浙江省【针对演练】2018年中考数学复习一数学思想方法类型三方程与函数思想含答案
- 格式:doc
- 大小:159.97 KB
- 文档页数:5
方法技巧专题一 数形结合思想训练数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质解决几何问题(以数助形)的一种数学思想.一、选择题1.我们学习了一次函数、二次函数和反比例函数,回顾学习过程,都是按照列表、描点、连线得到函数的图象,然后根据函数的图象研究函数的性质,这种研究方法主要体现的数学思想是( )A .演绎B .数形结合C .抽象D .公理化2.若实数a ,b ,c 在数轴上对应的点如图F 1-1所示,则下列式子中正确的是( )图F 1-1A .ac >bcB .|a -b |=a -bC .-a <-b <-cD .-a -c >-b -c3.[2017·怀化] 一次函数y =-2x +m 的图象经过点P (-2,3),且与x 轴、y 轴分别交于点A 、B ,则△AOB 的面积是( )A .12 B.14C .4D .8 4.[2017·聊城] 端午节前夕,在东昌湖举行的第七届全民健身运动会龙舟比赛中,甲、乙两队500米的赛道上,所划行的路程y (m )与时间x (min)之间的函数关系式如图F 1-2所示,下列说法错误的是( )图F 1-2A .乙队比甲队提前0.25 min 到达终点B .当乙队划行110 m 时,落后甲队15 mC .0.5 min 后,乙队比甲队每分钟快40 mD .自1.5 min 开始,甲队若要与乙队同时到达终点,甲队的速度需提高到255 m /min5.[2016·天津] 已知二次函数y =(x -h )2+1(h 为常数),在自变量x 的值满足1≤x ≤3的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )A .1或-5B .-1或5C .1或-3D .1或36.[2017·鄂州 ] 如图F 1-3,抛物线y =ax 2+bx +c 的图象交x 轴于A (-2,0)和点B ,交y 轴负半轴于点C ,且OB =O C.下列结论:①2b -c =2;②a =12;③ac =b -1;④a +bc>0.其中正确的个数有( )图F 1-3A .1个B .2个C .3个D .4个 二、填空题7.如图F 1-4是由四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a ,b 的恒等式:________.图F 1-48.[2017·十堰] 如图F 1-5,直线y =kx 和y =ax +4交于A (1,k ),则不等式kx -6<ax +4<kx 的解集为________.图F 1-59.《庄子·天下篇》中写道:“一尺之棰,日取其半,万世不竭”意思是:一根一尺的木棍,如果每天截取它的一半,永远也取不完,如图F 1-6所示.由图易得:12+122+123+…+12n =________.图F 1-610.当x =m 或x =n (m ≠n )时,代数式x 2-2x +3的值相等,则x =m +n 时,代数式x 2-2x +3的值为________. 11.已知实数a 、b 满足:a 2+1=1a ,b 2+1=1b ,则2018|a -b |=________.12.[2017·荆州] 观察下列图形:图F 1-7它们是按一定规律排列的,依照此规律,第9个图形中共有________个点. 13.(1)观察下列图形与等式的关系,并填空:图F 1-8(2)观察图F 1-9,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:图F 1-91+3+5+…+(2n -1)+(________)+(2n -1)+…+5+3+1=__________. 三、解答题14.[2016·菏泽] 如图F 1-10,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +2过B (-2,6),C (2,2)两点. (1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y =-12x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.图F 1-10参考答案1.B 2.D 3.B 4.D5.B [解析] (1)如图①,当x =3,y 取得最小值时,⎩⎪⎨⎪⎧h >3,(3-h )2+1=5,解得h =5(h =1舍去);(2)如图②,当x =1,y 取得最小值时,⎩⎪⎨⎪⎧h <1,(1-h )2+1=5,解得h =-1(h =3舍去). 6.C [解析] 在y =ax 2+bx +c 中,当x =0时,y =c ,∴C (0,c ),∴OC =-c .∵OB =OC ,∴B (-c ,0).∵A (-2,0),∴-c 、-2是一元二次方程ax 2+bx +c =0的两个不相等的实数根,∴-c ·(-2)=c a ,∵c ≠0,∴a =12,②正确;∵a =12,-c 、-2是一元二次方程12x 2+bx +c =0的两个不相等的实数根,∴-c +(-2)=-b12,即2b -c =2,①正确;把B (-c ,0)代入y =ax 2+bx +c ,得0=a (-c )2+b ·(-c )+c ,即ac 2-bc +c =0.∵c ≠0,∴ac -b +1=0,∴ac =b -1,③正确;∵抛物线开口向上,∴a >0.∵抛物线的对称轴在y 轴左侧,∴-b2a <0,∴b >0.∴a +b >0.∵抛物线与y 轴负半轴交于点C ,∴c <0.∴a +bc<0,④不正确. 7.(a -b )2=(a +b )2-4ab8.1<x <52 [解析] 将A (1,k )代入y =ax +4得a +4=k ,将a +4=k 代入不等式kx -6<ax +4<kx 中得(a +4)x -6<ax +4<(a +4)x ,解不等式(a +4)x -6<ax +4得x <52,解不等式ax +4<(a +4)x 得x >1,所以不等式的解集是1<x <52.9.1-12n (或2n-12n )10.3 11.112.135 [解析] 第1个图形有3=3×1=3个点; 第2个图形有3+6=3×(1+2)=9个点; 第3个图形有3+6+9=3×(1+2+3)=18个点; …第n 个图形有3+6+9+…+3n =3×(1+2+3+…+n )=3n (n +1)2个点.当n =9时, =135个点. 13.解:(1)1+3+5+7=16=42.观察,发现规律,第一个图形:1+3=22,第二个图形:1+3+5=32,第三个图形:1+3+5+7=42,…, 第(n -1)个图形:1+3+5+…+(2n -1)=n 2. 故答案为:42;n 2. (2)观察图形发现:图中黑球可分三部分,1到n 行,第(n +1)行,(n +2)行到(2n +1)行, 即1+3+5+…+(2n -1)+[2(n +1)-1]+(2n -1)+…+5+3+1 =[1+3+5+…+(2n -1)]+(2n +1)+[(2n -1)+…+5+3+1] =n 2+2n +1+n 2 =2n 2+2n +1.故答案为:2n +1;2n 2+2n +1.14.解:(1)由题意,得⎩⎪⎨⎪⎧4a -2b +2=6,4a +2b +2=2,解得⎩⎪⎨⎪⎧a =12,b =-1.∴抛物线的解析式为y =12x 2-x +2.(2)如图,∵y =12x 2-x +2=12(x -1)2+32,∴抛物线的顶点坐标是(1,32).由B (-2,6)和C (2,2)求得直线BC 的解析式为y =-x +4. ∴对称轴与直线BC 的交点是H (1,3). ∴DH =32.∴S △BDC =S △BDH +S △CDH =12×32×3+12×32×1=3.(3)如图.①由⎩⎪⎨⎪⎧y =-12x +b ,y =12x 2-x +2消去y ,得x 2-x +4-2b =0.当Δ=0时,直线与抛物线只有一个公共点,∴(-1)2-4(4-2b )=0,解得b =158.②当直线y =-12x +b 经过点C 时,b =3.③当直线y =-12x +b 经过点B 时,b =5.综上,可知158<b ≤3.。
第二部分 题型研究题型一 数学思想方法 类型四 转化思想针对演练1. 我们解一元二次方程3x 2-6x =0时,可以运用因式分解法,将此方程化为 3x (x -2)=0,从而得到两个一元一次方程:3x =0或x -2=0,进而得到原方程的解为x 1=0,x 2=2.这种解法体现的数学思想是( )A. 转化思想B. 函数思想C. 数形结合思想D. 公理化思想2. 已知a 2-b 2=-16,a -b =12,则a +b a -b的值为( )A. -12B. 13C. -23D. -323. (2017温州)我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3.现给出另一个方程(2x +3)2+2(2x +3)-3=0.它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-34. 如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A. 23a 2B. 14a 2C. 59a 2D. 49a 2第4题图5. 如图,在大长方形ABCD中,放入六个相同的小长方形,则图中阴影部分面积(单位:cm2)为( )第5题图A. 16B. 44C. 96D. 1406. 设m2+m-1=0,则代数式m3+2m2+2017的值为( )A. 2016B. 2017C. 2018D. 20207. 如图,△ABC经过平移得到△A′B′C′,若四边形ACDA′的面积为6 cm2, 则阴影部分的面积为________cm2.第7题图8. 如图是一个三级台阶,它的每一级的长、宽、高分别为55寸、10寸和6寸,A和B是这个台阶的两个相对端点,A点上有一只蚂蚁想到B点去吃可口的食物,则它所走的最短路线长度是_________寸.第8题图9. 三个同学对问题“若方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,求方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2的解.”提出各自的想法.甲说:“这个题目好像条件不够,不能求解”;乙说:“它们的系数有一定的规律,可以试试”;丙说:“能不能把第二个方程组的两个方程的两边都除以5,通过换元替代的方法来解决”.参考他们的讨论,你认为这个题目的解应该是________.10. 如图,△ABC 中,∠BAC =90°,AB =AC ,点M ,N 在边BC 上,且∠MAN =45°.若BM =1,CN =3,求MN 的长.第10题图 答案1. A2. C 【解析】∵()a +b ()a -b =-16,a -b =12,∴a +b =-13,∴a +b a -b =-23.3.D 【解析】令y =2x +3,则原方程变形为y 2+2y -3=0,解得y 1=1,y 2=-3,所以2x +3=1或2x +3=-3,解得x 1=-1,x 2=-3.4. D 【解析】如解图,过E 作BC 和CD 的垂线,垂足分别为G ,H ,则△EGM ≌△EHN ,∴重叠部分四边形EMCN 的面积等于正方形EGCH 的面积,∵EC =2AE ,∴CE =23AC ,EG =23AB=23a ,∴正方形EGCH 的面积为49a 2.第4题解图5. B 【解析】设小长方形的长和宽分别为x ,y ,则由图形得⎩⎪⎨⎪⎧y +3x =14y +x -2x =6,解得⎩⎪⎨⎪⎧x =2y =8,则阴影部分面积为14×10-6×2×8=140-96=44.6. C 【解析】∵m 2+m -1=0,∴m 2+m =1,则m 3+2m 2+2017=m (m 2+m )+m 2+2017=m 2+m +2017=1+2017=2018.7. 6 【解析】∵由平移性质得,△ABC 的面积等于△A′B′C ′的面积, ∴阴影部分的面积等于四边形ACDA ′的面积等于6 cm 2.第7题解图8. 73 【解析】立体图形转化为平面图形,展开后变为长方形,根据题意得,∠C =90°,BC =3×()10+6=48,∴AB =AC 2+BC 2=552+482=73.第8题解图9. ⎩⎪⎨⎪⎧x =5y =10 【解析】将方程组⎩⎪⎨⎪⎧3a 1x +2b 1y =5c 13a 2x +2b 2y =5c 2变为⎩⎪⎨⎪⎧35a 1x +25b 1y =c 135a 2x +25b 2y =c2,设35x =m ,25y =n ,则原方程组转化为⎩⎪⎨⎪⎧a 1m +b 1n =c 1a 2m +b 2n =c 2,再根据方程组⎩⎪⎨⎪⎧a 1x +b 1y =c 1a 2x +b 2y =c 2的解是⎩⎪⎨⎪⎧x =3y =4,所以得出⎩⎪⎨⎪⎧m =3n =4,即⎩⎪⎨⎪⎧35x =325y =4,解得,⎩⎪⎨⎪⎧x =5y =10. 10. 解:把△ABM 绕点A 逆时针旋转90°得到的△ACG ,连接NG ,如解图,第10题解图∴∠BAM =∠GAC ,AM =AG , ∴△ABM ≌△ACG .∵∠MAN =45°, ∠BAC =90°, ∴∠GAN =∠MAN =45°, ∴△MAN ≌△GAN . ∴MN =NG ,∴∠BCA +∠ACG =90°.在Rt △GCN 中,NG =CN 2+CG 2=10, ∴ MN =NG =10.。
第16讲函数的应用1.函数与方程、不等式的应用2.函数的最值的应用3.抛物线型的函数的应用4.多个函数的组合的应用5.灵活选用适当的函数模型的应用1.(2017·绍兴模拟)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是( )2.(2015·金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC⊥x 轴,若OA =10米,则桥面离水面的高度AC 为( )A .16940米B .174米C .16740米D .154米【问题】人的视觉机能受运动速度的影响很大,行驶中的司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄,当车速为50km /h 时,视野为80度.如果视野f(度)是车速v(km /h )的反比例函数.(1)求f 、v 之间的关系式,并计算当车速为100km /h 时视野的度数. (2)当视野的度数不低于50度时,车速应控制在什么范围内.(3)通过以上两题解答,请你思考如何建立合适的函数模型,以及利用函数关系式解题时,如何理解已知数的意义.【归纳】通过开放式问题,归纳、疏理函数的实际问题,要认真分析,构建函数模型,从而根据函数性质解答问题;实际问题中函数解析式的求法:设x 为自变量,y 为x 的函数,在求解析式时,一般与列方程解应用题一样先列出关于x 、y 的二元方程,再用含x 的代数式表示y ,最后还要写出自变量x 的取值范围.类型一 方程(组)、不等式中的函数应用例1 (2017·安徽模拟)给出下列命题及函数y =x ,y =x 2和y =1x.①如果1a >a>a 2,那么0<a <1;②如果a 2>a>1a ,那么a >1;③如果1a>a 2>a ,那么-1<a <0;④如果a 2>1a>a 时,那么a <-1.则( )A .正确的命题是①④B .错误的命题是②③④C .正确的命题是①②D .错误的命题只有③【解后感悟】本题是二次函数与不等式组的关系,实际上利用函数图象来比较代数式的大小,求出两交点的坐标,并准确识图.1.(1)(2017·兰州)下表是一组二次函数y =x 2+3x -5的自变量x 与函数值y 的对应值:那么方程x 2+3x -5=0的一个近似根是( )A .1B .1.1C .1.2D .1.3(2) 如图,直线y =k 1x +b 与双曲线y =k 2x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <k 2x+b 的解集是.类型二 几何图形中的函数应用例2 (2017·萧山模拟)在Rt △POQ 中,OP =OQ =4,M 是PQ 的中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、B.(1)求证:MA =MB ;(2)连结AB ,探究:在旋转三角尺的过程中,△AOB 的周长是否存在最小值,若存在,求出最小值,若不存在.请说明理由.【解后感悟】该题的第(2)题是最小值问题,主要去构建一个函数模型,然后利用性质求最小值.在构造函数模型时注意两个方面:一是揭示基本图形,寻找基本的数量关系,二是确立哪个量作为自变量来构建函数.2.(2015·潍坊)如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .3cm 2B .323cm 2 C .923cm 2D .2723cm 2类型三 一次函数的应用例3 (2015·杭州)方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t(h ),甲乙两人之间的距离为y(km ),y 与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h ,甲出发0.5小时与乙相遇,…,请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地,若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?【解后感悟】此题是一次函数的实际应用,注意理解题意,结合图象,根据实际选择合理的方法解答.3.(2017·台州模拟)某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利润45元.当M 型号的时装为多少套时,能使该厂所获利润最大( )A .40B .44C .66D .804.(2015·舟山模拟)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x 的取值范围为____________________.类型四反比例函数的应用例4(2015·南平模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?【解后感悟】此题是一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键.5.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300N /m 2,那么此人必须站立在面积____的木板上才不至于下陷.(木板的重量忽略不计)( )A .至少2m 2B .至多2m 2C .大于2m 2D .小于2m 2类型五 二次函数的应用例5 (2017·镇江模拟)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x(单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的y 1与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解后感悟】本题是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,难点在于读懂题目信息,列出相关的函数关系式.6.(2017·丽水模拟)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y =-125x 2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )A .-20mB .10mC .20mD .-10m【实际应用题】(2015·舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系式:y =⎩⎪⎨⎪⎧54x (0≤x≤5),30x +120(5<x≤15).(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为W 元,求W 与x 之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?(3)设(2)小题中第m 天利润达到最大值,若要使第(m +1)天的利润比第m 天的利润至少多48元,则第(m +1)天每只粽子至少应提价几元?【方法与对策】本题是二次函数在实际生活中的应用,难点在于读懂题目信息,把实际问题构建成一个函数模型,解答时需要同学们仔细分析所示情景分类讨论,利用二次函数的增减性求最值问题,利用一次函数的增减性求最值.该题型是中考选择题中的压轴题,出现较多,学习过程中要重视.【建立坐标系时忽视符号】如图1,某灌溉设备的喷头B高出地面1.25 m,喷出的抛物线形水流与喷头底部A的距离为1 m处达到距地面最大高度2.25 m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.学生小龙在解答图1所示的问题时,具体解答如下:①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图2所示的平面直角坐标系;②设抛物线水流对应的二次函数关系式为y=ax2;③根据题意可得B点与x轴的距离为1 m,故B点的坐标为(-1,1);④代入y=ax2得-1=a·1,所以a=-1;⑤所以抛物线水流对应的二次函数关系式为y=-x2.数学老师看了小龙的解题过程后说:“小龙的解答是错误的.”(1)请指出小龙的解题从第________步开始出现错误,错误的原因是什么?(2)请你写出完整的正确解答过程.参考答案第16讲函数的应用【考题体验】1.C2.B【知识引擎】【解析】(1)f 、v 之间的关系式f =4000v .当v =100时,f =4000100=40.答:当车速为100km/h 时,视野的度数为40度. (2)根据图象或函数增减性,f 随v 增大而减小,∴f =4000v≥50,v ≤80,∴车速不超过80km/h. (3)揭示问题中的数量关系,通过两个变量列方程,从而建立函数模型;对于问题中的数量,要寻找与变量之间的关系,以便解题.【例题精析】例1 易求x =1时,三个函数的函数值都是1,所以,交点坐标为(1,1).根据对称性,y =x 和y =1x 在第三象限的交点坐标为(-1,-1).①如果1a>a>a 2,那么0<a <1正确;②如果a 2>a>1a ,那么a >1或-1<a <0,故本小题错误;③如果1a>a 2>a ,那么a 值不存在,故本小题错误;④如果a 2>1a>a 时,那么a <-1正确.综上所述,正确的命题是①④.故选A . 例2 (1)证明:连结OM.∵Rt △POQ 中,OP =OQ =4,M 是PQ 的中点,∴PQ =42,OM =PM =12PQ =22,∠POM =∠BOM=∠P=45°.∵∠PMA +∠AMO=∠OMB+∠AMO,∴∠PMA =∠OMB.∴△PMA≌△OMB(ASA).∴MA=MB. (2)△AOB 的周长存在最小值.理由如下:∵△PMA≌△OMB,∴PA =OB.∴OA+OB =OA +PA =OP =4.设OA =x ,AB =y ,则y 2=x 2+(4-x)2=2x 2-8x +16=2(x -2)2+8≥8.∴当x =2时y 2有最小值8,从而y 的最小值为2 2.∴△AOB 的周长存在最小值,其最小值是4+2 2.例3 (1)直线BC 的函数表达式为:y =40t -60;直线CD 的函数表达式为:y =-20t +80;(2)OA 的函数表达式为:y =20t(0≤t≤1),∴点A 的纵坐标为20,当20<y<30时,即20<40t-60<30或20<-20t +80<30,解得:2<t<94或52<t<3; (3)S 甲=60t -60(1≤t≤73),S 乙=20t(0≤t≤4),所画函数图象如图:(4) 当t =43时,S 乙=803,丙距M 地的路程与时间的函数表达式为:S 丙=-40t +80(0≤t≤2),S 丙=-40t +80与S 甲=60t -60的图象交点的横坐标为75,∴丙出发75小时与甲相遇.例4 (1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y =kx +b ,依据题意,得⎩⎪⎨⎪⎧b =20,8k +b =100,解得:⎩⎪⎨⎪⎧k =10,b =20,故此函数解析式为:y =10x +20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y =m x,依据题意,得:100=m 8,即m =800,故y =800x ,当y =20时,20=800t,解得:t =40;(3)∵45-40=5≤8,∴当x =5时,y =10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃.例5 (1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y=k 1x +b 1,∵y =k 1x +b 1的图象过点(0,60)与(90,42),∴⎩⎪⎨⎪⎧b 1=60,90k 1+b 1=42,∴解得:⎩⎪⎨⎪⎧k 1=-0.2,b 1=60,∴这个一次函数的表达式为:y =-0.2x +60(0≤x≤90);(3)设y 2与x 之间的函数关系式为y =kx +b ,∵经过点(0,120)与(130,42),∴⎩⎪⎨⎪⎧b =120,130k +b =42,解得:⎩⎪⎨⎪⎧k =-0.6,b =120,∴这个一次函数的表达式为y =-0.6x +120(0≤x≤130),设产量为x kg 时,获得的利润为W 元,当0≤x≤90时,W =x[(-0.6x +120)-(-0.2x +60)]=-0.4(x -75)2+2250,∴当x =75时,W 的值最大,最大值为2250;当90≤x≤130时,W =x[(-0.6x +120)-42]=-0.6(x -65)2+2535,∴当x =90时,W =-0.6(90-65)2+2535=2160,由-0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250元.【变式拓展】1.(1)C (2)-5<x <-1或x >0 2.C 3.B 4.1<x<9 5.A 6.C【热点题型】【分析与解】(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n +120=420,解得n =10.答:第10天生产的粽子数量为420只. (2)根据图象求得成本p 与x 之间的关系,然后根据利润等于出厂价减去成本价,然后整理即可得到W 与x 的关系式,再根据一次函数的增减性和二次函数的增减性解答:由图象得,当0≤x≤9时,p =4.1;当9≤x≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入得,⎩⎪⎨⎪⎧9k +b =4.1,15k +b =4.7,解得⎩⎪⎨⎪⎧k =0.1,b =3.2,∴p =0.1x +3.2,①0≤x ≤5时,W =(6-4.1)×54x=102.6x ,当x =5时,W 最大=513(元);②5<x≤9时,W =(6-4.1)×(30x+120)=57x +228,∵x 是整数,∴当x =9时,W最大=741(元);③9<x≤15时,W =(6-0.1x -3.2)×(30x+120)=-3x 2+72x +336,∵a =-3<0,∴当x=-b 2a=12时,W 最大=768(元);综上,当x =12时,W 有最大值,最大值为768. (3)根据(2)得出m +1=13,根据利润等于出厂价减去成本价得出提价a 与利润W 的关系式,再根据题意列出不等式求解即可:设第13天提价a 元,由题意得,W 13=(6+a -p)(30x +120)=510(a +1.5),∴510(a +1.5)-768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.【错误警示】(1)③ 原因:B 点的坐标写错了,应是(-1,-1). (2)以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图2所示的平面直角坐标系.设抛物线水流对应的二次函数关系式为y =ax 2,根据题意可得B 点与x 轴的距离为1 m ,故B 点的坐标为(-1,-1),代入y =ax 2得-1=a·1,所以a =-1,所以抛物线水流对应的二次函数关系式为y =-x 2.。
第二部分 题型研究题型一 数学思想方法 类型五 整体思想针对演练1. 已知:a -b =35,b -c =35,a 2+b 2+c 2=1,则ab +bc +ca 的值等于________.2. 如图,已知△ABC 的周长为20,一半径为1的圆紧贴三角形外侧旋转一周所经过的路程为________.第2题图3. 已知五个半径为1的圆的位置如图所示,各圆心的连线构成一个五边形,则阴影部分的面积为________.第3题图4. 角α、β、γ中有两个锐角和一个钝角,其数值已给出,在计算115(α+β+γ)的值时,全班得出23.5°、24.5°、25.5°这样三种不同结果,其中确定有正确的答案,那么α+β+γ=________.5. 已知方程组⎩⎪⎨⎪⎧4x +5y =55x +4y =7,求代数式x +y 的值等于________.6. 已知1x +1y =2,则2x -3xy +2yx +xy +y的值为________.7. 计算(1-12-13-14-15)(12+13+14+15+16)-(1-12-13-14-15-16)(12+13+14+15)的结果是________.8. 如图,已知Rt △ABC 的周长为2+6,其中AB =2,则这个三角形的面积是________.第8题图9. 如图,△ABC 中,AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交边AC 于点E ,则△BCE 的周长为________.第9题图10. 分解因式:(x 2-3x +2)(x 2-3x -4)-72.11. 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元.现在计划购甲、乙、丙各1件,共需多少元?12. 如图,矩形ABCD 中,AB =6,AD =8,P 是BC 上一点,PE ⊥BD 于E ,PF ⊥AC 于F ,求PE +PF 的长.第12题图 答案1. -225【解析】可将ab +bc +ca 当作整体去求解,不用分别求出a 、b 、c 的值.∵a-b =35,b -c =35,∴a -c =65,则有(a -b )2+(b -c )2+(c -a )2=5425,即a 2+b 2+c 2-ab-bc -ac =2725,又∵a 2+b 2+c 2=1,∴ab +bc +ac =-225.2. 20+2π 【解析】⊙O 在△ABC 的三个顶点处所转过的圆心角度数和为360°×3-90°×2×3-180°=360°.所以总长度为L =20+2π.3. 3π2 【解析】将五个扇形的圆心角度和作为整体,∵五个扇形的圆心角的和=(5-2)×180°=540°,r =1,∴S 阴影部分=540×π×12360=3π2.4. 352.5° 【解析】将a +β+r 看作整体.设0°<α<90°,0°<β<90°,90°<γ<180°,∴90°<α+β+γ<360°,∴6°<115(α+β+γ)<24°.∵23.5°、24.5°、25.5°中有正确答案,∴115(α+β+γ)=23.5°,∴α+β+γ=352.5°.5. 43【解析】将(x +y )作为整体,方程组中的两个方程相加得:9x +9y =12,∴9(x +y )=12,即x +y =43.6. 13 【解析】∵1x +1y =2,∴x +y =2xy ,∴2x -3xy +2y x +xy +y =2(x +y )-3xy (x +y )+xy =xy 3xy=13. 7. 16 【解析】设12+13+14+15=a ,则原式=(1-a )·(a +16)-(1-a -16)a =16+56a -a 2-56a +a 2=16.8. 12【解析】在Rt △ABC 中,根据勾股定理,得a 2+b 2=22,即(a +b )2-2ab =4,又∵a +b =6,∴(6)2-2ab =4,∴ab =1,∴S =12ab =12.9. 13 【解析】∵DE 是AB 的垂直平分线,∴EA =EB ,则△BCE 的周长=BC +EC +EB =BC +EC +EA =BC +AC =13.10. 解:设x 2-3x =a , 则原式=(a +2)(a -4)-72 =a 2-2a -80 =(a -10)(a +8)=(x 2-3x -10)(x 2-3x +8) =(x -5)(x +2)(x 2-3x +8).11.解:设甲、乙、丙三种货物的单价各为x 、y 、z 元,由题意可得:3x+7y+z=3.15 ①,4x+10y+z=4.20 ②,三个未知数,2个方程,故考虑将x+y+z当作整体来解答.②-①得x+3y=1.05 ③,③×3得3x+9y=3.15 ④,②-④得x+y+z=1.05,答:购甲、乙、丙各1件,共需1.05元.12. 解:由已知条件并不能求得PE、PF的长,我们把PE+PF的值看成一个整体.由题设条件可知:△BPE∽△BDC,∴PEDC=BPBD,∵△CPF∽△CAB,∴PFAB=CPCA,又∵四边形ABCD为矩形,∴AB=DC=6,AC=BD=AB2+AD2=62+82=10,∴PE+PFAB=BP+CPAC=810,∴PE+PF=4.8.。
第16讲函数的应用1.函数与方程、不等式的应用2.函数的最值的应用3.抛物线型的函数的应用4.多个函数的组合的应用5.灵活选用适当的函数模型的应用1.(2017·绍兴模拟)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图象大致是( )2.(2015·金华)图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O ,B ,以点O 为原点,水平直线OB 为x 轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y =-1400(x -80)2+16,桥拱与桥墩AC 的交点C 恰好在水面,有AC⊥x 轴,若OA =10米,则桥面离水面的高度AC 为( )A .16940米B .174米C .16740米D .154米【问题】人的视觉机能受运动速度的影响很大,行驶中的司机在驾驶室内观察前方物体时是动态的,车速增加,视野变窄,当车速为50km /h 时,视野为80度.如果视野f(度)是车速v(km /h )的反比例函数.(1)求f 、v 之间的关系式,并计算当车速为100km /h 时视野的度数. (2)当视野的度数不低于50度时,车速应控制在什么范围内.(3)通过以上两题解答,请你思考如何建立合适的函数模型,以及利用函数关系式解题时,如何理解已知数的意义.【归纳】通过开放式问题,归纳、疏理函数的实际问题,要认真分析,构建函数模型,从而根据函数性质解答问题;实际问题中函数解析式的求法:设x 为自变量,y 为x 的函数,在求解析式时,一般与列方程解应用题一样先列出关于x 、y 的二元方程,再用含x 的代数式表示y ,最后还要写出自变量x 的取值范围.类型一 方程(组)、不等式中的函数应用例1 (2017·安徽模拟)给出下列命题及函数y =x ,y =x 2和y =1x.①如果1a >a>a 2,那么0<a <1;②如果a 2>a>1a ,那么a >1;③如果1a>a 2>a ,那么-1<a <0;④如果a 2>1a>a 时,那么a <-1.则( )A .正确的命题是①④B .错误的命题是②③④C .正确的命题是①②D .错误的命题只有③【解后感悟】本题是二次函数与不等式组的关系,实际上利用函数图象来比较代数式的大小,求出两交点的坐标,并准确识图.1.(1)(2017·兰州)下表是一组二次函数y =x 2+3x -5的自变量x 与函数值y 的对应值:那么方程x 2+3x -5=0的一个近似根是( )A .1B .1.1C .1.2D .1.3(2) 如图,直线y =k 1x +b 与双曲线y =k 2x 交于A 、B 两点,其横坐标分别为1和5,则不等式k 1x <k 2x+b 的解集是 .类型二 几何图形中的函数应用例2 (2017·萧山模拟)在Rt △POQ 中,OP =OQ =4,M 是PQ 的中点,把一三角尺的直角顶点放在点M 处,以M 为旋转中心,旋转三角尺,三角尺的两直角边与△POQ 的两直角边分别交于点A 、B.(1)求证:MA =MB ;(2)连结AB ,探究:在旋转三角尺的过程中,△AOB 的周长是否存在最小值,若存在,求出最小值,若不存在.请说明理由.【解后感悟】该题的第(2)题是最小值问题,主要去构建一个函数模型,然后利用性质求最小值.在构造函数模型时注意两个方面:一是揭示基本图形,寻找基本的数量关系,二是确立哪个量作为自变量来构建函数.2.(2015·潍坊)如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是( )A .3cm 2B .323cm 2 C .923cm 2 D .2723cm 2类型三 一次函数的应用例3 (2015·杭州)方成同学看到一则材料,甲开汽车,乙骑自行车从M 地出发沿一条公路匀速前往N 地,设乙行驶的时间为t(h ),甲乙两人之间的距离为y(km ),y 与t 的函数关系如图1所示,方成思考后发现了图1的部分正确信息,乙先出发1h ,甲出发0.5小时与乙相遇,…,请你帮助方成同学解决以下问题:(1)分别求出线段BC ,CD 所在直线的函数表达式; (2)当20<y <30时,求t 的取值范围;(3)分别求出甲、乙行驶的路程S 甲、S 乙与时间t 的函数表达式,并在图2所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地,若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?【解后感悟】此题是一次函数的实际应用,注意理解题意,结合图象,根据实际选择合理的方法解答.3.(2017·台州模拟)某服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M 、N 两种型号的时装共80套.已知做一套M 型号的时装需用A 种布料1.1米,B 种布料0.4米,可获利50元;做一套N 型号的时装需用A 种布料0.6米,B 种布料0.9米,可获利润45元.当M 型号的时装为多少套时,能使该厂所获利润最大( )A .40B .44C .66D .804.(2015·舟山模拟)一个有进水管与出水管的容器,从某时刻开始的3分内只进水不出水,在随后的9分内既进水又出水,每分的进水量和出水量都是常数.容器内的水量y(单位:升)与时间x(单位:分)之间的关系如图所示.当容器内的水量大于5升时,时间x 的取值范围为____________________.类型四反比例函数的应用例4(2015·南平模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y(℃)与开机时间x(分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y(℃)与开机时间x(分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤8时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步45分钟回到家时,饮水机内的温度约为多少℃?【解后感悟】此题是一次函数以及反比例函数的应用,根据题意得出正确的函数解析式是解题关键.5.某人对地面的压强与他和地面接触面积的函数关系如图所示.若某一沼泽地地面能承受的压强不超过300N /m 2,那么此人必须站立在面积____的木板上才不至于下陷.(木板的重量忽略不计)( )A .至少2m 2B .至多2m 2C .大于2m 2D .小于2m 2类型五 二次函数的应用例5 (2017·镇江模拟)某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD 、线段CD 分别表示该产品每千克生产成本y 1(单位:元)、销售价y 2(单位:元)与产量x(单位:kg )之间的函数关系.(1)请解释图中点D 的横坐标、纵坐标的实际意义; (2)求线段AB 所表示的y 1与x 之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?【解后感悟】本题是二次函数在实际生活中的应用,主要是利用二次函数的增减性求最值问题,难点在于读懂题目信息,列出相关的函数关系式.6.(2017·丽水模拟)河北省赵县的赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系,其函数的关系式为y =-125x 2,当水面离桥拱顶的高度DO 是4m 时,这时水面宽度AB 为( )A .-20mB .10mC .20mD .-10m【实际应用题】(2015·舟山)某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足如下关系式:y =⎩⎪⎨⎪⎧54x (0≤x≤5),30x +120(5<x≤15).(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为W 元,求W 与x 之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?(3)设(2)小题中第m 天利润达到最大值,若要使第(m +1)天的利润比第m 天的利润至少多48元,则第(m +1)天每只粽子至少应提价几元?【方法与对策】本题是二次函数在实际生活中的应用,难点在于读懂题目信息,把实际问题构建成一个函数模型,解答时需要同学们仔细分析所示情景分类讨论,利用二次函数的增减性求最值问题,利用一次函数的增减性求最值.该题型是中考选择题中的压轴题,出现较多,学习过程中要重视.【建立坐标系时忽视符号】如图1,某灌溉设备的喷头B高出地面1.25 m,喷出的抛物线形水流与喷头底部A的距离为1 m处达到距地面最大高度2.25 m,试在恰当的直角坐标系中求出与该抛物线水流对应的二次函数关系式.学生小龙在解答图1所示的问题时,具体解答如下:①以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图2所示的平面直角坐标系;②设抛物线水流对应的二次函数关系式为y=ax2;③根据题意可得B点与x轴的距离为1 m,故B点的坐标为(-1,1);④代入y=ax2得-1=a·1,所以a=-1;⑤所以抛物线水流对应的二次函数关系式为y=-x2.数学老师看了小龙的解题过程后说:“小龙的解答是错误的.”(1)请指出小龙的解题从第________步开始出现错误,错误的原因是什么?(2)请你写出完整的正确解答过程.参考答案第16讲函数的应用【考题体验】1.C 2.B【知识引擎】【解析】(1)f 、v 之间的关系式f =4000v .当v =100时,f =4000100=40.答:当车速为100km/h 时,视野的度数为40度. (2)根据图象或函数增减性,f 随v 增大而减小,∴f =4000v≥50,v ≤80,∴车速不超过80km/h. (3)揭示问题中的数量关系,通过两个变量列方程,从而建立函数模型;对于问题中的数量,要寻找与变量之间的关系,以便解题.【例题精析】例1 易求x =1时,三个函数的函数值都是1,所以,交点坐标为(1,1).根据对称性,y =x 和y =1x 在第三象限的交点坐标为(-1,-1).①如果1a>a>a 2,那么0<a <1正确;②如果a 2>a>1a ,那么a >1或-1<a <0,故本小题错误;③如果1a>a 2>a ,那么a 值不存在,故本小题错误;④如果a 2>1a>a 时,那么a <-1正确.综上所述,正确的命题是①④.故选A . 例2 (1)证明:连结OM.∵Rt △POQ 中,OP =OQ =4,M 是PQ 的中点,∴PQ =42,OM =PM =12PQ =22,∠POM =∠BOM =∠P =45°.∵∠PMA +∠AMO =∠OMB +∠AMO ,∴∠PMA =∠OMB.∴△PMA≌△OMB(ASA).∴MA =MB. (2)△AOB 的周长存在最小值.理由如下:∵△PMA≌△OMB,∴PA =OB.∴OA+OB =OA +PA =OP =4.设OA =x ,AB =y ,则y 2=x 2+(4-x)2=2x 2-8x +16=2(x -2)2+8≥8.∴当x =2时y 2有最小值8,从而y 的最小值为2 2.∴△AOB 的周长存在最小值,其最小值是4+2 2.例3 (1)直线BC 的函数表达式为:y =40t -60;直线CD 的函数表达式为:y =-20t +80;(2)OA 的函数表达式为:y =20t(0≤t≤1),∴点A 的纵坐标为20,当20<y<30时,即20<40t-60<30或20<-20t +80<30,解得:2<t<94或52<t<3; (3)S 甲=60t -60(1≤t≤73),S 乙=20t(0≤t≤4),所画函数图象如图:(4) 当t =43时,S 乙=803,丙距M 地的路程与时间的函数表达式为:S 丙=-40t +80(0≤t≤2),S 丙=-40t +80与S 甲=60t -60的图象交点的横坐标为75,∴丙出发75小时与甲相遇.例4 (1)当0≤x≤8时,设水温y(℃)与开机时间x(分)的函数关系为:y =kx +b ,依据题意,得⎩⎪⎨⎪⎧b =20,8k +b =100,解得:⎩⎪⎨⎪⎧k =10,b =20,故此函数解析式为:y =10x +20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y =m x ,依据题意,得:100=m 8,即m =800,故y =800x ,当y =20时,20=800t,解得:t =40;(3)∵45-40=5≤8,∴当x =5时,y =10×5+20=70,答:小明散步45分钟回到家时,饮水机内的温度约为70℃. 例5 (1)点D 的横坐标、纵坐标的实际意义:当产量为130kg 时,该产品每千克生产成本与销售价相等,都为42元;(2)设线段AB 所表示的y 1与x 之间的函数关系式为y =k 1x+b 1,∵y =k 1x +b 1的图象过点(0,60)与(90,42),∴⎩⎪⎨⎪⎧b 1=60,90k 1+b 1=42,∴解得:⎩⎪⎨⎪⎧k 1=-0.2,b 1=60,∴这个一次函数的表达式为:y =-0.2x +60(0≤x≤90);(3)设y 2与x 之间的函数关系式为y =kx +b ,∵经过点(0,120)与(130,42),∴⎩⎪⎨⎪⎧b =120,130k +b =42,解得:⎩⎪⎨⎪⎧k =-0.6,b =120,∴这个一次函数的表达式为y =-0.6x +120(0≤x≤130),设产量为x kg 时,获得的利润为W 元,当0≤x≤90时,W =x[(-0.6x +120)-(-0.2x +60)]=-0.4(x -75)2+2250,∴当x =75时,W 的值最大,最大值为2250;当90≤x≤130时,W =x[(-0.6x +120)-42]=-0.6(x -65)2+2535,∴当x =90时,W =-0.6(90-65)2+2535=2160,由-0.6<0知,当x >65时,W 随x 的增大而减小,∴90≤x ≤130时,W ≤2160,因此当该产品产量为75kg 时,获得的利润最大,最大值为2250元.【变式拓展】1.(1)C (2)-5<x <-1或x >0 2.C 3.B 4.1<x<9 5.A 6.C【热点题型】【分析与解】(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n +120=420,解得n =10.答:第10天生产的粽子数量为420只. (2)根据图象求得成本p 与x 之间的关系,然后根据利润等于出厂价减去成本价,然后整理即可得到W 与x 的关系式,再根据一次函数的增减性和二次函数的增减性解答:由图象得,当0≤x≤9时,p =4.1;当9≤x≤15时,设p =kx +b ,把点(9,4.1),(15,4.7)代入得,⎩⎪⎨⎪⎧9k +b =4.1,15k +b =4.7,解得⎩⎪⎨⎪⎧k =0.1,b =3.2,∴p =0.1x +3.2,①0≤x ≤5时,W =(6-4.1)×54x=102.6x ,当x =5时,W 最大=513(元);②5<x≤9时,W =(6-4.1)×(30x+120)=57x +228,∵x 是整数,∴当x =9时,W 最大=741(元);③9<x≤15时,W =(6-0.1x -3.2)×(30x+120)=-3x 2+72x +336,∵a =-3<0,∴当x =-b 2a=12时,W 最大=768(元);综上,当x =12时,W 有最大值,最大值为768. (3)根据(2)得出m +1=13,根据利润等于出厂价减去成本价得出提价a 与利润W 的关系式,再根据题意列出不等式求解即可:设第13天提价a 元,由题意得,W 13=(6+a -p)(30x +120)=510(a +1.5),∴510(a +1.5)-768≥48,解得a≥0.1.答:第13天每只粽子至少应提价0.1元.【错误警示】(1)③ 原因:B 点的坐标写错了,应是(-1,-1). (2)以水流的最高点为原点,过原点的水平线为横轴,过原点的铅垂线为纵轴,建立如图2所示的平面直角坐标系.设抛物线水流对应的二次函数关系式为y =ax 2,根据题意可得B 点与x 轴的距离为1 m ,故B 点的坐标为(-1,-1),代入y =ax 2得-1=a·1,所以a =-1,所以抛物线水流对应的二次函数关系式为y =-x 2.。
2018年中考数学复习专题讲座:数学思想方法<2)一、中考专题诠释数学思想方法是指对数学知识和方法形成的规律性的理性认识,是解决数学问题的根本策略。
数学思想方法揭示概念、原理、规律的本质,是沟通基础知识与能力的桥梁,是数学知识的重要组成部分。
数学思想方法是数学知识在更高层次上的抽象和概括,它蕴含于数学知识的发生、发展和应用的过程中。
抓住数学思想方法,善于迅速调用数学思想方法,更是提高解题能力根本之所在.因此,在复习时要注意体会教材例题、习题以及中考试卷中所体现的数学思想和方法,培养用数学思想方法解决问题的意识.二、解题策略和解法精讲数学思想方法是数学的精髓,是读书由厚到薄的升华,在复习中一定要注重培养在解题中提炼数学思想的习惯,中考常用到的数学思想方法有:整体思想、转化思想、函数与方程思想、数形结合思想、分类讨论思想等.在中考复习备考阶段,教师应指导学生系统总结这些数学思想与方法,掌握了它的实质,就可以把所学的知识融会贯通,解题时可以举一反三。
三、中考考点精讲考点四:方程思想从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法,这就是方程思想。
用方程思想解题的关键是利用已知条件或公式、定理中的已知结论构造方程(组>。
这种思想在代数、几何及生活实际中有着广泛的应用。
例1 <2018•广东)据媒体报道,我国2009年公民出境旅游总人数约5000万人次,2018年公民出境旅游总人数约7200万人次,若2018年、2018年公民出境旅游总人数逐年递增,请解答下列问题:<1)求这两年我国公民出境旅游总人数的年平均增长率;<2)如果2018年仍保持相同的年平均增长率,请你预测2018年我国公民出境旅游总人数约多少万人次?考点:一元二次方程的应用。
专题:增长率问题。
分析:<1)设年平均增长率为x.根据题意2018年公民出境旅游总人数为5000<1+x)万人次,2018年公民出境旅游总人数 5000<1+x)2 万人次.根据题意得方程求解;<2)2018年我国公民出境旅游总人数约7200<1+x)万人次.解答:解:<1)设这两年我国公民出境旅游总人数的年平均增长率为x.根据题意得5000<1+x)2 =7200.解得 x1 =0.2=20%,x2 =﹣2.2 <不合题意,舍去).答:这两年我国公民出境旅游总人数的年平均增长率为20%.<2)如果2018年仍保持相同的年平均增长率,则2018年我国公民出境旅游总人数为 7200<1+x)=7200×120%=8640万人次.答:预测2018年我国公民出境旅游总人数约8640万人次.点评:方程是解决应用题、实际问题和许多方面的数学问题的重要基础知识,应用范围非常广泛。
专题复习(一)数学思想方法问题题型概述数学思想方法是把知识转化为能力的桥梁,是解题规律的总结,是达到以点带面、触类旁通、摆脱题海的有效之路。
因此我们应抓住临近中考的这段时间,去研究、归纳、熟悉那些常见的解题方法与技巧,从而为夺得中考高分搭起灵感和智慧的平台。
初中数学中的主要数学思想有整体思想、化归思想、分类讨论思想、数形结合思想、方程和函数思想等。
结合中考走向,我们重点就以下几种思想方法进行赏析强化。
【题型例析】 类型1:整体思想整体思想就是考虑数学问题时,不是着眼与它的局部特征,而是把注意力和着眼点放在问题的整体结构上,通过对其全面深刻的观察,从宏观整体上认识问题的实质,把一些彼此独立但实质上又相互紧密的联系这的量作为整体来处理运用的思想方法。
【例题】.(1)(2015•湖南株洲,第13题3分)因式分解:2(2)16(2)x x x ---= 。
【解析】本题考点为:分解因式,首先提取整体公因式(2)x -,然后还要注意彻底分解,2(16)x -仍可以利用平方差公式分解。
答案为:(2)(4)(4)x x x --+ (2)(2015•广东梅州,第18题,7分)已知,求代数式的值.考点:整式的混合运算—化简求值.. 专题:计算题.分析:原式利用完全平方公式及单项式乘以多项式法则计算,将已知等式代入计算即可求出值.解答:解:原式=a 2﹣2a +1+2ab +b 2+2a =(a +b )2+1, 把a +b =﹣代入得:原式=2+1=3.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则整体运用是解本题的关键.【变式练习】(1)(2015福建龙岩13,3分)若4a﹣2b=2π,则2a﹣b+π= 2π.考点:代数式求值.分析:根据整体代入法解答即可.解答:解:因为4a﹣2b=2π,所以可得2a﹣b=π,把2a﹣b=π代入2a﹣b+π=2π.点评:此题考查代数式求值,关键是根据整体代入法计算.(2)(2015•甘南州第23题 4分)已知a2﹣a﹣1=0,则a3﹣a2﹣a+2015= 2015 .考点:因式分解的应用.分析:首先根据a2﹣a﹣1=0得到a2﹣a=1,从而利用a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015代入求值即可.解答:解:∵a2﹣a﹣1=0,∴a2﹣a=1,∴a3﹣a2﹣a+2015=a(a2﹣a)﹣a+2015=a﹣a+2015=2015,故答案为:2015.点评:本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用.类型2:分类讨论思想(1)代数问题中的分类讨论针对代数中的有些问题,需要对整体问题进行分解,从不同的角度、不同的范围和不同的思路进行分类,把问题既不重复,不遗漏的分成几种情况进行分析,化整为零,各个击破的解题策略,这样使问题得以轻松解决。
浙江省2018年中考数学复习第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(浙江省2018年中考数学复习第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为浙江省2018年中考数学复习第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练的全部内容。
第二部分题型研究题型一数学思想方法类型二数形结合思想针对演练1. 二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()第1题图A。
①② B。
①③C。
②③ D。
①②③2. 若m、n(其中n<m)是关于x的一元二次方程1-(x-a)(x-b)=0的两个根,且b <a,则m,n,b,a的大小关系是( )A. m<a<b<n B。
a<m<n<bC。
b<n<m<a D。
n<b<a<m3. (2017凉山州)小明和哥哥从家里出去买书,从家出来走了20分钟到一个离家1000米的书店,小明买了书后随即按原速返回;哥哥看了20分钟书后,用15分钟返回家.下面的图形中哪一个表示哥哥离家时间与距离之间的关系( )m<0的图象分别交x轴、y轴于点M,N,线段MN上两点在4. 如图,函数y=mx-4m()x轴的垂足分别为A,B1,若OA1+OB1〉4,则△OAA1的面积S1与△OBB1的面积S2的大小关系1是( )第4题图A. S1〉S2B. S1=S2C. S1〈S2D. 不确定5。
如图,已知函数y=x+b和y=ax+3的图象交点为P,则不等式x+b〉ax+3的解集为_________.第5题图6. 我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非.”如图,在一个边长为1的正方形纸板上,依次贴上面积为错误!,错误!,错误!,…,错误!的矩形彩色纸片(n为大于1的整数).请你用“数形结合”的思想,依数形变化的规律,计算错误!+错误!+错误!+…+错误!=________。
第二部分题型研究
题型一数学思想方法
类型三方程与函数思想
针对演练
1. 甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600 kg,甲搬运5000 kg所用的时间与乙搬运8000 kg所用的时间相等,求甲、乙两人每小时分别搬运多少kg货物.设甲每小时搬运x kg货物,则可列方程为( )
A.
5000
x-600
=
8000
x
B.
5000
x
=
8000
x+600
C.
5000
x+600
=
8000
x
D.
5000
x
=
8000
x-600
2. 如图,正方形ABCD的边长为9,将正方形折叠,使顶点D落在BC边上的点E处,折痕为GH.若BE∶EC=2∶1,则线段CH的长是( )
A. 3
B. 4
C. 5
D. 6
第2题图
3. 如图,在△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AE⊥AB 交BC于点E.若S△ABC=m2+9n2,S△ADE=mn,则m与n之间的数量关系是( )
第3题图A. m=3n B. m=6n C. n=3m D. n=6m
4. 已知:M,N两点关于y轴对称,且点M在双曲线y=
1
2x
上,点N在直线
y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x( )
A.有最大值,最大值为-9 2
B.有最大值,最大值为9 2
C.有最小值,最小值为9 2
D.有最小值,最小值为-9 2
5. 如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C 的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x 的函数图象大致是( )
6. 若3x 2m y m 与x 4-n y n -1是同类项,则m +n =________.
7. 教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m)与水
平距离x (m)之间的关系为y =-
112(x -4)2+3,由此可知铅球推出的距离是________m.
8. 设直线y =kx +k -1和直线y =()k +1x +k (k 是正整数)与x 轴围成的三角形面积为S k ,则S 1+S 2+S 3+…+S 2018的值是________.
9. 某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?
(2)房价定为多少时,宾馆的利润最大?
答案
1. B 【解析】甲每小时搬运x kg 货物,则乙每小时搬运(x +600)kg 货物,根据题意得5000x =8000x +600
,故选B. 2. B 【解析】由题意设C H =x ,则DH =EH =(9-x ),∵BE ∶EC =2∶1,∴CE =13
BC =3,∴在Rt △E C H 中,EH 2=EC 2+CH 2,即(9-x )2=32+x 2,解得x =4,即CH =4.
3. A 【解析】∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵AD ⊥BC ,AE ⊥AB ,∴∠BEA =∠BAD =60°,∠EAC =∠C =30°,设DE =a ,则AE =CE =
2a ,∴BC =6a ,∴S △ABC =6S △ADE ,即m 2+9n 2=6mn ,∴()m -3n 2
=0,∴m =3n . 4. B 【解析】∵M ,N 两点关于y 轴对称,点M 的坐标为(a ,b),∴N 点的坐标为(-a ,b ).又∵点M 在反比例函数y =12x
的图象上,点N 在一次函数y =x +3的图象上,∴⎩⎨⎧b =12a b =-a +3,即⎩⎨⎧ab =12a +b =3,∴二次函数y =-abx 2
+(a +b )x =-12x 2+3x =-12(x -3)2+92.∵二次项系数为-12
<0,∴函数有最大值,最大值为92
. 5. B 【解析】根据题意可知,需分两种情况讨论:①当P 在AB 上时,x 的取值范围是0<x ≤3,此时点D 到PA 的距离等于AD 的长度4,∴y 关于x 的函数图象是一条平行于x 轴的直线;②当P 在BC 上时,x 的取值范围是3<x ≤5,∵∠BAP +∠DAE =∠BAP +∠APB ,∴∠DAE =∠APB ,又∵∠B =∠DEA =90°,∴△ABP ∽△DEA ,∴DE AB =AD AP ,∴y 3=4x ,∴y =12x
,∴y 关于x 的函数图象是双曲线的一部分,由k =12可得函数在第一象限,且y 随x 的增大而减小.综合①②可知B 选项正确.
第5题解图
6. 3 【解析】根据同类项的概念得,⎩⎨⎧2m +n =4m -n =-1
,解得m =1,n =2,∴
m +n =3.
7. 10 【解析】在函数表达式y =-
112(x -4)2+3中令y =0,得-112(x -4)2+3=0,解得x 1=10,x 2=-2(舍去),∴铅球推出的距离是10 m.
8. 20184038 【解析】∵方程组⎩⎨⎧y =kx +k -1y =
()k +1x +k 的解为⎩⎨⎧x =-1y =-1,∴两条直线的交点为()-1,-1,两直线与x 轴的交点分别为⎝ ⎛⎭⎪⎫1-k k ,0,⎝ ⎛⎭
⎪⎫-k k +1,0,∴S k =12×1×⎝ ⎛⎭⎪⎫1-k k
--k k +1=12⎝ ⎛⎭⎪⎫1k -1k +1,则S 1+S 2+S 3+…+S 2018=12×(1-12+12-13+13-14+…+12017-12018+12018-12019)=12×⎝
⎛⎭⎪⎫1-12019=20184038. 9. 解:(1)若每个房间定价增加40元,则这个宾馆这一天的利润为(180
+40-20)×(50-
4010)=9200(元); (2)设房价增加x 元时,利润为w ,
则w =(180-20+x )(50-x 10
) =-110
x 2+34x +8000 =-
110(x -170)2+10890, 当x =170时,房价为170+180=350(元),w 最大为10890.
即当房价定为350元时,宾馆的利润最大.。