八上第二章 等腰三角形基础练习
- 格式:doc
- 大小:340.50 KB
- 文档页数:4
2.2 等腰三角形1.一个等腰三角形的两边长分别为4,8,则它的周长为(C ) A. 12 B. 16C. 20D. 16或202.若等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为(D ) A. 11 B. 16 C. 17 D. 16或17(第3题)3.如图,在△ABC 中,AD 垂直平分边BC ,AB =5,则AC =__5__.4.已知一等腰三角形的两边长x ,y 满足方程组⎩⎨⎧2x -y =3,3x +2y =8,则此等腰三角形的周长为__5__.5.在课题活动课上,小明已有两根长分别为5 cm ,10 cm 的火柴棒,现打算做一个等腰三角形模型,则小明取的第三根火柴棒的长度为__10____cm.(第6题)6.如图,AB ,AC 是等腰三角形ABC 的两腰,AD 平分∠BAC ,则△BCD 是等腰三角形吗?试说明理由.【解】 △BCD 是等腰三角形.理由如下: ∵AD 平分∠BAC , ∴∠BAD =∠CA D.∵AB ,AC 是等腰三角形ABC 的两腰, ∴AB =A C.在△ABD 与△ACD 中,∵⎩⎪⎨⎪⎧AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD ≌△ACD (SAS ).∴BD =C D. ∴△BCD 是等腰三角形.(第7题)7.如图,AC 平分∠BAD ,CD ⊥AD ,CB ⊥AB ,连结B D.请找出图中所有的等腰三角形,并说明理由.【解】 等腰三角形有△ABD 和△BC D.理由如下: ∵AC 平分∠BAD , ∴∠DAC =∠BA C. ∵CD ⊥AD ,CB ⊥AB , ∴∠ADC =∠ABC =90°. 又∵AC =AC , ∴△ACD ≌△ACB (AAS ). ∴AD =AB ,CD =C B.∴△ABD ,△BCD 都是等腰三角形.8.已知等腰三角形ABC 的底边BC 的长为8,且|AC -BC |=2,则腰AC 的长为(A ) A .10或6 B .10 C .6 D .8或6【解】 若AC -BC =2,则AC =10;若BC -AC =2,则AC =6,均满足三角形的三边关系.9.若等腰三角形一腰上的高线与另一腰的夹角为20°,则顶角的度数是110°或70°.【解】当等腰三角形的顶角是钝角时,如解图①,此时顶角的度数是90°+20°=110°;当等腰三角形的顶角是锐角时,如解图②,此时顶角的度数是90°-20°=70°.(第9题解)10.已知a,b,c是△ABC的三边长,且满足a2+2ab=c2+2bc,试判断这个三角形的形状.【解】∵a2+2ab=c2+2bc,∴a2+2ab+b2=c2+2bc+b2,∴(a+b)2=(b+c)2,∴a+b=±(b+c).∵a>0,b>0,c>0,∴a+b=b+c,∴a=c.∴△ABC为等腰三角形.11.如图,直线l1,l2交于点B,A是直线l1上的点,在直线l2上寻找一点C,使△ABC是等腰三角形,请画出所有的等腰三角形.(第11题)【解】分类讨论:若以AB为腰,B为顶角顶点,可作出点C1,C2;若以AB为腰,A为顶角顶点,可作出点C3;若以AB 为底边,可作AB 的中垂线交l 2于点C 4. 故共有4个满足题意的等腰三角形.12.有一个等腰三角形,三边长分别为3x -2,4x -3,6-2x ,求这个等腰三角形的周长.【解】 当3x -2=4x -3时,解得x =1.∴3x -2=1,4x -3=1,6-2x =4,显然不能组成三角形. 当3x -2=6-2x 时,解得x =85.∴3x -2=145,6-2x =145,4x -3=175,能组成三角形,周长为145+145+175=9. 当4x -3=6-2x 时,解得x =32.∴4x -3=3,6-2x =3,3x -2=52,能组成三角形,周长为3+3+52=172. 综上所述,这个等腰三角形的周长为9或172.13.(1)如图①,△ABC 是等边三角形,△ABC 所在平面上有一点P ,使△PAB ,△PBC ,△PAC 都是等腰三角形,问:具有这样性质的点P 有几个?在图中画出来.(2)如图②,正方形ABCD 所在的平面上有一点P ,使△PAB ,△PBC ,△PCD ,△PDA 都是等腰三角形,问:具有这样性质的点P 有几个?在图中画出来.(第13题)【解】 (1)10个.如解图①,当点P 在△ABC 内部时,P 是边AB ,BC ,CA 的垂直平分线的交点;当点P 在△ABC 外部时,P 是以三角形各顶点为圆心,边长为半径的圆与三条垂直平分线的交点,每条垂直平分线上得3个交点.故具有这样性质的点P 共有10个.(第13题解①)(2)9个.如解图②,两条对角线的交点是1个,以正方形各顶点为圆心,边长为半径画圆,在正方形里面和外面的交点一共有8个.故具有这样性质的点P共有9个.(第13题解②)。
等腰三角形一、知识梳理:专题一:等腰三角形概念及性质;等腰三角形的判定.二、考点分类考点一:等腰三角形的概念有两边相等的三角形是等腰三角形。
【类型一】利用等腰三角形的概念求边长或周长【例1】如果等腰三角形两边长是6cm和3cm,那么它的周长是()A.9cm B.12cm C.15cm或12cm D.15cm解析:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm 时,6-3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15(cm).故选D.方法总结:在解决等腰三角形边长的问题时,如果不明确底和腰时,要进行分类讨论,同时要养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.考点二:等腰三角形的性质1、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).2、解题方法:设辅助未知数法与拼凑法.3、重要的数学思想方法:方程思想、整体思想和转化思想.【类型一】利用“等边对等角”求角度【例2】等腰三角形的一个内角是50°,则这个三角形的底角的大小是()A .65°或50° B.80°或40° C .65°或80° D.50°或80°解析:当50°的角是底角时,三角形的底角就是50°;当50°的角是顶角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.方法总结:等腰三角形的两个底角相等,已知一个内角,则这个角可能是底角也可能是顶角,要分两种情况讨论.【类型二】 利用方程思想求等腰三角形角的度数【例3】 如图①,在△ABC 中,AB =AC ,点D 在AC 上,且BD =BC =AD ,求△ABC 各角的度数.解析:设∠A =x ,利用等腰三角形的性质和三角形内角和定理即可求得各角的度数.解:设∠A =x .∵AD =BD ,∴∠ABD =∠A =x .∵BD =BC ,∴∠BCD =∠BDC =∠ABD +∠A=2x .∵AB =AC ,∴∠ABC =∠BCD =2x .在△ABC 中,∠A +∠ABC +∠ACB =180°,∴x +2x+2x =180°,∴x =36°,∴∠A =36°,∠ABC =∠ACB =72°.方法总结:利用等腰三角形的性质和三角形外角的性质可以得到角与角之间的关系,当这种等量关系或和差关系较多时,可考虑列方程解答,设未知数时,一般设较小的角的度数为x .① ②【类型三】 利用“等边对等角”的性质进行证明【例4】 如图②,已知△ABC 为等腰三角形,BD 、CE 为底角的平分线,且∠DBC =∠F ,求证:EC ∥DF .解析:先由等腰三角形的性质得出∠ABC =∠ACB ,根据角平分线定义得到∠DBC =12∠ABC ,∠ECB =12∠ACB ,那么∠DBC =∠ECB ,再由∠DBC =∠F ,等量代换得到∠ECB =∠F ,于是根据平行线的判定得出EC ∥DF .证明:∵△ABC 为等腰三角形,AB =AC ,∴∠ABC =∠ACB .又∵BD 、CE 为底角的平分线,∴∠DBC =12∠ABC ,∠ECB =12∠ACB ,∴∠DBC =∠ECB .∵∠DBC =∠F ,∴∠ECB =∠F ,∴EC ∥DF .方法总结:证明线段的平行关系,主要是通过证明角相等或互补.【类型四】 利用等腰三角形“三线合一”的性质进行证明【例5】 如图①,点D 、E 在△ABC 的边BC 上,AB =AC .(1)若AD =AE ,求证:BD =CE ;(2)若BD =CE ,F 为DE 的中点,如图②,求证:AF ⊥BC .解析:(1)过A 作AG ⊥BC 于G ,根据等腰三角形的性质得出BG =CG ,DG =EG 即可证明;(2)先证BF =CF ,再根据等腰三角形的性质证明.证明:(1)如图①,过A 作AG ⊥BC 于G .∵AB =AC ,AD =AE ,∴BG =CG ,DG =EG ,∴BG-DG =CG -EG ,∴BD =CE ;(2)∵BD =CE ,F 为DE 的中点,∴BD +DF =CE +EF ,∴BF =CF .∵AB =AC ,∴AF ⊥BC .方法总结:在等腰三角形有关计算或证明中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线.【类型五】 与等腰三角形的性质有关的探究性问题【例6】 如图①,已知△ABC 是等腰直角三角形,∠BAC =90°,BE 是∠ABC 的平分线,DE⊥BC ,垂足为D .(1)请你写出图中所有的等腰三角形;(2)请你判断AD 与BE 垂直吗?并说明理由.(3)如果BC =10,求AB +AE 的长.解析:(1)由△ABC 是等腰直角三角形,BE 为角平分线,可证得△ABE ≌△DBE ,即AB =BD ,AE =DE ,所以△ABD 和△ADE 均为等腰三角形;由∠C =45°,ED ⊥DC ,可知△EDC 也符合题意;(2)BE 是∠ABC 的平分线,DE ⊥BC ,根据角平分线定理可知△ABE 关于BE 与△DBE对称,可得出BE ⊥AD ;(3)根据(2),可知△ABE 关于BE 与△DBE 对称,且△DEC 为等腰直角三角形,可推出AB +AE =BD +DC =BC =10.解:(1)△ABC ,△ABD ,△ADE ,△EDC .(2)AD 与BE 垂直.证明:由BE 为∠ABC 的平分线,知∠ABE =∠DBE ,∠BAE =∠BDE =90°,BE =BE ,∴△ABE ≌△DBE ,∴△ABE 沿BE 折叠,一定与△DBE 重合,∴A 、D 是对称点,∴AD ⊥BE .(3)∵BE 是∠ABC 的平分线,DE ⊥BC ,EA ⊥AB ,∴AE =DE .在Rt △ABE 和Rt △DBE 中,∵⎩⎪⎨⎪⎧AE =DE ,BE =BE ,∴Rt △ABE ≌Rt △DBE (HL),∴AB =BD .又∵△ABC 是等腰直角三角形,∠BAC =90°,∴∠C =45°.又∵ED ⊥BC ,∴△DCE 为等腰直角三角形,∴DE =DC ,∴AB +AE =BD +DC =BC=10.① ②考点三:等腰三角形的判定方法(1)根据定义判定;(2)两个角相等的三角形是等腰三角形.【类型一】 确定等腰三角形的个数 【例7】 如图②,在△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别是∠ABC 、∠BCD 的角平分线,则图中的等腰三角形有( )A .5个B .4个C .3个D .2个解析:共有5个.(1)∵AB =AC ,∴△ABC 是等腰三角形;(2)∵BD 、CE 分别是∠ABC 、∠BCD的角平分线,∴∠EBC =12∠ABC ,∠ECB =12∠BCD .∵△ABC 是等腰三角形,∴∠EBC =∠ECB ,∴△BCE 是等腰三角形;(3)∵∠A =36°,AB =AC ,∴∠ABC =∠ACB =12(180°-36°)=72°.又∵BD 是∠ABC 的角平分线,∴∠ABD =12∠ABC =36°=∠A ,∴△ABD 是等腰三角形;同理可证△CDE 和△BCD 也是等腰三角形.故选A.方法总结:确定等腰三角形的个数要先找出相等的边和相等的角,然后确定等腰三角形,再按顺序不重不漏地数出等腰三角形的个数.【类型二】 在坐标系中确定三角形的个数【例8】 已知平面直角坐标系中,点A 的坐标为(-2,3),在y 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( )A .3个B .4个C .5个D .6解析:因为△AOP 为等腰三角形,所以可分三类讨论:(1)AO =AP (有一个).此时只要以A 为圆心AO 长为半径画圆,可知圆与y 轴交于O 点和另一个点,另一个点就是点P ;(2)AO=OP (有两个).此时只要以O 为圆心AO 长为半径画圆,可知圆与y 轴交于两个点,这两个点就是P 的两种选择;(3)AP =OP (一个).作AO 的中垂线与y 轴有一个交点,该交点就是点P 的最后一种选择.综上所述,共有4个.故选B. 方法总结:解决此类问题的方法主要是线段垂直平分线与辅助圆的灵活运用以及分类讨论时做到不重不漏.【类型三】 判定一个三角形是等腰三角形【例9】如图,在△ABC中,∠ACB=90°,CD是AB边上的高,AE是∠BAC的角平分线,AE与CD交于点F,求证:△CEF是等腰三角形.解析:根据直角三角形两锐角互余求得∠ABE=∠ACD,然后根据三角形外角的性质求得∠CEF=∠CFE,根据等角对等边求得CE=CF,从而求得△CEF是等腰三角形.证明:∵在△ABC中,∠ACB=90°,∴∠B+∠BAC=90°.∵CD是AB边上的高,∴∠ACD+∠BAC=90°,∴∠B=∠ACD.∵AE是∠BAC的角平分线,∴∠BAE=∠EAC,∴∠B+∠BAE=∠ACD+∠EAC,即∠CEF=∠CFE,∴CE=CF,∴△CEF是等腰三角形.方法总结:“等角对等边”是判定等腰三角形的重要依据,是先有角相等再有边相等,只限于在同一个三角形中,若在两个不同的三角形中,此结论不一定成立.【类型四】等腰三角形性质和判定的综合运用【例10】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=50°时,求∠DEF的度数.解析:(1)根据等边对等角可得∠B=∠C,利用“边角边”证明△BDE和△CEF全等,根据全等三角形对应边相等可得DE=EF,再根据等腰三角形的定义证明即可;(2)根据全等三角形对应角相等可得∠BDE=∠CEF,然后求出∠BED+∠CEF=∠BED+∠BDE,再利用三角形的内角和定理和平角的定义求出∠B=∠DEF.(1)证明:∵AB =AC ,∴∠B =∠C .在△BDE 和△CEF 中,∵⎩⎪⎨⎪⎧BD =CE ,∠B =∠C ,BE =CF ,∴△BDE ≌△CEF (SAS),∴DE =EF ,∴△DEF 是等腰三角形;(2)解:∵△BDE ≌△CEF ,∴∠BDE =∠CEF ,∴∠BED +∠CEF =∠BED +∠BDE .∵∠B +∠BDE =∠DEF +∠CEF ,∴∠B =∠DEF .∵∠A =50°,AB =AC ,∴∠B =12×(180°-50°)=65°,∴∠DEF =65°.方法总结:等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.经典例题考点一:等腰三角形的概念【例1】等腰三角形的两边长分别为4和9,则这个三角形的周长为考点二:等腰三角形的性质【例3】已知等腰△ABC 中,AB=AC ,D 是BC 边上一点,连接AD ,若△ACD 和△ABD 都是等腰三角形,求∠C 的度数。
初二数学上册第二单元等腰三角形专项练习题篇一:初二数学上册第二单元等腰三角形专项练习题初二数学上册第二单元等腰三角形专项练习题一、选择题1已知一个等腰三角形的底边长为5,这个等腰三形的腰长为_,则_的取值范围是() A .0_lt;__lt;52B ._≥52C _>52D 0_lt;__lt;10 2.等腰三角形的底角为15°,腰长为a,则此三角形的面积为()A a2B1a22C 1 a2 D2 a2图543将一张长方形的纸片ABCD如图(4)那样折起,使顶点C落在F处.其中AB=4,若∠FED=30°,则折痕ED的长为( )A. 4 B 4C 8D 53 10.如图(5),在△ABC中,BC=8㎝,AB的垂直平分线交AB于点D,交AC于点E, △ABC的周长为18㎝,则AC的长等于( )A 6㎝B 8㎝C 10㎝D 12㎝4下列图形中,不是轴对称图形的是() A有两个内角相等的三角形 B 有一个内角是45°直角三角形 C. 有一个内角是30°的直角三角形 D. 有两个角分别是30°和120°的三角形 5、下列图形中,轴对称图形有()个A.1B.2C. 3D.4 6、等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是() A 15B15或7 C 7 D 11 7、在△ABC中,AB=AC,BD平分∠ABC,若∠BDC=75°,则∠A的度数为()A、30°B、40°C、45 °D、60°8、下列图形中,不是轴对称图形的是() A 角 B 等边三角形 C 线段 D不等边三角形9、正△ABC的两条角平分线BD和CE交于点I,则∠BICAADFDBB为() A.60 B.90 C.120 D.150° 10、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;?④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A①②③ B①②④ C①③ D①②③④ 11、如图1,D、E、F分别是等边△ABC各边上的点,且AD=BE=CF,则△DEF?的形状是()A形C.直角 D.不等边三角形 12Rt△ABC中,CD是斜边AB上的高,∠图5B=30°, AD=2cm,则AB的长度是()A.2cm B.4cm C.8cm D.16cm 13如图2,E是等边△ABC中AC边上的点,∠1= 2,BE=CD,则对△ADE的形状判断准确的是() A.等腰三角形B.等边三角形 C.不等边三角形 D.不能确定形状图(1) 图(2)二、填空题1、△ABC中,AB=AC,∠A=∠C,则∠B=_______.2、已知AD是等边△ABC的高,BE是AC边的中线,AD与BE交于点F,则∠AFE=______.3、△ABC中,∠B=∠C=15°,AB=2cm,CD⊥AB交BA的延长线于点D,?则CD?的长度是_______.4、如图(3),在ΔABC中AB=AC,∠A=36°,BD平分∠ABC,则∠1=________, 图中有_______个等腰三角形。
八年级数学上册《第二章等腰三角形的判定定理》练习题及答案-浙教版一、选择题1.在△ABC中,AB=c,BC=a,AC=b,下列条件不能判定△ABC是等腰三角形的是( )A.∠A∶∠B∶∠C=1∶1∶3B.a∶b∶c=2∶2∶3C.∠B=50°,∠C=80°D.2∠A=∠B+∠C2.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°3.如图,已知OC平分∠AOB,CD∥OB,若OD=3 cm,则CD等于( )A.3 cmB.4 cmC.1.5 cmD.2 cm4.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )A.3条B.4条C.5条D.6条5.如图,在Rt△ABC中,∠B=90°,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知∠BAE=10°,则∠C的度数为( )A.30°B.40°C.50°D.60°6.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN =44°,则∠P的度数为( )A.102°B.100°C.88°D.92°7.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB =∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD8.如图,在△ABC中,AB=AC,AE平分∠BAC,DE垂直平分AB,连接CE,∠B=70°.则∠BCE 的度数为( )A.55°B.50°C.40°D.35°二、填空题9.△ABC中其周长为7,AB=3,当BC=时,△ABC为等腰三角形.10.如图,在△ABC中,AD⊥BC于点D,请你再添加一个条件,确定△ABC是等腰三角形.你添加的条件是 .11.轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A位于南偏东75°方向上,轮船航行半小时到达C处,在观测灯塔A北偏东60°方向上,则C处与灯塔A的距离是海里.12.如图,在△ABC中,AB=6cm,AC=4cm,BD平分∠ABC,CD平分∠ACB,EF过点D且EF∥BC,则△AEF的周长是 cm.13.如图,在△ABC中,AB=AC,BC=6,AF⊥BC于点F,BE⊥AC于点E,且点D是AB的中点,△DEF的周长是11,则AB=.14.如图,在△ABC中,AB=AC,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E,在点D的运动过程中,△ADE的形状也在改变,当△ADE是等腰三角形时,∠BDA的度数是.三、解答题15.如图,在△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.16.如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.(1)求证:△ABC是等腰三角形;(2)若AE=8cm,AB=10cm,GC=2BGcm,求△ABC的周长.17.如图,在△ABC中,∠ABC的角平分线OB与∠ACB的角平分线OC相交于点O,过点O作MN ∥BC,分别交AB、AC于点M、N.(1)请写出图中所有的等腰三角形,并给予证明;(2)若AB+AC=14,求△AMN的周长.18.如图,已知△ABC中,AB=AC,∠C=30°,AB⊥AD.(1)求∠BDA的度数;(2)若AD=2,求BC的长.19.如图,在△ABC中,∠ABC=2∠C,∠BAC的平分线AD交BC于D,过B作BE⊥AD交AD于F,交AC于E.(1)求证:△ABE为等腰三角形;(2)已知AC=11,AB=6,求BD长.20.如图,E在线段CD上,EA、EB分别平分∠DAB和∠CBA,∠AEB=900,设AD=x,BC=y,且(x﹣3)2+|y﹣4|=0;(1)求AD和BC的长;(2)认为AD和BC还有什么关系?并验证你的结论;(3)能求出AB的长度吗?若能,请写出推理过程;若不能,请说明理由。
人教版八年级数学上册等腰三角形练习题初中数学试卷八年级数学等腰三角形练题(一)一.选择题1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A.BD=CEB.AD=AEC.DA=DED.BE=CD2.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知实数x,y满足x>0,y>0,且x+y=20,则以x,y 的值为两边长的等腰三角形的周长是()A.20或16B.20C.16D.以上答案均不对4.在△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,则图中等腰三角形共有()A.5个B.6个C.7个D.8个5.下列条件中不能确定是等腰三角形的是()A.三条边都相等的三角形B.一条中线把面积分成相等的两部分的三角形C.有一个锐角是45°的直角三角形D.一个外角的平分线平行于三角形一边的三角形6.下列能断定△ABC为等腰三角形的是()A.∠A=30°,∠B=60°B.∠A=50°,∠B=80°C.AB=AC=2,BC=4D.AB=3,BC=7,周长为137.下列说法中:(1)顶角相等,并且有一腰相等的两个等腰三角形全等;(2)底边相等,且周长相等的两个等腰三角形全等;(3)腰长相等,且有一角是50°的两个等腰三角形全等;(4)两条直角边对应相等的两个直角三角形全等;错误的有()A.1个B.2个C.3个D.4个8.已知等腰三角形的一个外角等于70°,那么底角的度数是().A.110°B.55°C.35°D.以上都不对9.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°二.填空题10.已知等腰三角形的一个内角为80°,则另两个角的度数是120°。
浙教版八年级数学上册第二章特殊三角形2.3《等腰三角形的性质定理》同步练习题一、选择题1.一个等腰三角形的顶角是底角的4倍,则其顶角的度数为()A.20° B.30° C.80° D.120°2.等腰三角形的一个外角为140°,则顶角的度数为()A.40° B.40°或70° C.70° D.40°或100°3.如图,在△ABC中,已知∠B和∠C的平分线交于点F,过点F作DE∥BC,交AB于点D,交AC于点E.若BD+CE=9,则线段DE的长为()A. 9B. 8C. 7D. 6(第3题)(第4题)4.如图,△ABC内有一点D,且DA=DB=DC.若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100° B.80° C.70° D.50°5.等腰三角形的“三线合一”指的是()A.中线、高线、角平分线互相重合 B.腰上的中线、腰上的高线、底角的平分线互相重合C.顶角的平分线、中线、高线互相重合D.顶角的平分线,底边上的高线、底边上的中线互相重合(第6题)6.如图是人字形屋架的设计图,由AB,AC,BC,AD四根钢条焊接而成,其中A,B,C,D均为焊接点,且AB=AC,D为BC的中点.现在焊接所需的四根钢条已截好,且已标出BC的中点D.如果焊接工身边只有可检验直角的角尺,那么为了准确快速地焊接,他首先应取的两根钢条及焊接的点是()A.AC和BC,焊接点C B.AB和AC,焊接点AC.AD和BC,焊接点D D.AB和AD,焊接点A二、填空题7.(1)在△ABC中,AB=AC,AD⊥BC于点D,若∠BAC=80°,则∠DAC=40°;若BC=6 cm,则CD=____cm;(2)在△ABC中,AB=AC,AD平分∠BAC,若BD=2.5 cm,则BC=5c m,∠ADB=;(3)在△ABC中,AB=AC,AD是BC边上的中线,若∠BAD=50°,则∠BAC=__,∠ADC=____.8. 如图,在△ABC中,AB=AC,BC=6,AD⊥BC于点D,则BD=____.9.如图,在△ABC中,AB=AC,E为BC的中点,延长BA至点D.若∠CAE=36°,则∠B=_-_,∠CAD=______.10. 在等腰三角形A BC中,AB=AC,AD是角平分线,有下列结论:①AD⊥BC,②BD=DC,③∠B=∠C,④∠BA D=∠CAD.其中正确的是________ (填序号).三、解答题11.如图,在△ABC中,AB=AC,直线AE交BC于点D,O是AE上一动点(不与A重合),且OB=OC,试猜想AE与BC的关系,并说明理由.12.如图,在△ABC中,PM,QN分别是AB,AC的垂直平分线,∠BAC=110°,求∠P AQ的度数.(第13题)13.如图,已知等腰△ABC的周长为16 cm,AD是顶角∠BAC的平分线,AB∶AD=5∶4,且△ABD的周长为12 cm.求△ABC各边的长.(第14题)14.如图,已知D是等腰三角形ABC的底边BC上一点,它到两腰AB,AC的距离分别为DE,DF,请指出当D在什么位置时,DE=DF,并加以证明.(第15题)15.如图,已知△ABC和△ADE都是等腰三角形,AB=AC,AD=AE且∠DAB=∠EAC,则DE∥BC吗?为什么?(第16题)16.如图,在△ABC 中,∠BCA =90°,∠BAC =30°,分别以AB ,AC 为边做等边△ABE 和△ACD ,连结ED 交AB 于点F .求证:(1)BC =12AB ; (2)EF =FD .参考答案:1.D2.D3.A4.A5.D6.C7.3; 90°;100°, 90° 8. 39. ∠B =54°,∠CAD =108°.10. ①②③④11.【解】 猜想:AE 垂直平分BC ,即AE ⊥BC ,BD =CD.理由如下:∵AB =AC ,OB =OC ,AO =AO ,∴△ABO ≌△ACO(SSS),∴∠BAO =∠CAO.∴AE⊥BC,BD=CD(等腰三角形三线合一).12.【解】∵PM垂直平分AB,∴P A=PB,∴∠P AB=∠B.同理,∠QAC=∠C.∵∠B+∠C+∠BAC=180°,∴∠B+∠C=180°-110°=70°,∴∠P AB+∠QAC=70°.∵∠P AQ=110°-(∠P AB+∠QAC),∴∠P AQ=110°-70°=40°.13.【解】设AB=5x,则AD=4x,AC=5x,BC=16-10x.∵AB=AC,AD平分∠BAC,∴BD=DC=12BC=8-5x,∴5x+4x+(8-5x)=12,解得x=1.∴AB=5x=5,AC=5x=5,BC=16-10x=6.14.【解】当D在BC的中点时,DE=DF.证明:当BD=CD时,∵∠B=∠C,∠DEB=∠DFC=90°,∴△DBE≌△DCF(AAS),∴DE=DF.15.【解】DE∥BC.理由如下:∵AB=AC,AD=AE,∴∠B =∠C ,∠D =∠E.∵∠DAB =∠EAC ,∴∠B +∠DAB =∠C +∠EAC , ∴∠AFG =∠AGF ,∴∠AFG =12(180°-∠EAD ). 又∵∠D =12(180°-∠EAD ), ∴∠AFG =∠D ,16.【解】 (1)过点E 作EG ⊥AB 于点G . ∵△ABE 为等边三角形,∴BG =12AB ,∠BEG =12∠AEB =30°,BA =BE . ∵∠BCA =90°,∠BAC =30°,∴∠BGE =∠BCA =90°,∠BAC =∠BEG . 在△ACB 和△EGB 中,∵⎩⎪⎨⎪⎧∠BGE =∠BCA ,∠BEG =∠BAC ,BE =BA ,∴△ACB ≌△EGB (AAS ),∴BC =BG .∴BC =12AB . (2)∵△ACB ≌△EGB ,∴AC =EG .∵△ACD 为等边三角形,∴∠CAD =60°,AC =AD ,∴EG =DA .∵∠BAC =30°,∴∠DAF =∠CAD +∠BAC =90°. ∴∠EGF =∠DAF .在△EGF 和△DAF 中, ∵⎩⎪⎨⎪⎧∠EFG =∠DF A ,∠EGF =∠DAF ,EG =DA ,∴△EGF ≌△DAF (AAS ), ∴EF =FD .。
等腰三角形的性质一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.37.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=度.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.参考答案与试题解析一、选择题1.如图,已知线段AB,分别以A,B为圆心,大于AB同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是()A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD【分析】根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案.【解答】解:由作图知AC=AD=BC=BD,∴四边形ACBD是菱形,∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,不能判断AB=CD,故选:D.2.如图,在△ABC中,AB=AC,∠A=40°,CD∥AB,则∠BCD=()A.40°B.50°C.60°D.70°【分析】根据等腰三角形的性质可求∠ACB,再根据平行线的性质可求∠BCD.【解答】解:∵在△ABC中,AB=AC,∠A=40°,∴∠ACB=70°,∵CD∥AB,∴∠ACD=180°﹣∠A=140°,∴∠BCD=∠ACD﹣∠ACB=70°.故选:D.3.如图,在Rt△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°【分析】根据三角形的内角和和等腰三角形的性质即可得到结论.【解答】解:∵在Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC=(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,故选:D.4.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.5.如图,在△ABC中,AB=AC,BD平分∠ABC,BD=BE,∠A=100°,则∠DEC=()A.90°B.100°C.105°D.110°【分析】由在△ABC中,AB=AC,∠A=100°,根据等边对等角的性质,可求得∠ABC 的度数,又由BD平分∠ABC,即可求得∠DBE的度数,又由等边对等角的性质,可求得∠BED的度数,根据平角的定义就可求出∠DEC的度数.【解答】解:∵在△ABC中,AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBE=∠ABC=20°,∴∠BDE=∠BED=80°,∴∠DEC=100°.故选:B.6.如图,AD是等腰三角形ABC的顶角平分线,BD=5,则CD等于()A.10B.5C.4D.3【分析】根据等腰三角形三线合一的性质即可求解.【解答】解:∵AD是等腰三角形ABC的顶角平分线,BD=5,∴CD=5.故选:B.7.如图,将一张长方形纸按图中虚线AD对折,再沿直线l剪开,再把它展开后得到△ABC,则下列结论错误的是()A.AD⊥BC B.BD=CD C.∠B=∠C D.AB=CB【分析】由图中操作可知:AD所在直线是△ABC的对称轴,即可得出结论.【解答】解:由图中操作可知:AD所在直线是△ABC的对称轴,∴AD⊥BC,BD=CD,∠B=∠C,AB=AC,∴A,B,C正确,D错误,故选:D.8.如图,AB=AC,AB的垂直平分线MN交AC于点D,若∠C=65°,则∠DBC的度数是()A.25°B.20°C.30°D.15°【分析】根据等腰三角形的性质得到∠ABC,再根据垂直平分线的性质求出∠ABD,从而可得结果.【解答】解:∵AB=AC,∠C=∠ABC=65°,∴∠A=180°﹣65°×2=50°,∵MN垂直平分AB,∴AD=BD,∴∠A=∠ABD=50°,∴∠DBC=∠ABC﹣∠ABD=15°,故选:D.9.如图,在△ABC中,AB=AC,点D在CA的延长线上,DE⊥BC于点E,∠BAC=100°,则∠D=()A.40°B.50°C.60°D.80°【分析】根据等腰三角形的性质和三角形内角和定理,求得∠C=40°,然后根据直角三角形两锐角互余,即可求得∠D=50°.【解答】解:∵AB=AC,∠BAC=100°,∴∠C=∠B=40°,∵DE⊥BC于点E,∴∠D=90°﹣∠C=50°,故选:B.10.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A.30°B.60°C.120°D.60°或120°【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【解答】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°﹣30°=60°;②当高在三角形外部时(如图2),∵∠ABD=30°,∴顶角∠CAB=90°+30°=120°.故选:D.二、非选择题11.已知:如图,在△ABC中,点D在边BC上,AB=AD=DC,∠C=35°,则∠BAD=40度.【分析】根据等腰三角形的性质和三角形的内角和定理即可得到结论.【解答】解:∵AD=DC,∴∠DAC=∠C=35°,∴∠ADB=∠DAC+∠C=70°.∵AB=AD,∴∠B=∠ADB=70°,∴∠BAD=180°﹣∠B﹣∠ADB=180°﹣70°﹣70°=40°.故答案为:40.12.如图,在△ABC中,AB=AC,D是BC边上的中点,连接AD,BE平分∠ABC交AC 于点E,过点E作EF∥BC交AB于点F.(1)若∠C=36°,求∠BAD的度数;(2)求证:FB=FE.【分析】(1)利用等腰三角形的三线合一的性质证明∠ADB=90°,再利用等腰三角形的性质求出∠ABC即可解决问题.(2)只要证明∠FBE=∠FEB即可解决问题.【解答】(1)解:∵AB=AC,∴∠C=∠ABC,∵∠C=36°,∴∠ABC=36°,∵BD=CD,AB=AC,∴AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣36°=54°.(2)证明:∵BE平分∠ABC,∴∠ABE=∠CBE=∠ABC,∵EF∥BC,∴∠FEB=∠CBE,∴∠FBE=∠FEB,∴FB=FE.13.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA =EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.【分析】(1)根据三角形外角的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD =90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.【解答】解:(1)∠DAC的度数不会改变;∵EA=EC,∴∠EAC=∠C,①,∵BA=BD,∴∠BAD=∠BDA,∵∠BAE=90°,∴∠B=90°﹣∠AED=90°﹣2∠C,∴∠BAD=(180°﹣∠B)=[180°﹣(90°﹣2∠C)]=45°+∠C,∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②得,∠DAC=∠DAE+∠CAE=45°﹣∠C+∠C=45°;(2)设∠ABC=m°,则∠BAD=(180°﹣m°)=90°﹣m°,∠AEB=180°﹣n°﹣m°,∴∠DAE=n°﹣∠BAD=n°﹣90°+m°,∵EA=EC,∴∠CAE=AEB=90°﹣n°﹣m°,∴∠DAC=∠DAE+∠CAE=n°﹣90°+m°+90°﹣n°﹣m°=n°.14.如图,在△ABC中,AB=AC,D是BC边上任意一点,过点D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)当点D在BC的什么位置时,DE=DF?请加以证明.(2)DE,DF,CG的长之间存在着怎样的等量关系?请加以证明.(3)若点D在底边BC的延长线上,(2)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.【分析】(1)当点D在BC的中点时,DE=DF,根据AAS证△BED≌△CFD,根据全等三角形的性质推出即可;(2)连接AD,根据三角形ABC的面积=三角形ABD的面积+三角形ACD的面积,进行分析证明;(3)类似(2)的思路,仍然用计算面积的方法来确定线段之间的关系.即三角形ABC 的面积=三角形ABD的面积﹣三角形ACD的面积.【解答】(1)解:当点D在BC的中点时,DE=DF.理由:如图1中,连接AD.∵D为BC的中点,∴BD=CD.∵AB=AC,∴∠B=∠ACB,∵DE⊥AB,DF⊥AC,∴∠DEB=∠DFC=90°.在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF.(2)解:DE+DF=CG.证明如下:如图2,连接AD,则S△ABC=S△ABD+S△ACD,即AB•CG=AB•DE+AC•DF.∵AB=AC,∴DE+DF=CG.(3)解:当点D在BC的延长线上时,(2)中的结论不成立,但有DE﹣DF=CG.理由如下:如图3,延长BC至点D,连接AD,过点D作DF⊥AC,交AC的延长线于点F,则S△ABD=S△ABC+S△ACD,即AB•DE=AB•CG+AC•DF.∵AB=AC,∴DE=CG+DF,即DE﹣DF=CG.15.如图,∠ACB=90°,D、E在AB上,AD=AC,BE=BC,求∠DCE的度数.【分析】由AD=AC,BC=BE,根据等边对等角得出∠ACD=∠ADC,∠BEC=∠ECB,再利用三角形内角和定理得出∠A=180°﹣2∠ADC,∠B=180°﹣2∠DEC,而∠A+∠B=90°,那么求出∠ADC+∠DEC=135°,则∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.【解答】解:∵AD=AC,∴∠ADC=∠ACD.∵BE=BC,∴∠BEC=∠ECB.∵∠ACB=90°,∴∠A+∠B=90°.在△ACD中,∠A=180°﹣2∠ADC,在△BCE中,∠B=180°﹣2∠DEC,∴∠A+∠B=180°﹣2∠ADC+180°﹣2∠DEC=90°.∴360°﹣2(∠ADC+∠DEC)=90°.∴∠ADC+∠DEC=135°.∴∠DCE=180°﹣(∠ADC+∠DEC)=180°﹣135°=45°.。
15.3 《等腰三角形》基础练习第 1 课时《等腰三角形的性质定理及推论》一、选择题1.已知等腰三角形的顶角为40°,则这个等腰三角形的底角为()A.40°B.70°C. 100 °D.140 °2.若等腰三角形中有两边长分别为 2 和5,则这个三角形的第三条边长为()A.2 或5B. 3C. 4D. 53.如图,AB∥ CD, AD=CD,∠ 1=65 °,则∠ 2 的度数是()A.50°B.60°C. 65°D.70°4.如图, AD,CE分别是△ ABC的中线和角均分线.若AB=AC,∠ CAD=20°,则∠ACE的度数是()A.20°B.35°C. 40°D. 70°5.若实数 m、n 知足等式 |m ﹣ 2|+=0,且 m、 n 恰巧是等腰△ ABC 的两条边的边长,则△ ABC的周长是()A.12B.10C.8 D.66.若等腰三角形的一个外角等于140 °,则这个等腰三角形的顶角度数为()A.40°B.100 °C. 40°或 70°D. 40°或 100 °7.如图,已知DE∥ BC, AB=AC,∠ 1=125 °,则∠ C 的度数是()A.55°B.45°C. 35°D. 65°8.如图,△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,且 AD=AE,则∠ EDC等于()A.10°B. 12.5 °C. 15°D. 20°二、填空题9.等腰三角形的一个底角为50°,则它的顶角的度数为.10.一个等腰三角形的两边长分别为4cm 和 9cm ,则它的周长为cm.11.已知等腰三角形的一个外角为130 °,则它的顶角的度数为.12.如图,△ ABC中.点 D 在 BC边上, BD=AD=AC, E 为 CD 的中点.若∠CAE=16°,则∠ B 为度.13.我们规定:等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的“特点值”,记作k,若 k=,则该等腰三角形的顶角为度.三、解答题14.如图,点D、 E 在△ ABC 的 BC 边上, AB=AC,AD=AE.求证: BD=CE.15.如图,△ ABC是等边三角形,BD 是中线,延伸BC 至 E,CE=CD,(1)求证: DB=DE.(2)在图中过 D 作 DF⊥ BE交 BE于 F,若 CF=4,求△ ABC 的周长.第2课时一、选择题1.以以下各组数据为边长,能够组成等腰三角形的是()A.1, 1, 2B. 1,1,3C. 2,2, 1D. 2,2,52.在△ABC 中,其两个内角以下,则能判断△ABC为等腰三角形的是()A.∠ A=40°,∠ B=50B.∠ A=40°,∠ B=60°C.∠ A=40°,∠ B=70D.∠ A=40°,∠ B=80°AB 于点E,3.如图,在△ABC中,∠ A=36°,∠ C=72°,点 D 在AC 上, BC=BD, DE∥ BC交则图中等腰三角形共有()A.3 个B.4 个C.5 个D.6 个4.如图,正方形网格中,网格线的交点称为格点,已知A, B 是两格点,假如 C 也是图中C 的个数是()的格点,且使得△ABC为等腰三角形,则点A.6B. 8C.9D.105.以下条件中,不可以判断△ABC 是等腰三角形的是()A.a=3,b=3 ,c=4B. a: b: c=2: 3: 4C.∠ B=50°,∠ C=80°D.∠ A:∠ B:∠ C=1: 1:26.已知△ ABC 的三条边长分别为3,4,6,在△ ABC所在平面内画一条直线,将△ABC切割成两个三角形,使此中的一个是等腰三角形,则这样的直线最多可画()A.5 条B.6 条C.7 条D.8 条7.以下三角形,不必定是等边三角形的是()A.有两个角等于60°的三角形B.有一个外角等于120 °的等腰三角形C.三个角都相等的三角形D.边上的高也是这边的中线的三角形8.如图, A、B 两点在正方形网格的格点上,每个方格都是边长为 1 的正方形,点 C 也在格点上,且△ABC是等腰三角形,则切合条件是点C共有()个.A.8B.9C. 10D. 11二、填空题9.如图,在△ABC中,∠ ACB=90°,∠ BAC=40°,在直线 AC上找点 P,使△ ABP 是等腰三角形,则∠ APB的度数为.10.如图已知OA=a, P 是射线 ON 上一动点,∠ AON=60°,当 OP=时,△ AOP为等边三角形.11.如图,在3× 3 的网格中有A、B 两点,任取一个格点E,则知足△EAB是等腰三角形的点 E 有个.12.在△ ABC中,∠ A=80°,当∠ B= 13.如图,以下 4 个三角形中,均有这个三角形分红两个小等腰三角形的是时,△ ABC 是等腰三角形.AB=AC,则经过三角形的一个极点的一条直线不可以够将(填序号).三、解答题14.如图, BD 是△ ABC的角均分线,DE∥ BC 交 AB 于点 E.(1)求证: BE=DE;(2)若 AB=BC=10,求 DE 的长.15.已知:如图,AB=AC,∠ ABD=∠ ACD,求证: BD=CD.第3课时一、选择题1.如图∠ AOP=∠ BOP=15°, PC∥ OA, PD⊥ OA,若 PC=10,则 PD 等于()A.10B.C. 5D.2.52.如图,在Rt△ ABC中,∠C=90°, AB=2BC,则∠A=()A.15°B. 30°C. 45°D. 60°3.如图,在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,则 AB 等于()A.9 cm B. 8 cm C. 7cm D. 6cm4.如图,在等边△ABC中,BD 均分∠ABC交AC于点D,过点D 作 DE⊥BC于点E,且AB=6,则 EC的长为()A 3B 4.5C 1.5D 7.55.△ ABC中,∠A:∠ B:∠ C=1: 2: 3,最小边BC=3cm,则最长边AB 的长为()A.9cm B. 8cm C. 7cm D. 6cm6.如图,在△ABC中,∠ ACB=90°, CD是高,∠A=30°,AB=8,则BD=()A.2B.3C. 4D.67.某市为了美化环境,计划在以下图的三角形空地上栽种草皮,已知这类草皮每平方米售价为 a 元,则购置这类草皮起码需要()A.450a 元B. 225a 元C.150a 元D. 300a 元8.如图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC,DE垂直于横梁AC,AB=6m,∠ A=30°,则 DE等于()A.1.5m B. 2m C. 2.5m D. 3m二、填空题9.在 Rt△ ABC中,∠ A=30°,∠ B=90°, AC=10,则 BC=10.如图,在△A BC 中,∠ ACB=90°,∠ A=30°,以点 C 为圆心, CB 长为半径作圆弧,交AB 于点 D,若 CB=4,则 BD 的长为.11.如图,在Rt△ ABC 中,∠ C=90°,∠ ABC=60°, AB 的垂直均分线分别交AB 与 AC 于点 D 和点 E,若 CE=2,则 AB 的长为12.已知等腰三角形的底角为15°,腰长为 8cm,则腰上的高为.13.如图,在△A BC 中,∠ B=∠ C=60°,点 D 在 AB 边上, DE⊥ AB,并与 AC 边交于点E.如果 AD=1, BC=6,那么 CE等于.三、解答题14.如图,在△A BC 中, BA=BC,∠ B=120°,线段AB 的垂直均分线MN 交 AC 于点 D,且AD=8cm.求:(1)∠ ADG 的度数;(2)线段 DC的长度.15.某轮船由西向东航行,在 A 处测得小岛 P 的方向是北偏东 75°,又持续航行 7 海里后,在 B处测得小岛 P 的方向是北偏东 60°,求:( 1)此时轮船与小岛P 的距离 BP 是多少海里.(2)小岛点 P 方圆 3 海里内有暗礁,假如轮船持续向东履行,请问轮船有没有触礁的危险?请说明原因.参照答案第1课时1.解:∵等腰三角形的顶角为50°,∴这个等腰三角形的底角为:( 180°﹣ 40°)÷ 2=70°,应选: B.2.解:当腰为 5 时,依据三角形三边关系可知此状况建立,这个三角形的第三条边长为5;当腰长为 2 时,依据三角形三边关系可知此状况不建立;应选: D.3.解:∵ AB∥ CD,∴∠ 1=∠ ACD=65°,∵ AD=CD,∴∠ DCA=∠ CAD=65°,∴∠ 2 的度数是: 180°﹣ 65°﹣ 65°=50°.应选: A.4.解:∵ AD 是△ ABC 的中线, AB=AC,∠ CAD=20°,∴∠ CAB=2∠ CAD=40°,∠ B=∠ ACB=(180°﹣∠ CAB)=70°.∵ CE是△ ABC的角均分线,∴∠ ACE= ∠ ACB=35°.应选: B.5.解:∵ |m ﹣ 2|+=0,∴m﹣2=0, n﹣ 4=0,解得 m=2, n=4,当 m=2 作腰时,三边为 2,2, 4,不切合三边关系定理;当 n=4 作腰时,三边为2, 4, 4,切合三边关系定理,周长为:2+4+4=10.应选: B.6.解:①若顶角的外角等于140 °,那么顶角等于 40°,两个底角都等于70°;②若底角的外角等于140°,那么底角等于40°,顶角等于100°.应选: D.7.解:∵∠ 1=125 °,∴∠ ADE=180°﹣125°=55°,∵DE∥BC, AB=AC,∴AD=AE,∠ C=∠ AED,∴∠ AED=∠ ADE=55°,又∵∠ C=∠ AED,∴∠C=55°.应选:A.8.解:∵△ ABC中, AD⊥ BC, AB=AC,∠ BAD=30°,∴∠ DAC=∠BAD=30°(等腰三角形的顶角均分线、底边上的中线、底边上的高互相重合),∵AD=AE(已知),∴∠ ADE=75°∴∠ EDC=90°﹣∠ADE=15°.应选: C.9.解:∵等腰三角形底角相等,∴180°﹣50°×2=80°,∴顶角为 80°.故填 80°.10.解:①当腰是4cm ,底边是9cm 时:不知足三角形的三边关系,所以舍去.②当底边是4cm,腰长是9cm 时,能组成三角形,则其周长=4+9+9=22cm.故填 22.11.解:当50°为顶角时,其余两角都为65°、 65°,当50°为底角时,其余两角为50°、80°,所以等腰三角形的顶角为 50°或 80°.故答案为: 50°或 80°.12.解:∵ AD=AC,点 E 是 CD 中点,∴AE⊥ CD,∴∠ AEC=90°,∴∠ C=90°﹣∠CAE=74°,∵ AD=AC,∴∠ADC=∠C=74°,∵ AD=BD,∴2∠ B=∠ ADC=74°,∴∠ B=37°,故答案为 37°.13.解:∵△ ABC中, AB=AC,∴∠ B=∠ C,“特点值”,记作k,若k=,∵等腰三角形的顶角与一个底角度数的比值叫做等腰三角形的∴∠ A:∠ B=1: 2,即 5∠ A=180°,∴∠ A=36°,故答案为: 36.14.证明:如图,过点 A 作 AP⊥ BC于 P.∵ AB=AC,∴BP=PC;∵ AD=AE,∴DP=PE,∴BP﹣ DP=PC﹣ PE,∴BD=CE.15.( 1)证明:∵△ ABC是等边三角形,BD 是中线,∴∠ ABC=∠ ACB=60°.∠DBC=30°(等腰三角形三线合一).又∵ CE=CD,∴∠ CDE=∠CED.又∵∠ BCD=∠ CDE+∠CED,∴∠ CDE=∠CED=∠ BCD=30°.∴∠ DBC=∠ DEC.∴ DB=DE(等角平等边);(2)∵∠ CDE=∠ CED= ∠ BCD=30°,∴∠ CDF=30°,∵ CF=4,∴ DC=8,∵ AD=CD,∴ AC=16,∴△ ABC的周长 =3AC=48.第2课时1.解: A、∵ 1+1=2,∴本组数据不可以够组成等腰三角形;故本选项错误;B、∵ 1+1< 3,∴本组数据不可以够组成等腰三角形;故本选项错误;C、∵1+2>2,且有两边相等,∴本组数据能够组成等腰三角形;故本选项正确;D、∵ 2+2<5,∴本组数据不可以够组成等腰三角形;故本选项错误;应选: C.2.解;当顶角为∠A=40°时,∠ C=70°≠ 50°,当顶角为∠ B=50°时,∠ C=65°≠40°所以 A 选项错误.当顶角为∠ B=60°时,∠ A=60°≠40°,当∠ A=40°时,∠ B=70°≠ 60°,所以 B 选项错误.当顶角为∠ A=40°时,∠ C=70°=∠ B,所以 C 选项正确.当顶角为∠ A=40°时,∠ B=70°≠ 80°,当顶角为∠ B=80°时,∠ A=50°≠40°所以 D 选项错误.应选: C.3.解:∵在△ABC中, AB=AC,∠ A=36°,∴∠ ABC=∠ C==72°,△ ABC是等腰三角形,∵BD 均分∠ ABC,∴∠ABD=∠ DBC=36°,∵DE∥BC,∴∠ EDB=∠ DBC=36°,∴∠ ABD=∠ EDB=∠A,∴AD=BD, EB=ED,即△ ABD 和△ EBD是等腰三角形,∵∠ BDC=180°﹣∠ DBC﹣∠ C=72°,∴∠ BDC=∠ C,∴BD=BC,即△ BCD是等腰三角形,∵DE∥BC,∴∠ AED=∠ ABC,∠ ADE=∠ C,∴∠ AED=∠ ADE,∴AE=AD,即△ AED是等腰三角形.∴图中共有 5 个等腰三角形.应选: C.4.解:如图,分状况议论:① AB 为等腰△ ABC的底边时,切合条件的C点有 6 个;② AB 为等腰△ ABC此中的一条腰时,切合条件的 C 点有4 个.应选: D.5.解: A、∵ a=3, b=3,c=4,∴ a=b,∴△ ABC是等腰三角形;B、∵ a: b: c=2: 3: 4∴ a≠ b≠ c,∴△ ABC不是等腰三角形;C、∵∠ B=50°,∠ C=80°,∴∠ A=180°﹣∠ B﹣∠ C=50°,∴∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形;D、∵∠ A:∠ B:∠ C=1: 1: 2,∵∠ A=∠ B,∴ AC=BC,∴△ ABC是等腰三角形.应选: B.6.解:以下图:当 BC1=AC1, AC=CC2,AB=BC3, AC4=CC4, AB=AC5, AB=AC6, BC7=CC7时都能获得切合题意的等腰三角形.应选: C.7.解: A、依占有两个角等于60°的三角形是等边三角形,不合题意,故此选项错误;B、有一个外角等于120 °的等腰三角形,则内角为60°的等腰三角形,此三角形是等边三角形,不合题意,故此选项错误;C、三个角都相等的三角形,内角必定为60°是等边三角形,不合题意,故此选项错误;D、边上的高也是这边的中线的三角形,也可能是等腰三角形,故此选项正确.应选:D.8.解:①点 C 以点 A 为标准,AB 为底边,切合点 C 的有 5 个;②点 C 以点 B 为标准, AB 为等腰三角形的一条边,切合点 C 的有4 个.所以切合条件的点C共有 9 个.应选: B.9.解:∵在Rt△ ABC中,∠ C=90°,∠ A=40°,∴当 AB=BP1时,∠ BAP1=∠ BP1A=40°,当 AB=AP3 时,∠ ABP3=∠AP3B= ∠ BAC= × 40°=20°,当 AB=AP4 时,∠ ABP4=∠AP4B= ×( 180°﹣40°)=70°,当 AP2=BP2时,∠ BAP2=∠ ABP2,∴∠ AP2B=180°﹣ 40°× 2=100°,∴∠ APB 的度数为: 20°、40°、70°、 100°.故答案为: 20°或 40°或 70°或 100°.10.解:∵ AON=60°,∴当 OA=OP=a时,△ AOP 为等边三角形.故答案是: a.11.解:如图,知足△ EAB是等腰三角形的点 E 有5 个,故答案为: 5.12.解:∵∠A=80°,∴①当∠ B=80°时,△ ABC是等腰三角形;②当∠ B=( 180°﹣ 80°)÷ 2=50°时,△ ABC 是等腰三角形;③当∠ B=180°﹣ 80°× 2=20°时,△ ABC是等腰三角形;故答案为: 80°、 50°、20°.13.解:由题意知,要求“被一条直线分红两个小等腰三角形”,①中分红的两个等腰三角形的角的度数分别为:36°,36°,108°和 36°,72°72°,能;②不可以;③明显原等腰直角三角形的斜边上的高把它还分为了两个小等腰直角三角形,能;④中的为36°, 72, 72°和 36°, 36°, 108°,能.故答案为:②14.( 1)证明:∵ BD 是△ ABC 的角均分线,∴∠ EBD=∠ CBD.∵DE∥BC,∴∠EDB=∠CBD.∴∠EDB=∠ EBD.∴BE=DE.( 2)∵ AB=BC, BD 是△ ABC 的角均分线,∴ AD=DC.∵DE∥BC,∴,∴.∴DE=5.15.证明:连结BC.∵AB=AC(已知),∴∠ 1=∠ 2(等边平等角).又∠ ABD=∠ ACD(已知),∴∠ ABD﹣∠ 1=∠ ACD﹣∠ 2(等式运算性质).即∠ 3=∠ 4.∴ BD=DC(等角平等边).第3课时1.解:∵ PC∥ OA,∴∠ CPO=∠ POA,∵∠ AOP=∠ BOP=15°,∴∠ AOP=∠ BOP=∠ CPO=15°,过点 P 作∠ OPE=∠CPO交于 AO 于点 E,则△ OCP≌△ OEP,∴PE=PC=10,∵∠ PEA=∠OPE+∠ POE=30°,∴PD=10× =5.应选: C.2.解:∵在Rt△ ABC中,∠ C=90°, AB=2BC,即 BC= AB,∴∠ A=30°,应选: B.3.解:∵在Rt△ ABC中,∠ C=90°,∠ A=30°, BC=4cm,∴AB=2BC=8cm,应选: B.4.解:∵△ ABC是等边三角形,∴∠ C=60°, AC=AB=BC=6,∵BD 均分∠ ABC交 AC 于点 D,∴CD= AC=3,∵ DE⊥BC,∴∠ CDE=30°,∵EC= CD=1.5.应选: C.5.解:设∠ A、∠ B、∠ C 分别为 k、2k、 3k,则 k+2k+3k=180°,解得 k=30°,2k=60 °,3k=90 °,∵最小边BC=3cm,∴最长边AB=2BC=2×3=6cm.应选: D.6.解:∴ CD 是高,∴∠ BDC=90°,∵∠ ACB=90°,∠ A=30°,∴∠ B=60°,BC= AB=× 8=4,∴∠ BCD=30°,∴BD= BC=2,应选: A.7.解:如图,作BH⊥ AC于 H,则∠ ABH=180°﹣∠ BAC=30°,在 Rt△ ABH 中, BH= AB=10,所以 S△ ABC=× 10× 30=150,所以购置这类草皮起码需要150a 元.应选: C.8.解:∵立柱BC、 DE 垂直于横梁AC,∴BC∥ DE,∵D是 AB中点,∴ AD=BD,∴ AE: CE=AD: BD,∴ AE=CE,∴ DE 是△ ABC的中位线,∴DE= BC,在 Rt△ ABC中, BC= AB=3,∴ DE=1.5.应选: A.9.解:∵∠ A=30°,∠ B=90°,∴BC= AC=5,故答案为: 5.10.解:如图,过 C 点作 BD 的垂直均分线交BD 于点 E,∵在△ ABC中,∠ ACB=90°,∠ A=30°, BC=4,∴∠ BCE=∠ A=30°, BE=BD,∴BE=2∴BD=2BE=4故答案为: 4.11.解:∵在Rt△ ABC中,∠ C=90°,∠ ABC=60°,∴∠ A=30°,∵DE 是线段 AB 的垂直均分线,∴ EA=EB, ED⊥ AB,∴∠ A=∠ EBA=30°,∴∠ EBC=∠ ABC﹣∠ EBA=30°,又∵ BC⊥ AC, ED⊥ AB,∴DE=CE=2.在直角三角形ADE 中, DE=2,∠ A=30°,∴AE=2DE=4,∴ AD==2 ,∴ AB=2AD=4.故答案为: 4.12.解:如图,过C作CD⊥AB,交BA延长线于D,∵∠ B=15°,AB=AC,∴∠ DAC=30°,∵CD 为 AB 上的高, AC=8cm,∴CD= AC=4cm.故答案为: 4cm.13.解:∵在△ABC 中,∠ B=∠ C=60°,∴∠ A=60°,∵DE⊥AB,∴∠ AED=30°,∵AD=1,∴AE=2,∵ BC=6,∴AC=BC=6,∴CE=AC﹣ AE=6﹣ 2=4,故答案为 4.14.解:(1 )∵在△ ABC中,已知BA=BC,∴∠ A=∠ C(等边平等角);又∵∠ B=120°,∴∠ A=(180°﹣120°)=30°(三角形内角和定理),∴∠ ADG=90°﹣30°=60°;( 2)连结 BD.∵ AB 的垂直均分线DG 交 AC 于点 D,∴AD=BD,∠ A=∠ABD=30°,∴∠ CBD=90°;由( 1)知∠ A=∠ C=30°,∴BD= CD( 30°所对的直角边是斜边的一半),∴CD=2AD=2BD,∴AC=AD+CD=AD+2AD=3AD;又∵ AD=8cm,∴DC=16cm.15.解:(1 )过 P 作 PD⊥AB 于点 D,∵∠ PBD=90°﹣ 60°=30°且∠ PBD=∠ PAB+∠ APB,∠ PAB=90﹣ 75=15°∴∠ PAB=∠ APB,∴BP=AB=7(海里).( 2)作 PD⊥ AB于 D,∵ A 处测得小岛 P 在北偏东 75°方向,∴∠ PAB=15°,∵在 B 处测得小岛 P 在北偏东 60°方向,∴∠ APB=15°,∴AB=PB=7海里,∵∠ PBD=30°,∴PD= PB=3.5> 3,∴该船持续向东航行,没有触礁的危险.。
初中数学湘教版八年级上册第二章2.3等腰三角形同步练习一、选择题1.下列条件不能得到等边三角形的是()A. 有两个内角是60°的三角形B. 有一个角是60°的等腰三角形C. 腰和底相等的等腰三角形D. 有两个角相等的等腰三角形2.已知一个等腰三角形一内角的度数为80°,则这个等腰三角形顶角的度数为()A. 100°B. 80°C. 50°或80°D. 20°或80°3.等腰三角形的两条边长分别为9cm和12cm,则这个等腰三角形的周长是()A. 30cmB. 33cmC. 24cm或21cmD. 30cm或33cm4.如图,△ABC中,AB=AC,△DEF为等边三角形,则α、β、γ之间的关系为()A. β=α+γ2B. α=β+γ2C. β=α−γ2D. α=β−γ25.如图,AD是等边△ABC的中线,AE=AD,则∠EDC的度数为()A. 30°B. 20°C. 25°D. 15°6.如图所示,在等边三角形ABC中,AD⊥BC,E为AD上一点,∠CED=50°,则∠ABE等于()A. 10°B. 15°C. 20°D. 25°7.已知等腰三角形的周长为24,其中两边之差为6,则这个等腰三角形的腰长为()A. 10B. 6C. 4或6D. 6或108.已知等腰△ABC的周长为10,若设腰长为x,则x的取值范围是()A. 52<x<5 B. 0<x<2.5 C. 0<x<5 D. 0<x<109.在下列各图中,可以由题目条件得出∠1=∠2的图形个数为()A. 1B. 2C. 3D. 410.如果一个三角形的三边长分别为6,a,b,且(a+b)(a−b)=36,那么这个三角形的形状为()A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等边三角形二、填空题11.在平面直角坐标系内的点A(−3,2),B(1,4),在x轴上找一点C,使得△ABC是等腰三角形,则点C的坐标为______.12.等腰三角形的一个外角是100°,则这个等腰三角形的底角为______.13.已知等腰三角形的两边长是3cm和6cm,则这个等腰三角形的周长是______cm.14.已知△ABC是等腰三角形,它的周长为20cm,一条边长6cm,那么腰长是______cm.15.等腰三角形的腰长为17,底长为16,则其底边上的高为______.三、解答题16.如图,在6×5的网格(小正方形边长为1)中,Rt△ABC的三个顶点都在格点上.(1)在网格中,找到格点D,使四边形ACBD的面积为10,并画出这个四边形.(2)借助网格、只用直尺(无刻度)在AB上找一点E,使△AEC为等腰三角形,且AE=AC.17.如图,△ABC中,BA=BC,点D是AC延长线上一点,平面上一点E,连接EB、EC、ED、BD,CB平分∠ACE.(1)若∠ABC=50°,求∠DCE的度数;(2)若∠ABC=∠DBE,求证:AD=CE.18.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.答案和解析1.【答案】D【解析】解:A、有两个内角是60°的三角形是等边三角形,不符合题意;B、有一个角是60°的等腰三角形是等边三角形,不符合题意;C、腰和底相等的等腰三角形是等边三角形,不符合题意;D、有两个角相等的等腰三角形可能不是等边三角形,符合题意;故选:D.根据等边三角形的定义可知:满足三边相等、有一内角为60°且两边相等或有两个内角为60°中任意一个条件的三角形都是等边三角形.本题考查了等边三角形的判定,解决本题的关键是熟记等边三角形的定义和判定定理.2.【答案】D【解析】解:(1)若等腰三角形一个底角为80°,顶角为180°−80°−80°=20°;(2)等腰三角形的顶角为80°.因此这个等腰三角形的顶角的度数为20°或80°.故选:D.已知给出了等腰三角形的一个内角的度数,但没有明确这个内角是顶角还是底角,因此要分类讨论.本题考查等腰三角形的性质及三角形的内角和定理.解答此类题目的关键是要注意分类讨论,不要漏解.3.【答案】D【解析】解:①当9为腰时,9+9>12,故此三角形的周长=9+9+12=30;②当12为腰时,9+12>12,故此三角形的周长=9+12+12=33.故选:D.由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.4.【答案】B【解析】解:∵AB=AC,∴∠B=∠C,∴∠2+∠γ=∠1+∠α,∴∠2−∠1=∠α−∠γ,∵等边△DEF,∴∠5=∠3=60°,∴∠2+∠α=∠1+∠β=120°,∴∠2−∠1=∠β−∠α,∴∠α−∠γ=∠β−∠α,∴2∠α=∠β+∠γ,∴α=β+γ2,故选:B.根据等腰三角形的性质推出∠B=∠C,根据三角形的内角和定理求出∠2−∠1=∠α−∠γ,根据等边三角形的性质和邻补角定义求出∠2−∠1=∠β−∠α,代入上式即可求出答案.本题主要考查对三角形的内角和定理,等边三角形的性质,等腰三角形的性质,邻补角的定义等知识点的理解和掌握,能推出∠2−∠1=∠α−∠γ和∠2−∠1=∠β−∠α是解此题的关键.5.【答案】D【解析】解:∵AD是等边△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=12∠BAC=12×60°=30°,∴∠ADC=90°,∵AD=AE,∴∠ADE=∠AED=180°−∠CAD2=75°,∴∠EDC=∠ADC−∠ADE=90°−75°=15°.故选:D.由AD是等边△ABC的中线,根据等边三角形中:三线合一的性质,即可求得AD⊥BC,∠CAD=30°,又由AD=AE,根据等边对等角与三角形内角和定理,即可求得∠ADE的度数,继而求得答案.此题考查了等边三角形的性质、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是注意数形结合思想的应用.【解析】解:∵在等边三角形ABC中,AD⊥BC,∴AD是BC的线段垂直平分线,∵E是AD上一点,∴EB=EC,∴∠EBD=∠ECD,∵∠CED=50°,∴∠ECD=40°,又∵∠ABC=60°,∠ECD=40°,∴∠ABE=60°−40°=20°,故选:C.先根据等腰三角形的性质可知AD是BC的垂直平分线,得出∠ABC=∠ACD,∠ABE=∠ACE.可求出∠ABE的值.本题考查的是等腰三角形的性质,线段垂直平分线的性质及三角形外角和内角的关系;熟练掌握并灵活运用这些知识是解决问题的关键.7.【答案】A【解析】解:(1)设底为x,则腰为(x+6),由题意得:x+2(x+6)=24,解得:x=4,当x=4时,x+6=10,此时等腰三角形的三边为:4,10,10;(2)设底为x,则腰为(x−6),由题意得:x+2(x−6)=24,解得:x=12,当x=12时,x−6=6,12,6,6不能构成三角形,不符合题意;因此,腰为10,故选:A.分两种情况分别计算三角形的三边,再根据三边关系进行取舍即可.考查等腰三角形的性质,以及分类讨论思想方法的应用,设未知数,列方程求解是常用的方法.【解析】解:依题意得:10−2x−x<x<10−2x+x,<x<5.解得52故选:A.根据已知条件得出底边的长为:10−2x,再根据第三边的长度应是大于两边的差而小于两边的和,即可求出第三边长的范围.本题考查了等腰三角形的性质和三角形的三边关系及解一元一次不等式组等知识;根据三角形三边关系定理列出不等式,接着解不等式求解是正确解答本题的关键.9.【答案】C【解析】解:在第一个图中,∵AB=AC,∴∠1=∠2;在第二个图中,∠1=∠2;在第三个图中,∵a//b,∴∠1=∠3,而∠2=∠3,∴∠1=∠2;在第四个图中,∠1>∠2.故选:C.根据等腰三角形的性质对第一个图形进行判断,根据对顶角相等对第2个图进行判断;根据平行线的性质和对顶角相等对第3个图进行判断;根据三角形外角性质对第4个图进行判断.本题考查了等腰三角形的性质,平行线的性质,对顶角相等,正确的识别图形是解题的关键.10.【答案】C【解析】解:∵(a+b)(a−b)=36,∴a2−b2=36,∴a2+36=b2,又∵6,a,b是三角形三边长,∴这个三角形的形状为直角三角形,故选:C.根据平方差公式进行计算,再利用勾股定理逆定理可得答案.此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.,0)(−1,0)11.【答案】(3,0)(1,0)(12【解析】解:∵A(−3,2),B(1,4),∴AB2=(−3−1)2+(2−4)2=20,当△ABC是等腰三角形,设C(m,0)①AB=BC,即(1−m)2+44=20,解得:m=−1,m=3,∴C1(3,0),C4(−1,0);②AB=AC,即(−3−m)2+22=20,解得m=−7,m=1,∴C2(1.0),C5(−7,0)(此时C,A,B三点共线);③AC=BC,即(−3−m)2+22=(1−m)2+42,解得:m=1,2,0).∴C3(12,0),(−1,0).综上所述:点C的坐标为:(3,0),(1.0),(12根据等腰三角形两腰相等,分别以A、B为圆心以AB的长度为半径画圆,与x轴的交点即为所求的点C,AB的垂直平分线与坐标轴的交点也可以满足△ABC是等腰三角形.本题考查了等腰三角形的判定,坐标与图形性质,作出图形,利用数形结合的思想求解更形象直观.12.【答案】50°或80°【解析】解:①若100°的外角是此等腰三角形的顶角的邻角,则此顶角为:180°−100°=80°,=50°;则其底角为:180°−80°2②若100°的外角是此等腰三角形的底角的邻角,则此底角为:180°−100°=80°;故这个等腰三角形的底角为:50°或80°.故答案为:50°或80°.由等腰三角形的一个外角是100°,可分别从①若100°的外角是此等腰三角形的顶角的邻角与②若100°的外角是此等腰三角形的底角的邻角去分析求解,即可求得答案.此题考查了等腰三角形的性质.此题比较简单,解题的关键是注意分类讨论思想的应用,小心别漏解.13.【答案】15【解析】解:若3cm是腰长,则三角形的三边分别为3cm,3cm,6cm,∵3+3=6,∴不能组成三角形,若3cm是底边,则三角形的三边分别为3cm,6cm,6cm,能组成三角形,周长=3+6+6=15cm,综上所述,这个等腰三角形的周长是15cm.故答案为:15.分3cm是腰长和底边两种情况,根据三角形的三边关系讨论求解即可.本题考查了等腰三角形的性质,关键在于分情况讨论并利用三角形的三边关系判断是否能够组成三角形.14.【答案】6或7【解析】【分析】本题主要考查等腰三角形的性质,三角形的三边关系,关键在于分析讨论6cm为腰长还是底边长.=7cm,根当腰长=6cm时,底边=20−6−6=8cm,当底边=6cm时,腰长=20−62据三角形的三边关系,即可推出腰长.【解答】解:∵等腰三角形的周长为20cm,∴当腰长=6cm时,底边=20−6−6=8cm,即6+6>8,能构成三角形,=7cm,即7+6>7,能构成三角形,∴当底边=6cm时,腰长=20−62∴腰长是6cm或7cm,故答案为:6或7.15.【答案】15【解析】解:如图:AB=AC=17,BC=16.△ABC中,AB=AC,AD⊥BC;BC=8;则BD=DC=12Rt△ABD中,AB=17,BD=8;由勾股定理,得:AD=√AB2−BD2=15.故答案为:15.在等腰三角形的腰和底边高线所构成的直角三角形中,根据勾股定理即可求得底边上高线的长度.本题主要考查了等腰三角形的性质以及勾股定理的应用.16.【答案】解:(1)如图,四边形ACBD即为所求;(2)如图,点E即为所求.【解析】本题考查了作图−应用与设计作图、等腰三角形的性质,解决本题的关键是掌握等腰三角形的性质.(1)根据网格,即可找到格点D,使四边形ACBD的面积为10,并画出这个四边形;(2)借助网格、只用直尺即可在AB上找一点E,使△AEC为等腰三角形,且AE=AC.17.【答案】解:(1)∵△ABC中,BA=BC,∠ABC=50°,=65°,∴∠BAC=∠ACB=180°−50°2∵CB平分∠ACE,∴∠BCE=∠ACB=65°,∴∠DCE=180°−65°−65°=50°;(2)∵△ABC中,BA=BC,∴∠BAC=∠ACB,∵CB平分∠ACE,∴∠BCE=∠ACB∴∠BCE=∠BAC,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∵AB=BC,∴△BAD≌△BCE(ASA),∴AD=CE.【解析】(1)根据等腰三角形的性质得出∠BAC=65°,进而解答即可;(2)根据全等三角形的判定和性质解答即可.此题考查等腰三角形的性质,关键是根据等腰三角形的性质和全等三角形的判定和性质解答.18.【答案】证明:(1)∵AB=AC,∠BAC=36°,∴∠ABC=72°,又∵BD是∠ABC的平分线,∴∠ABD=36°,∴∠BAD=∠ABD,∴AD=BD,又∵E是AB的中点,∴DE⊥AB,即FE⊥AB;(2)∵FE⊥AB,AE=BE,∴FE垂直平分AB,∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB−∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.【解析】(1)依据AB=AC,∠BAC=36°,可得∠ABC=72°,再根据BD是∠ABC的平分线,即可得到∠ABD=36°,由∠BAD=∠ABD,可得AD=BD,依据E是AB的中点,即可得到FE⊥AB;(2)依据FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB−∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.本题考查了等腰三角形的判定与性质,解决问题的关键是综合运用等腰三角形的判定与性质,线段垂直平分线的判定与性质,三角形外角的性质.。
湘教版八年级数学上册《2.3等腰三角形》同步测试题及答案学校:___________班级:___________姓名:___________考号:___________【基础达标】1等边三角形是轴对称图形,它的对称轴有()A.1条B.2条C.3条D.6条2等腰三角形的一边长等于3,另一边长等于6,则此三角形的周长等于()A.12B.12或15C.15D.15或183下列说法中,正确的有()①等腰三角形的两腰相等;①等腰三角形两底角相等;①等腰三角形是轴对称图形;①等腰三角形底边上的中线与底边上的高相等.A.1个B.2个C.3个D.4个4如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36°B.60°C.72°D.108°5等腰三角形中有一个角是50°,那么其他两个角的度数是.【能力巩固】6如图,在∠ABC中,D是BC上一点,AC=AD=DB,∠BAC=102°,则∠ADC=度.7如图,已知∠ABC和∠BDE均为等边三角形,连接AD,CE,若∠BAD=40°,那么∠BCE=.【素养拓展】8如图,在直角∠ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于点D.(1)若∠BAC=30°,求证:AD=BD.(2)若AP 平分∠BAC 且交BD 于点P ,求∠BP A 的度数.参考答案基础达标作业1.C2.C3.D4.C5.50°,80°或65°,65°能力巩固作业6.527.40°素养拓展作业8.解:(1)证明:①∠BAC=30°,∠C=90°①∠ABC=60°.又①BD 平分∠ABC ,①∠ABD=30°①∠BAC=∠ABD ,①BD=AD.(2)①∠C=90°,①∠BAC+∠ABC=90°①12(∠BAC+∠ABC )=45°.①BD 平分∠ABC ,AP 平分∠BAC∠DBC=12∠ABC ,∠P AC=12∠BAC①∠DBC+∠P AD=45°.①∠BP A=∠PDA+∠P AD=∠DBC+∠C+∠P AD=∠DBC+∠P AD+∠C=45°+90°=135°.。
1.等腰三角形的性质:
等腰三角形两腰_______;等腰三角形两底角______(即在同一个三角形中,等边对_____);等腰三角形三线合一,这三线是指________________、________________、________________,也就是说一条线段充当三种身份;等腰三角形是________图形,它的对称轴是___________________________.
2.等腰三角形的判定:
有________边相等的三角形是等腰三角形;有_________相等的三角形是等腰三角形(即在同一个三角形中,等角对________).
3.等边三角形的性质:
等边三角形各条边__________,各内角__________,且都等于__________;等边三角形是_________图形,它有_________条对称轴.
4.等边三角形的判定:
有____边相等的三角形是等边三角形;有三个角都是______的三角形是等边三角形;有两个角都是______的三角形是等边三角形;有一个角是______的______ 三角形是等边三角形.
练习
1.等腰三角形的对称轴是()
A.顶角的平分线B.底边上的高
C.底边上的中线D.底边上的高所在的直线
2.等腰三角形的一个外角是80°,则其底角是()
A.100°B.100°或40°C.40°D.80°
3.等腰三角形的顶角是80°,则一腰上的高与底边的夹角是()
A.40°B.50°C.60°D.30°
4.如图,C、E和B、D、F分别在∠GAH的两边上,且AB=BC=CD=DE=EF,若∠A=18°,则∠GEF 的度数是()
A.80°B.90°C.100°D.108°
5.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为()A.60°B.45°C.40°D.30°
6.如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()
A.70°B.80°C.40°D.30°
7.如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A.30°B.36°C.40°D.45°
8.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()
A.30°B.45°C.60°D.90°
9.已知△ABC的周长为13,且各边长均为整数,那么这样的等腰△ABC有()A.5个B.4个C.3个D.2个
第5题第6题第7题第8题
E
C
A H
F
G
第4题
10.已知等腰△ABC 的两边长分别为2和3,则等腰△ABC 的周长为
( )
A .7
B .8
C .6或8
D .7或8
11.若等腰三角形的两边长分别为4和9,则周长为( )
A .17
B .22
C .13
D .17或22 12.如图,在△ABC 中,点D 在BC 上,AB =AD =DC ,∠B =80°,则∠C 的度数为( )
A .30°
B .40°
C .45°
D .60°
13.如图,AB ∥CD ,点E 在BC 上,且CD =CE ,∠D =74°,则∠B 的度数为( )
A
.74°
B .32°
C .22°
D .16°
14.如图,在△ABC 中,AB =AC =8,BC =5,AB 的中垂线交AC 于D ,则△BCD 的周长为( )
A .13
B .15
C .18
D .21 15.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点
E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N ,若BM +CN =9,则线段MN 的长为( )
A .6
B .7
C .8
D .9 16.如图所示的正方形网格中,网格线的交点称为格点.已知A 、B 是格点,若C 也是格点,且△ABC 为等腰三角形,则满足条件的点C 的个数是( )
A .6
B .7
C .8
D .9
17.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为___________cm .
18.一个等腰三角形的一个外角等于110°,则这个三角形的顶角应该为___________.
19.等腰三角形的一个内角为50°,则另两个内角分别为_________________.
20.等腰三角形一腰上的高与另一腰的夹角为36°,则该等腰三角形的底角
的度数为
___________.
21
.等腰三
角形的周长为16,其一边长为6,则另两边为_________________.
22.如图,△ABC 中,∠A =40°,AB 的垂直平分线MN 交AC 于点D ,∠DBC =30°,若AB =m ,BC =n ,则△DBC 的周长为___________.
23.如图,在△ABC 中,AB =AC ,
AD ⊥BC 于点D ,若AB =6,CD =4,则△ABC 的周长是_______.
24.如图,在△ABC 中,∠C =40°,CA =CB ,则△ABC 的外角∠ABD =_______.
25.如图,在△ABC 中,AB =AC ,∠A =40°,AB 的垂直平分线交AC 于点E ,垂足为点D ,连接BE ,则∠EBC 的度数为_______.
第13题 第14题 第15题 第16题
第22题
第23题 第24题 第25题 第12题
26.如图,△ABC中,AC=BC=AD,EB=EA,DB=DE,则∠C的度数是_______.
27.如图,等腰△ABC中,AB=AC
,AD平分∠BAC,点E是线段BC延长线上一点,连接AE,点C在AE
的垂直平分线上,若DE=10cm,则AB+BD=_______.
28.如图,△ABC中,AC=BC,把△ABC沿AC翻折,点B落在点D处,连接BD,若∠
ACB =100°,则∠CBD=_______.
29.如图,线段OP的一个端点O在直线a上,以OP为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能有_______个.
30.如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.
31.如图,AD∥BC,BD平分∠ABC.求证:AB=AD.
32.如图,△ABC由△EDC绕C点旋转得到,B、C、E三点在同一条直线上,∠ACD=∠B.求证:△ABC是等腰三角形.
第26题第27题第28题第29题
33.如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD
=BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.
34.如图,△ABC 中BA =BC ,点D 是AB 延长线上一点,DF ⊥AC 于F 交BC 于E ,•
求证:△DBE 是等腰三角形.
E
D
C A
B
F
35.如图,E 为等边三角形ABC 边AC 上的点,∠1=∠2,CD =BE ,判断△ADE 的形状.。