28.1锐角三角函数-正弦
- 格式:ppt
- 大小:467.00 KB
- 文档页数:13
第二十八章锐角三角函数28.1 锐角三角函数第1课时正弦1.了解直角三角形中一个锐角固定,它的对边与斜边的比也随之固定的规律.2.理解并掌握锐角的正弦的定义.3.能初步运用锐角的正弦的定义在直角三角形中求一个锐角的正弦值.阅读教材P61-63页,自学两个“思考”、“探究”及“例1”.自学反馈学生独立完成后集体订正①在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c;∠A的对边与斜边的比叫做∠A 的,即sinA= .②在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,若a=3、b=4,则sinB= .③在Rt△ABC中,∠C=90°,∠A=30°,则sinA=()()= .④在Rt△ABC中,∠C=90°,∠A=60°,则sinA=()()= .⑤在Rt△ABC中,∠C=90°,∠A=45°,则sinA=()()= .正弦值的讨论前提是在直角三角形中,当锐角度数一定时,它的对边与斜边的比是一个定值.活动1 小组讨论例1如图,求sinA和sinB的值.解:在Rt△ABC中,22AC BC+2253+34∴sinA=BCAB34334.∴sinB=ACAB=534=53434.正弦值是锐角的对边与斜边的比,所以应该先用勾股定理求出斜边,再求正弦值.活动2 跟踪训练(独立完成后展示学习成果)1.在Rt△ABC中,∠C=90°,若AC=2BC,则sinA的值是.2.在Rt△ABC中,各边的长度都扩大为原来的3倍,那么锐角A的正弦值.3.在Rt△ABC中,∠C=90°,BC=2,sinA=23,则求AC的长.第2小题可以在方格内构造直角三角形,体会在直角三角形内,锐角度数一定时,其对边与斜边的比也是定值,即是此锐角的正弦值;第5小题连结OA,构造直角三角形.活动1 小组内讨论交流并展示解题思路和解题要点例2 在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a∶b∶c=3∶4∶5,求证:sinA+sinB=7 5 .证明:设a=3k,b=4k,c=5k,∵a2+b2=(3k)2+(4k)2=25k2,c2=(5k)2=25k2,∴a2+b2=c2.∴∠C=90°.∴sinA=ac=35kk=35,sinB=bc=45kk=45.∴sinA+sinB=35+45=75.此题并没有直角,所以不能直接用正弦来做,需要先用勾股定理的逆定理证得直角,再用正弦的知识来做.活动2 跟踪训练(独立完成后展示学习成果)1.若长5米的梯子以倾斜角40°架在墙上,则A、B间距离为多少?2.若长5米的梯子靠在墙上,使A、B间距为2.5米,则倾斜角∠CAB为多少度?3.点P(2,4)与x轴的夹角为α,则sinα= .4.在Rt△ABC中,∠A、∠B、∠C的对边分别是a、b、c,∠C是直角,求证:sin2A+sin2B=1.活动3 课堂小结1.求一个锐角的正弦值一定要放到直角三角形前提中去,若没有直角三角形,可通过作垂线构造直角三角形.2.互余的两个锐角的正弦值的平方和等于1.3.在直角三角形中,可根据锐角度数求出直角边与斜边的比值,也可以通过直角边与斜边的比值求出直角边所对的角的度数.教学至此,敬请使用学案当堂训练部分.【预习导学】自学反馈①正弦a c②4 5③BCAB12④BCAB32⑤BCAB22【合作探究1】活动2 跟踪训练1.5 52.不变5【合作探究2】活动2 跟踪训练1.5·sin50°米2.60°254.提示:∵sin2A+sin2B=222a bc,a2+b2=c2,∴sin2A+sin2B=1。
《28.1锐角三角函数正弦》教学设计湖北省团风县贾庙中学漆金华一、教材简析:本章的主要内容是让学生初步掌握三角函数的概念和用边角关系解直角三角形的方法。
锐角三角函数概念是本章的难点,也是学习本章的关键,难点在于锐角三角函数的概念反映了角度与数值之间的对应关系。
学生学习这一内容有一定的难度,需要借助实际问题来引入三角函数这一概念,并能使学生掌握运用三角函数的知识来解决实际问题的能力。
二、教学方法:(一)、运用类比教学,结合已学的基础知识,如一次函数、反比例函数、二次函数等知识内容,让学生理解三角函数的概念含义。
(二)、运用数形结合,借助直角三角形的性质,将实际问题抽象成具体的、学生容易接受的数学问题,运用三角函数和几何图形中的边角关系,使实际问题以图形形式直观形象地呈现,从而达到问题解决目的。
(三)、运用转化对象,将抽象的数学应用问题转化为数学模型,把学生难懂的问题转化为易于接受的简单的问题加以解决。
三、教学目标(一)、知识目标1、通过对实际问题的探究,使学生能正确理解三角函数定义及正弦函数的概念。
2、理解在直角三角形中,当锐角度数一定时,这个角的对边与斜边的比值是固定的值。
(二)、能力目标1、使学生能正确理解正弦函数定义,并能根据正弦函数定义正确进行相关计算。
2、结合对正弦函数定义的探究,培养学生由特殊到一般的演绎推理、分析、归纳的综合学习能力。
(三)、情感与态度目标引导学生积极主动探究数学问题,培养学生学会思考,掌握归纳数学规律的方法。
四、教学重难点(一)、重点:正确理解正弦函数的概念,会根据边长求出正弦值,或根据正弦值及一边长,求另一边的长等应用题。
(二)、难点:引导学生比较、分析并得出:在直角三角形中,任意锐角,它的对边与斜边的比值是固定的事实。
五、教学设计教学内容教师活动学生活动设计意图一、情景导入大家知道我们贾庙中学教学楼有多高么?(运用多媒体演示)教师提出问题,引导学生思考。
学生通过观看多媒体的演示,思考老师提出的问题。
28.1 锐角三角函数知识点一、锐角三角函数的定义我们把锐角A的对边与斜边的比叫做∠A的正弦把∠A的邻边与斜边的比叫做∠A的余弦把∠A的对边与邻边的比叫做正切注:(1)正弦、余弦、正切函数反映里直角三角形边角之间的关系,是两条线段的比值,没有单位。
锐角三角函数值只与锐角的大小有关,与三角形的边的长短无关,即与三角形的大小无关。
(2)表示某个角的三角函数时,可直接将角的名称或度数写在符号(“sin”、“cos”、“tan”)后面。
如sin∠ABC,sin∠1,sin60°等。
若角的名称是用一个大写字母或一个小写希腊字母表示的,在表示它的三角函数时,习惯省略“∠”的符号,如“sinA,sinα”等。
(3)三角函数的乘方运算,“(sinA )n”可简写为“sin n A”(4)锐角三角函数只能在直角三角形中应用。
(5)锐角三角函数的取值范围:0<sinA<1,0<cosA<1,tanA >0知识点三、求锐角三角函数值的方法(1)直接利用定义求值:当已知条件为直角三角形的两边长时,利用勾股定理可求第三边长,依据三角函数的定义,直接代入求值。
(2)根据特殊角的三角函数值求值,关键要熟记30°,45°,60°角的三角函数。
(3)求等角的三角函数值:当直接用三角函数的定义求某锐角的三角函数值有困难时,可通过转化求等角的三角函数值。
(4)设参数求三角函数值:当已知某两条线段的比或某一三角函数值,可设参数求解。
知识点四、锐角三角函数的增减性当锐角的度数在0°~90°之间变化时,其正弦值、正切值随角度的增大(或减小)而增大(或减小),其余弦值随角度的增大(或减小)而减小(或增大)。