()()()4422n n m m n m n p m p p p p n a a m a a S a a a a mn S a a pa a p a a a a a S ++=++++⎛⎫++== ⎪=⎝⎭≤于是1212p m n n m n p p pm S S S S S S S S S S ++=≥=。