2015-2016学年度第一学期期中考试八年级数学试题及答案
- 格式:doc
- 大小:266.69 KB
- 文档页数:9
2015-2016学年八年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.93.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 15.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A. 1 B.﹣1 C. 5 D.﹣57.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 28.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是三角形.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉根木条.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了米.15.已知A(﹣1,﹣2)和B(1,3),将点A向平移个单位长度后得到的点与点B关于y轴对称.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题.(每小题3分,共24分)1.如图,轴对称图形有()A.3个B.4个C.5个D.6个考点:轴对称图形.分析:根据轴对称图形的概念结合图形求解.解答:解:轴对称图形有:第一个、第二个、第三个、第五个.故选B.点评:本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.若一个正多边形的每个内角为150°,则这个正多边形的边数是()A.12 B.11 C.10 D.9考点:多边形内角与外角.专题:计算题.分析:根据正多边形的外角与它对应的内角互补,得到这个正多边形的每个外角=180°﹣150°=30°,再根据多边形外角和为360度即可求出边数.解答:解:∵一个正多边形的每个内角为150°,∴这个正多边形的每个外角=180°﹣150°=30°,∴这个正多边形的边数==12.故选A.点评:本题考查了正多边形的外角与它对应的内角互补的性质;也考查了多边形外角和为360度以及正多边形的性质.3.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()A.60° B.90° C.120° D.150°考点:全等三角形的应用.分析:先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.解答:解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.故选B.点评:本题考查的是全等三角形的判定及性质,直角三角形的性质,属较简单题目.4.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交于BC的延长线于F,若∠F=30°,DE=1,则EF的长是()A. 3 B. 2 C.D. 1考点:线段垂直平分线的性质;角平分线的性质;含30度角的直角三角形.专题:计算题.分析:连接AF,求出AF=BF,求出∠AFD、∠B,得出∠BAC=30°,求出AE,求出∠FAC=∠AFE=30°,推出AE=EF,代入求出即可.解答:解:连接AF,∵AB的垂直平分线DE交于BC的延长线于F,∴AF=BF,∵FD⊥AB,∴∠AFD=∠BFD=30°,∠B=∠FAB=90°﹣30°=60°,∵∠ACB=90°,∴∠BAC=30°,∠FAC=60°﹣30°=30°,∵DE=1,∴AE=2DE=2,∵∠FAE=∠AFD=30°,∴EF=AE=2,故选B.点评:本题考查了含30度角的直角三角形,线段垂直平分线,角平分线的性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强.5.在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠A B.∠B C.∠C D.∠B或∠C考点:全等三角形的性质.分析:根据三角形的内角和等于180°可知,相等的两个角∠B与∠C不能是100°,再根据全等三角形的对应角相等解答.解答:解:在△ABC中,∵∠B=∠C,∴∠B、∠C不能等于100°,∴与△ABC全等的三角形的100°的角的对应角是∠A.故选:A.点评:本题主要考查了全等三角形的对应角相等的性质,三角形的内角和等于180°,根据∠A=∠C判断出这两个角都不能是100°是解题的关键.6.已知点P(﹣2,3)关于y轴的对称点为Q(a,b),则a+b的值是()A.1 B.﹣1 C. 5 D.﹣5考点:关于x轴、y轴对称的点的坐标.分析:根据平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y)即求关于y轴的对称点时:纵坐标不变,横坐标变成相反数,根据这一关系,就可以求出a=﹣(﹣2)=2,b=3.解答:解:根据两点关于y轴对称,则横坐标互为相反数,纵坐标不变,得a=﹣(﹣2)=2,b=3.∴a+b=5故选C.点评:本题比较容易,考查平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.7.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A. 5 B. 4 C. 3 D. 2考点:三角形的外角性质;角平分线的性质;直角三角形斜边上的中线.分析:过D作DG⊥AC于G,根据三角形的一个外角等于和它不相邻的两个内角的和求出∠DEG=30°,再根据直角三角形30°角所对的直角边等于斜边的一半求出DG的长度是4,又DE∥AB,所以∠BAD=∠ADE,所以AD是∠BAC的平分线,根据角平分线上的点到角的两边的距离相等,得DF=DG.解答:解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.点评:本题主要考查三角形的外角性质,直角三角形30°角所对的直角边等于斜边的一半的性质,平行线的性质和角平分线上的点到角的两边的距离相等的性质,熟练掌握性质是解题的关键.8.如图,在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,若原来点A坐标是(a,b),则经过第2014次变换后所得A点坐标是()A.(a,﹣b)B.(﹣a,﹣b)C.(﹣a,b)D.(a,b)考点:关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.专题:规律型.分析:利用已知得出图形的变换规律,进而得出经过第2014次变换后所得A点坐标与第2次变换后的坐标相同求出即可.解答:解:∵在平面直角坐标系中,对△ABC进行循环往复的轴对称变换,∴对应图形4次循环一周,∵2014÷4=503…2,∴经过第2014次变换后所得A点坐标与第2次变换后的坐标相同,故其坐标为:(a,﹣b).故选:A.点评:此题主要考查了关于坐标轴以及原点对称点的性质,得出A点变化规律是解题关键.二、填空题.(每小题3分,共21分)9.已知△ABC的一个外角为50°,则△ABC一定是钝角三角形.考点:三角形的外角性质.分析:根据三角形的外角与相邻的内角互为邻补角求出内角,再根据三角形的形状定义判断即可.解答:解:∵△ABC的一个外角为50°,∴与它相邻的内角为180°﹣50°=130°,∴△ABC一定是钝角三角形.故答案为:钝角.点评:本题考查了三角形的外角性质,求出与它相邻的内角是钝角是解题的关键.10.要使五边形木架(用5根木条钉成)不变形,至少要再钉2根木条.考点:三角形的稳定性.分析:三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.解答:解:再钉上两根木条,就可以使五边形分成三个三角形.故至少要再钉两根木条.点评:本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.11.如图,△ABE≌△ACD,点B、C是对应顶点,△ABE的周长为32,AB=14,BE=11,则AD的长为7.考点:全等三角形的性质.分析:根据△ABE的周长求出AE,再根据全等三角形对应边相等解答即可.解答:解:∵△ABE的周长为32,AB=14,BE=11,∴AE=32﹣14﹣11=32﹣25=7,∵△ABE≌△ACD,∴AD=AE=7.故答案为:7.点评:本题考查了全等三角形对应边相等的性质,三角形的周长,熟记性质并准确找出对应边是解题的关键.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为2.考点:角平分线的性质;垂线段最短.专题:动点型.分析:过P作PE⊥OM于E,根据垂线段最短,得出当Q与E重合时,PQ最小,根据角平分线性质求出PE=PA,即可求出答案.解答:解:过P作PE⊥OM于E,当Q与E重合时,PQ最小,∵PE⊥OM,PA⊥ON,OP平分∠MON,∴PE=PA=2,即PQ的最小值是2,故答案为:2.点评:本题考查了垂线段最短和角平分线的性质的应用,能根据题意得出PQ最小时Q的位置是解此题的关键,此题主要培养学生的理解能力.13.如图所示,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=15,则△PMN的周长为15.考点:轴对称的性质.分析:P点关于OA的对称是点P1,P点关于OB的对称点P2,故有PM=P1M,PN=P2N.解答:解:∵P点关于OA的对称是点P1,P点关于OB的对称点P2,∴PM=P1M,PN=P2N.∴△PMN的周长为PM+PN+MN=MN+P1M+P2N=P1P2=15.故答案为:15点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.14.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.解答:解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.15.已知A(﹣1,﹣2)和B(1,3),将点A向上平移5个单位长度后得到的点与点B关于y轴对称.考点:关于x轴、y轴对称的点的坐标.分析:熟悉:关于y轴对称的点,纵坐标相同,横坐标互为相反数;把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.解答:解:根据平面直角坐标系中对称点的规律可知,点B关于y轴对称的点为(﹣1,3),又点A(﹣1,﹣2),所以将点A向上平移5个单位长度后得到的点(﹣1,3).点评:解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.平移时坐标变化规律:把一个点左右平移,则横坐标是左减右加,把一个点上下平移,则纵坐标是上加下减.三、解答题.(本大题共8个小题,满分75分)16.如图,∠A=90°,E为BC上的一点,A点和E点关于BD的对称,B点、C点关于DE 对称,求∠ABC和∠C的度数.考点:轴对称的性质.分析:根据轴对称的性质可得∠ABD=∠EBD,∠C=∠DBC,进而可得∠ABC=2∠ABD=2∠DBE,∠ABC=2∠C,再根据∠A=90°,可得∠ABC+∠BCD=90°,进而可得答案.解答:解:∵A点和E点关于BD的对称,∴∠ABD=∠EBD,即∠ABC=2∠ABD=2∠DBE,∵B点、C点关于DE对称,∴∠C=∠DBC,∴∠ABC=2∠C,∵∠A=90°,∴∠ABC+∠BCD=90°,∴∠ABC=60°,∠C=30°.点评:此题主要考查了轴对称的性质,以及直角三角形的性质,关键是掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.17.已知:如图AD⊥BE,垂足C是BE的中点,AB=DE.AB与DE有何位置关系?请说明理由.考点:全等三角形的性质;全等三角形的判定;旋转的性质.分析:根据条件易证△ABC≌△DEC,即可判断.解答:解:AB∥DE;理由:∵AD垂直平分BE,且AB=DE,又∵BC=EC,BE⊥AD∴Rt△ABC≌Rt△DEC∴∠A=∠D,∴AB∥DE.点评:掌握三角形全等的判定定理,通过已知条件能够正确证明△ABC≌△DEC是解决本题的关键.18.如图,已知△EAB≌△DCE,AB、EC分别是两个三角形的最长边,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度数.考点:全等三角形的性质.分析:根据全等三角形的性质得出∠BEA=∠CDE=100°,同时利用三角形的内角和求出∠DEC=45°,再根据角的计算得出即可.解答:解:∵△EAB≌△DCE,∴∠BEA=∠CDE=100°,∵∠A=∠C=35°,∠CDE=100°,∴∠DEC=180°﹣100°﹣35°=45°,∵∠DEB=10°,∴∠BEC=45°﹣10°=35°,∴∠CEA=100°﹣35°=65°.点评:此题考查全等三角形的性质,关键是根据全等三角形的对应角相等分析.19.如图,BD是∠ABC的角平分线,DE⊥AB于点E,DF⊥BC于点F,S△ABC=36cm2,AB=18cm,BC=12cm,则DE的长为cm.考点:角平分线的性质.分析:把S△ABC=36cm2分成两部分即△ABD和△BCD,利用三角形的面积公式可得等量关系式,求这个等量关系即可.解答:解:∵BD是∠ABC的角平分线,DE⊥AB,DF⊥BC,∴DE=DF,∵S△ABC=36cm2,S△BCD=BC•DF,又∵S△ABC=S△ABD+S△BCD,AB=18cm,BC=12cm,∴×18•DE+×12•DF=36,∴9DE+6DF=36.又∵DE=DF,∴9DE+6DE=36,∴DE=cm.点评:本题主要考查了三角形的面积公式和角的平分线上的点到角的两边的距离相等的性质.解题的关键是得到DE=DF.20.如图:已知等边△ABC中,D是AC的中点,E是BC延长线上的一点,且CE=CD,DM⊥BC,垂足为M,求证:M是BE的中点.考点:等边三角形的性质.专题:证明题.分析:要证M是BE的中点,根据题意可知,证明△BDE△为等腰三角形,利用等腰三角形的高和中线向重合即可得证.解答:证明:连接BD,∵在等边△ABC,且D是AC的中点,∴∠DBC=∠ABC=×60°=30°,∠ACB=60°,∵CE=CD,∴∠CDE=∠E,∵∠ACB=∠CDE+∠E,∴∠E=30°,∴∠DBC=∠E=30°,∴BD=ED,△BDE为等腰三角形,又∵DM⊥BC,∴M是BE的中点.点评:本题考查了等腰三角形顶角平分线、底边上的中线和高三线合一的性质以及等边三角形每个内角为60°的知识.辅助线的作出是正确解答本题的关键.21.(10分)(2012•泸州)如图,△ABC是等边三角形,D是AB边上的一点,以CD为边作等边三角形CDE,使点E、A在直线DC的同侧,连接AE.求证:AE∥BC.考点:全等三角形的判定与性质;平行线的判定;等边三角形的性质.专题:证明题.分析:根据等边三角形性质推出BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,求出∠BCD=∠ACE,根据SAS证△ACE≌△BCD,推出∠EAC=∠DBC=∠ACB,根据平行线的判定推出即可.解答:证明:∵△ABC和△DEC是等边三角形,∴BC=AC,CD=CE,∠ABC=∠BCA=∠ECD=60°,∴∠BCA﹣∠DCA=∠ECD﹣∠DCA,即∠BCD=∠ACE,∵在△ACE和△BCD中,∴△ACE≌△BCD(SAS),∴∠EAC=∠B=60°=∠ACB,∴AE∥BC.点评:本题考查了等边三角形性质,全等三角形的判定和性质,平行线的判定,关键是求出△ACE≌△BCD,主要考查学生的推理能力.22.(10分)(2012秋•宁江区校级期末)在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分线,垂足为D,交AC于E.(1)若∠ABE=40°,求∠EBC的度数;(2)若△ABC的周长为41cm,一边长为15cm,求△BCE的周长.考点:线段垂直平分线的性质;等腰三角形的判定与性质.分析:(1)已知AB=AC,要求∠EBC就先求出∠ABE的度数,利用线段垂直平分线的性质易求解.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,求△BCE周长只需证明BE+CE=AC即可.解答:解:(1)已知AB=AC,DE是AB的垂直平分线∴∠ABE=∠A=40°.又因为∠A=40°∴∠ABC=∠ACB=70°,∴∠EBC=∠ABC﹣∠ABE=30°.(2)已知△ABC的周长为41cm,一边长为15cm,AB>BC,则AB=15cm,∴BC=11cm.根据垂直平分线的性质可得BE+CE=AC,∴△BCE周长=BE+CE+BC=26cm.点评:本题考查了线段的垂直平分线的性质以及等腰三角形的性质;进行线段以及角的有效转移是正确解答本题的关键.23.(10分)(2014秋•扶沟县期中)已知△ABC中,三边长a,b,c都是整数,且满足a >b>c,a=8,那么满足条件的三角形共多少个?考点:三角形三边关系.分析:首先根据三角形的三边关系可得b+c>a,再根据条件b>c可确定b>4,再由a>b可得4<b<8,进而可确定b的值,然后再确定c的值即可.解答:解:根据三角形的三边关系可得b+c>a,∵b>c,∴b>4,∵a>b,a=8,∴4<b<8,∵b为整数,∴b=5,6,7,∴a=8,b=5,c=4,a=8,b=6,c=5或4或3,a=8,b=7,c=6或5或4或3或2.因此满足条件的三角形共有1+3+5=9(个).点评:此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.。
2015—2016学年度第一学期期中质量测试八年级数学试题(总分:120分时间:100分钟)一、选择题1、若分式112--xx的值为0,则应满足的条件是()A. x≠1B. x=-1C. x=1D. x=±12、下列计算正确的是()A.a·a2=a2 B.(a2)2=a4 C.3a+2a=5a2 D.(a2b)3=a2·b3 3、下列四个图案中,是轴对称图形的是()4、点M(3,-4)关于x轴的对称点的坐标是()A.(3, 4)B.(-3,-4)C.(-3, 4)D.(-4,3)5、下列运算正确的是()A.yxyyxy--=--B.3232=++yxyx C.yxyxyx+=++22D.yxyxxy-=-+1226、如图,三条公路把A、B、C三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三个条公路的距离相等,则这个集贸市场应建在().A.在AC、BC两边高线的交点处B.在AC、BC两边中线的交点处C.在∠A、∠B两内角平分线的交点处D.在AC、BC两边垂直平分线的交点处7、如图,AD是△ABC的角平分线,从点D向AB、AC两边作垂线段,垂足分别为E、F,那么下列结论中错误..的是()A.DE=DF B.AE=AFC.BD=CD D.∠ADE=∠ADF8、如果2592++kxx是一个完全平方式,那么k的值是()A、30B、±30C、15D、±15BC(第7题)FEADB9、若把分式xyyx +中的x 和y 都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、不变 C 、缩小2倍 D 、缩小4倍二、填空题10、一种细菌半径是0.000 012 1米, 将0.000 012 1用科学记数法表示为 . 11.计算: ()a a a 2262÷-= .12、如图,△ABC 中,∠C =90°,∠A =30°,AB 的垂 直平分线交AC 于D ,交AB 于E ,CD =2,则AC = .三、解答题13、分解因式:(4分) x 3﹣4x 2+4x14、先化简再求值:(6分))52)(52()1(42-+-+m m m ,其中3-=m15、解方程:(6分) .16、(6分)如图,点B ,E ,F ,C 在一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:∠A =∠D .DECB12题(第16题)F E DCBA图8ABCDE17(8分)如图,∆ABC 中BD 、CD 平分∠ABC 、∠ACB ,过D 作直线平行于BC ,交AB 、AC 于E 、F ,求证:EF=BE+CF.18、如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D . (1)求证:△ADC ≌△CEB .(5分)(2),5cm AD =cm DE 3=,求BE 的长度.(4分)第17题答案一、B B C A D C C BC二、1.21×10-5 , 3a-1 ,6 三、13、解:原式=x(x-2)214、解:原式=4m 2+8m+4-4m 2+25=8m+29当m=-3时,原式= -24+29=5 15、解:去分母得:x(x+2)-(x 2-4)=8整理 得:2x=4 解得:x=2经检验得x=2是原方程的增根 ∴原分式方程无解16、证明:∵BE =CF∴BF=CE在△ABE和△DCF中∵AB =DC ,∠B =∠C ,BF=CE∴△ABE≌△DCF∴∠A =∠D17、证明:∵BD平分∠ABC ∴∠EBD=∠DBC∵EF∥BC ∴∠EDB=∠DBC∴∠DBC=∠EBD ∴BE=DE 。
2015~2016 学年度八年级上学期期中数学试卷一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和12.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=03.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y24.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab36.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b27.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数.10.一个数的平方是4,这个数的立方根为.11.命题“相等的角是对顶角”是命题,题设是,结论是.12.计算:﹣a11÷(﹣a)6•(﹣a)5= .13.已知(a n b m+1)3=a9b15,则m n= .14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是(写一个即可).15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形.三、解答题(8+8+9+9+9+10+10+12=75)16.计算(1)(﹣)•3•()2÷(﹣bc)3(m+2n)•(m2﹣2mn+4n2)17.分解因式(1)2x3﹣8xy2xy3+4x3y﹣4x2y2.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)==(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定,依据的判定方法是.第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足条件时,就可以使△ABC≌△DEF(请直接写出结论)河南省南阳市南召县2015~2016 学年度八年级上学期期中数学试卷参考答案与试题解析一、选择题(每小题3 分,共24 分)下列各小题均有四个答案,期中只有一个是正确的,将正确答案的代号字母填入括号内1.一个数的平方根与它的立方根相同,那么这个数是()A.0 B.±1 C.1 D.0 和1【考点】立方根;平方根.【分析】根据任何实数的立方根都只有一个,而正数的平方根有两个,它们互为相反数,0 的平方根是0,负数没有平方根,进行进行解答.【解答】解:根据平方根与立方根的性质,一个数的平方根与它的立方根完全相同,则这个数是0.故选:A.【点评】本题主要考查了平方根与立方根的区别与联系,熟记一些特殊数据的平方根与立方根是解题的关键.2.下列运算正确的是()A.3a2•a3=3a6 B.5x4﹣x2=4x2C.3•(﹣ab)=﹣8a7b D.2x2÷2x2=0【考点】单项式乘单项式;合并同类项;整式的除法.【分析】根据整式的各种运算法则逐项分析即可.【解答】解:A、3a2•a3=3a5≠3a6,故A 错误;B、5x4﹣x2 不是同类项,所以不能合并,故B 错误;C、3•(﹣ab)=﹣8a7b,计算正确,故C 正确;D、2x2÷2x2=1≠0,计算错误,故D 错误;故选:C.【点评】本题考查了和整式有关的各种运算,解题的关键是熟记整式的各种运算法则.3.下列计算正确的是()A.(x+y)2=x2+y2 B.(x+2y)(x﹣2y)=x2﹣2y2C.(x﹣y)2=x2﹣2xy﹣y2 D.(﹣x+y)2=x2﹣2xy+y2【考点】完全平方公式;平方差公式.【专题】计算题;整式.【分析】原式各项计算得到结果,即可做出判断.【解答】解:A、原式=x2+y2+2xy,错误;B、原式=x2﹣4y2,错误;C、原式=x2﹣2xy+y2,错误;D、原式=x2﹣2xy+y2,正确,故选D【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.4.因式分解(x﹣1)2﹣9 的结果是()A.(x+8)(x+1)B.(x+2)(x﹣4)C.(x﹣2)(x+4)D.(x﹣10)(x+8)【考点】因式分解-运用公式法.【分析】把(x﹣1)看成一个整体,利用平方差公式分解即可.【解答】解:(x﹣1)2﹣9,=(x﹣1+3)(x﹣1﹣3),=(x+2)(x﹣4).故选B.【点评】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式没有公因式时,考虑用公式法,将其分解因式.此题直接应用平方差公式.5.在等式6a2•(﹣b3)2÷()2= 中的括号内应填入()A. B. C.± D.±3ab3【考点】整式的除法;单项式乘单项式.【分析】利用被除式除以商式列出式子计算得出答案即可.【解答】解:6a2•(﹣b3)2÷=6a2b6÷=9a2b6=(±3ab3)2.所以括号内应填入±3ab3.故选:D.【点评】此题考查整式的除法,积的乘方,掌握运算顺序与计算方法是解决问题的关键.6.如图将4 个长、宽分别均为a,b 的长方形,摆成了一个大的正方形,利用面积的不同表示方法写出一个代数恒等式是()A.a2+2ab+b2=(a+b)2 B.a2﹣2ab+b2=(a﹣b)2C.4ab=(a+b)2﹣(a﹣b)2 D.(a+b)(a﹣b)=a2﹣b2【考点】完全平方公式的几何背景.【分析】根据图形的组成以及正方形和长方形的面积公式,知:大正方形的面积﹣小正方形的面积=4 个矩形的面积.【解答】解:∵大正方形的面积﹣小正方形的面积=4 个矩形的面积,∴(a+b)2﹣(a﹣b)2=4ab,即4ab=(a+b)2﹣(a﹣b)2.故选C.【点评】考查了完全平方公式的几何背景,能够正确找到大正方形和小正方形的边长是难点.解决问题的关键是读懂题意,找到所求的量的等量关系.7.如图,在△ABC 中,D、E 分别是边AC、BC 上的点,若△ADB≌△EDB≌△EDC,则∠C 的度数为()A.15°B.20°C.25°D.30°【考点】全等三角形的性质.【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.【解答】解:∵△ADB≌△EDB≌△EDC∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C∵∠BED+∠CED=180°∴∠A=∠BED=∠CED=90°在△ABC 中,∠C+2∠C+90°=180°∴∠C=30°故选D.【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.8.如图,在△ADB 和△ADC 中,有以下条件:①BD=AC,AB=DC;②∠B=∠C,∠BAD=∠CDA;③∠B=∠C,BD=AC;④∠ADB=∠CAD,BD=AC.其中能得出△ADB≌△ADC 的是()A.①②③④B.①②③C.①②④D.②③④【考点】全等三角形的判定.【分析】要使△ADB≌△ADC 的条件必须满足SSS、SAS、ASA、AAS,可据此进行判断.【解答】解:①BD=AC,AB=DC,满足SSS,能证明△ADB≌△ADC;②∠B=∠C,∠BAD=∠CDA满足AAS,能证明△ADB≌△ADC;③∠B=∠C,BD=AC 只是SSA,不能证明△ADB≌△ADC;④∠ADB=∠CAD,BD=AC 满足SAS,能证明△ADB≌△ADC,故选C【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA 不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.二、填空题(每小题3 分,共21 分)9.写出一个你熟悉的小于零的无理数﹣.【考点】估算无理数的大小.【专题】开放型.【分析】利用无理数的定义直接得出答案.【解答】解:小于零的无理数可以为:﹣等.故答案为:﹣.【点评】此题主要考查了估算无理数的大小,正确把握无理数的定义是解题关键.10.一个数的平方是4,这个数的立方根为±.【考点】立方根.【分析】首先利用平方根的定义求得这个数,然后根据立方根的定义即可求解.【解答】解:4 的平方根是±2,±2 的立方根是:±.故答案为:± .【点评】本题考查了平方根与立方根的定义,正确理解定义是关键.11.命题“相等的角是对顶角”是假命题,题设是两个角相等,,结论是这两个角是对顶角.【考点】命题与定理.【专题】应用题.【分析】任何一个命题都可以写成如果…,那么…的形式,如果后面是题设,那么后面是结论,再判断真假即可.【解答】解:命题“相等的角是对顶角”可写成:若两个角相等,那么这两个角是对顶角,故命题“对顶角相等”的题设是两个角相等,结论是这两个角是对顶角,故答案为假,两个角相等,这两个角是对顶角.【点评】本题考查的是命题的题设与结论,解答此题目只要把命题写成如果…,那么…的形式,便可解答.12.计算:﹣a11÷(﹣a)6•(﹣a)5= a10 .【考点】同底数幂的除法;同底数幂的乘法.【分析】根据同底数幂的除法进行计算即可.【解答】解:﹣a11÷(﹣a)6•(﹣a)5=﹣a11÷a6•(﹣a)5=a11﹣6+5=a10,故答案为:a10【点评】此题考查同底数幂的除法,关键是根据同底数幂的除法进行解答.13.已知(a n b m+1)3=a9b15,则m n= 64 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵(a n b m+1)3=a3n b3m+3=a9b15,∴3n=9,3m+3=15,∴m=4,n=3,则m n=64.故答案为:64.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.14.如图,AB∥CD,AD∥BC,E 为AB 延长线上一点,连结DE 交BC 于点F,在不添加任何辅助线的情况下,请补充一个条件,使△BEF≌△CDF,你补充的条件是 DC=BE (写一个即可).【考点】全等三角形的判定.【分析】添加DC=BE,根据平行线的性质可得∠CDF=∠E,再加对顶角∠DFC=∠BFE,可利用AAS 判定△BEF≌△CDF.【解答】解:添加DC=BE,∵AB∥CD,∴∠CDF=∠E,在△DCF 和△EBF 中,∴△DCF≌△EBF(AAS),故答案为:DC=BE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图,AB∥CD,AB=CD,AE=DF.写出图中全等的三角形△ABE≌△DCF,△ABF≌△DCE,△BEF≌△CFE .【考点】全等三角形的判定.【分析】利用已知结合全等三角形的判定方法分别判断得出答案.【解答】解:∵AB∥CD,∴∠A=∠D,∵AE=DF,∴AF=DE,在△ABF 和△DCE 中,,∴△ABF≌△DCE(SAS),在△ABE 和△DCF 中,第 10 页(共 16 页),∴△ABE ≌△DCF (SAS ), ∵△ABF ≌△DCE ,∴∠BFE=∠FEC ,BF=EC , 在△BEF 和△CFE 中,,∴△BEF ≌△CFE (SAS ). 故答案为:△ABE ≌△DCF ,△ABF ≌△DCE ,△BEF ≌△CFE .【点评】此题主要考查了全等三角形的判定与性质,正确利用 SAS 得出全等三角形是解题关键. 三、解答题(8+8+9+9+9+10+10+12=75) 16.计算 (1)(﹣)•3•()2÷(﹣bc )3(m+2n )•(m 2﹣2mn+4n 2) 【考点】整式的混合运算. 【专题】计算题;整式.【分析】(1)原式先利用幂的乘方与积的乘方运算法则计算,再利用单项式乘除单项式法则计算即 可得到结果;原式利用多项式乘以多项式法则计算即可得到结果.【解答】解:(1)原式=﹣ a 3b •8a 3b 3c 6• a 2÷(﹣b 3c 3)=a 8bc 3; 原式=m 3﹣2m 2n+4mn 2+2m 2n ﹣4mn 2+8n 3=m 3+8n 3.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.17.分解因式 (1)2x 3﹣8xy 2xy 3+4x 3y ﹣4x 2y 2.【考点】提公因式法与公式法的综合运用. 【分析】(1)直接提取公因式 2x ,进而利用平方差公式分解因式得出答案; 直接提取公因式 xy ,进而利用完全平方公式分解因式得出答案. 【解答】解:(1)原式=2x (x 2﹣4y 2) =2x (x+2y )(x ﹣2y );原式=xy (y 2+4x 2﹣4xy )=xy(y﹣2x)2.【点评】此题主要考查了提取公因式法以及公式法因式分解,正确应用乘法公式是解题关键.18.先化简再求值:[(x﹣2y)2+(x﹣2y)﹣2x ÷2x;其中x=﹣1,y=1.【考点】整式的混合运算—化简求值.【专题】计算题;整式.【分析】原式中括号中利用完全平方公式,平方差公式,以及单项式乘以多项式法则计算,去括号合并后利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值.【解答】解:原式=(x2﹣4xy+4y2+x2+4y2﹣4x2+2xy)÷2x=(﹣2x2﹣2xy)÷2x=﹣x﹣y,当x=﹣1,y=1时,原式=1﹣1 =﹣.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.19.如图,AC 和BD 相交于点O,OA=OC,OB=OD.求证:DC∥AB.【考点】全等三角形的判定与性质;平行线的判定.【专题】证明题.【分析】根据边角边定理求证△ODC≌△OBA,可得∠C=∠A(或者∠D=∠B),即可证明DC∥AB.【解答】证明:∵在△ODC 和△OBA 中,∵,∴△ODC≌△OBA(SAS),∴∠C=∠A(或者∠D=∠B)(全等三角形对应角相等),∴DC∥AB(内错角相等,两直线平行).【点评】此题主要考查学生对全等三角形的判定与性质和平行线的判定的理解和掌握,解答此题的关键是利用边角边定理求证△ODC≌△OBA.20.一个长方形的长比宽多5 米,若将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,求原长方形的长和宽.【考点】多项式乘多项式.【专题】应用题;几何图形问题.【分析】设原长方形的宽为x 米,则长为(x+5)米,根据将其长减少3 米,将其宽增加4 米,则面积将增加10 米2,列出方程,求出方程的解即可得到结果.【解答】解:设原长方形的宽为x 米,则长为(x+5)米,根据题意得:(x+4)(x+5﹣3)=x(x+5)+10,整理得:x2+6x+8=x2+5x+10,解得:x=2,经检验符合题意,且x+5=2+5=7(米),则原长方形的长为7 米,宽为2 米.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.21.如图,在△ABC 中,AB=AC,AD⊥BC 于D.求证:BD=CD,∠1=∠2.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出∠ADB=∠ADC=90°,根据HL 推出Rt△ABD≌Rt△ACD,根据全等三角形的性质求出即可.【解答】证明:∵AD⊥BC 于D,∴∠ADB=∠ADC=90°,在Rt△ABD 与Rt△ACD 中,∴Rt△ABD≌Rt△ACD(HL),∴BD=CD,∠1=∠2.【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等.22.阅读下列材料并解答问题:将一个多项式适当分组后,可提公因式运用公式继续分解的方法是分组分解法:(1)例如:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)试完成下面填空:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)= x2﹣(y+1)2= (x+y+1)(x﹣y﹣1)(3)试用上述方法分解因式a2﹣2ab﹣ac+bc+b2.【考点】因式分解-分组分解法.【专题】阅读型.【分析】首先利用完全平方公式将y2+2y+1 分解因式,进而结合平方差公式分解得出答案;(3)首先重新分组,使a2﹣2ab+b2 组合,进而利用完全平方公式以及提取公因式法分解因式得出答案.【解答】解:x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1),=x2﹣(y+1)2,=(x+y+1)(x﹣y﹣1);故答案为:x2﹣(y+1)2;(x+y+1)(x﹣y﹣1);(3)a2﹣2ab﹣ac+bc+b2=(a2﹣2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).【点评】此题主要考查了分组分解法分解因式,正确应用乘法公式是解题关键.23.【问题背景】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”“SSS”)和直角三角形全等的判定方法(即“HL”)后,某教学小组继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】小组成员先将问题用符号语言表示为:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,然后,对∠B 进行分类探究:可按“∠B 是直角、钝角、锐角”三种情况进行.【深入探究】第一种情况:当∠B 是直角时:如图①,在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E=90°,可知:△ABC 与△DEF 一定全等,依据的判定方法是HL .第二种情况:当∠B 是钝角时:在△ABC 和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是钝角,试判断△ABC 与△DEF 是否全等.小组成员作了如下推理,请你接着完成证明:证明:如图②,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H.∵∠B=∠E,且∠B、∠E 都是钝角.∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH.在△CBG 和△FEH 中,∴△CBG≌△FEH(AAS).∴CG=FH第三种情况:当∠B 是锐角时:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,小明在△ABC 中(如图③)以点C 为圆心,以AC 长为半径画弧交AB 于点D,假设E 与B 重合,F与C 重合,得到△DEF 与△ABC 符号已知条件,但是△AEF 与△ABC 一定不全等:综上探究,该小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等.【拓展延伸】:在△ABC 和△DEF 中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E 都是锐角,若∠B 满足∠B≥∠A 条件时,就可以使△ABC≌△DEF(请直接写出结论)【考点】全等三角形的判定与性质.【分析】(1)根据直角三角形全等的方法“HL”证明;过点C 作CG⊥AB 交AB 的延长线于G,过点F 作FH⊥DE 交DE 的延长线于H,根据等角的补角相等求出∠CBG=∠FEH,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH,再利用“HL”证明Rt△ACG 和Rt△DFH 全等,根据全等三角形对应角相等可得∠A=∠D,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D,E与B 重合,F 与C 重合,得到△DEF 与△ABC 不全等;(4)根据三种情况可得结论,∠B 不小于∠A 即可.【解答】解:(1)△ABC 与△DEF 一定全等,依据的判定方法是HL;证明:如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS);(3)小明的结论是:有两边和其中一边的对角对应相等的两个三角形不一定全等;(4)若∠B≥∠A,则△ABC≌△DEF.如图,过点C 作CG⊥AB 交AB 的延长线于G,过点F 作DH⊥DE 交DE 的延长线于H,∵∠B=∠E,且∠B、∠E 都是钝角,∴180°﹣∠B=180°﹣∠E,即∠CBG=∠FEH,在△CBG 和△FEH 中,,∴△CBG≌△FEH(AAS),∴CG=FH,在Rt△ACG 和Rt△DFH 中,,∴Rt△ACG≌Rt△DFH(HL),∴∠A=∠D,在△ABC 和△DEF 中,,∴△ABC≌△DEF(AAS).【点评】本题考查了全等三角形的性质和判定的应用,能求出Rt△ABD≌Rt△ACD 是解此题的关键,注意:全等三角形的对应角相等,对应边相等。
2015-2016学年度第一学期期中考试初二数学试题卷(2015.11)(分值:100分;不用计算器;出卷学校:宜兴市行知实验学校.)一、选择题:(本题共10小题,每小题2分,共20分)【 】1. -12的相反数是A .2 B .-2 C .-12 D .12 【 】2. 在下列各数-(+3)、-22、(-31)2、-432、-(-1)2007、 -|-4|中,负数有 A .2个 B .3 个 C .4 个 D .5个【 】3. 下列各组数中,数值相等的是A . 3443和B . ()2244--和C .3322)(和-- D .()2223232⨯-⨯-和 【 】4. 下列式子中,符合代数式的书写格式的是A .(a-b )×7 B.3a ÷5b C.121ab D.ab 【 】5. 在代数式351323212z y x y xyz y x a y x +--+--,,,,,,π中有 A .5个整式 B .4个单项式,3个多项式C .6个整式,4个单项式D .6个整式,3个单项式【 】6. a ,b 是有理数,它们在数轴上的对应点的位置如下图所示,把a ,-a ,b ,-b ,a +b ,a -b 按照从小到大的顺序排列,正确的是A.a -b <-b <a <-a <a +b <bB.-b <a -b <a <-a <b <a +bC.a -b <a <-b <a +b <-a <bD.-b <a <a -b <-a <b <a +b【 】7. 下列说法:①若|x |+x =0,则x 为负数;②若-a 不是负数,则a 为非正数;③|-a 2|=(-a )2; ④若0a b a b +=,则ab ab=-1; 其中正确的结论有 A.2个 B.3个 C.4个 D.5个【 】8. 某学生从家到学校时,每小时行5千米;按原路返回家时,每小时行4千米 ,结果返回的时间比去学校的时间多花10分钟.设去学校所用时间为x 小时,则: A. ⎪⎭⎫ ⎝⎛-=6145x x B. ⎪⎭⎫ ⎝⎛+=6145x x C. x x 4615=⎪⎭⎫ ⎝⎛- D.x x 4615=⎪⎭⎫ ⎝⎛+ 【 】9. 用“”、“”定义新运算:对于任意实数a ,b ,都有a b=a 和a b=b ,例如32=3,32=2。
2015-2016学年第一学期期中考试初二数学试卷(满分:100分,考试时间:120分钟)一、选择题:(本大题共10小题,每题3分,共30分)1.下列图案中是轴对称图形的有( )A.1个B.2个C.3个D.4个2.16的平方根是()A.4 B.±4 C.4D.±43.下列式子中,属于最简二次根式的是()A.9.0B.13C.20D.74.下列运算中错误的是()A.2×3= 6 B.12=22C.22+33=5 5 D.(-4)2=45.下列说法正确的是()A.平方根等于本身的数是0;B.36表示6的算术平方根;C.无限小数都是无理数;D.数轴上的每一个点都表示一个有理数.6.一个正方形的面积是20,估计它的边长大小在()A.2与3之间B.3与4之间C.4与5之间 D.5与6之间7. 在△ABC中,∠A、∠B、∠C的对应边分别是a、b、c,若∠A+∠C=90°,则下列等式中成立的是()A.c2-a2=b2B.a2+b2=c2C.b2+c2=a2D.a2+c2=b28.已知等腰三角形的两边长分别是3与6,那么它的周长等于()A.12 B.12或15 C.15 D.15或189. 如图,点D在AB上,点E在AC上,且∠B=∠C,那么补充下列一个条件后,仍无法判定△ABE≌△ACD的是()A.AD=AE B.∠AEB=∠ADC C.BE=CD D.AB=AC10.如图是一张足够长的矩形纸条ABCD,以点A所在直线为折痕,折叠纸条,使点B(第17题图)(第18题图)(第9题图)(第10题图)落在边AD 上,折痕与边BC 交于点E ;然后将其展平,再以点E 所在直线为折痕, 使点A 落在边BC 上,折痕EF 交边AD 于点F .则∠AFE 的大小是 ( ) A .67.5° B . 60° C .45° D .22.5°二、填空题(本大题共8小题,每空2分,共16分) 11. 21-的相反数是 .12. 若2)3(-x =3﹣x ,则x 的取值范围是 .13. 2015年我市参加中考的学生人数大约为6.60×104人,对于这个用科学记数法表示的近似数,它精确到了 位.14. 已知实数错误!未找到引用源。
A B CF (第7题图)(第9题图)2015-2016人教版八年级数学上学期期中试卷一、选择题(每小题3分,共30分,选错、多选、不选都给0分)1.到三角形三边距离相等的点是三角形三条( )A 、 中线的交点B 、 角平分线的交点C 、 高的交点D 、 垂直平分线的交点2.已知a<b ,则下列各式不成立的是 ( )A 、3a <3bB 、-3a <-3bC 、a -3<b -3D 、3+a <3+b 3.对于下列条件不能判定两直角三角形全等的是( )A 、 两条直角边对应相等B 、 斜边和一锐角对应相等C 、 斜边和一直角边对应相等D 、 两个锐角对应相等 4.等腰三角形的腰长是4cm ,则它的底边不可能...是( ) A 、1cm B 、3cm C 、6cm D 、9cm 5.若等腰三角形的顶角为α,则它一腰上的高与底边的夹角等于( ) A 、 2α B 、 902α︒+ C 、 902α︒- D 、90α︒-6. 如图6,所示的正方形网格中,网格线的交点称为格点.已知A 、B 是两格点,如果C 也是图中的格点,且使得ABC ∆为等腰三角形.....,则点C 的个数是( ) A 、6B 、7C 、8D 、97.如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么∠DBF =( )。
A 、62ºB 、38ºC 、28ºD 、26º8.如图,已知,有一条等宽纸带,按图折叠时(图中标注的角度为40°),那么图中∠ABC 的度数等于 ( )A 、 50°B 、 70°C 、 90°D 、 40° 9.如图,在△ABC 中,∠CAB=70°, 在同一平面内, 将△ABC 绕点A 旋转到△C B A ''的位置, 使得AB C C //', 则='∠B BA ( )A 、30°B 、35°C 、40°D 、50°第10题图第8题(第13题图)(第18题图) (第16题图)(第14题图)(第17题图)10. 如图,正三角形ABC 的三边表示三面镜子,BP=13AB=1,一束光线从点P 发射至BC 上P 1点,且∠BPP 1=60O.光线依次经BC 反射,AC 反射,AB 反射…一直继续下去。
第1题图第13题图第12题图2015—2016学年度第一学期八年级数学(上)期中测试试卷(考试用时:120分钟 ; 满分: 100分)(共:10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是: 点M (3,2)关于x 轴对称的点的坐标为 :A.(—3,2)B.(-3,-2)C. (3,-2)D. (2,-3) 一个三角形的两边长为3和8,第三边长为奇数,则第三边长为:A. 5或7B. 7或9C. 7D. 9 等腰三角形的一个角是80°,则它的底角是:A. 50°B. 80°C. 50°或80°D. 20°或80° 如图:OC 平分∠AOB ,CD ⊥OA 于D ,CE ⊥OB 于E ,CD=3㎝,则CE 的长度为:A.2㎝B.3㎝C.4㎝D.5㎝如图,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( )。
A .30° B. 40° C. 50° D. 60°现有四根木棒,长度分别为4cm ,6cm ,8cm ,10cm.从中任取三根木棒,能组成三角形的个数为:A .1个B .2个C .3个D .4个 如图,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ;(2)AD ⊥BC ;(3)∠B=∠C ;4)AD 是△ABC 的角平分线。
其中正确的有( )。
A .1个 B. 2个 C. 3个 D. 4个如图,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于BDC 的度数为:A.72°B.36°C.60°D.82°10.用正三角形、正四边形和正六边形按如图所示的规律拼图案,即从第二个图案开始,每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.则第n 个图案中正三角形的个数为( ) (用含n 的代数式表示).A .2n +1 B. 3n +2 C. 4n +2 D. 4n -2二、填空题:(本大题:10小题,每小题2分,共20分.请把答案填写在相应题目后的横线上)11. 若A (x ,3)关于y 轴的对称点是B (-2,y ),则x =____ ,y =______ ,12.如图:ΔABE ≌ΔACD ,AB=10cm ,∠A=60°,∠B=30°,则AD=_____ cm ,∠ADC=_____。
2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。
4题2015—2016学年度上学期期中检测八年级数学试卷一、选择题(每小题3分,10题共30分) 1、下列图形是轴对称图形的有( )A.4个B.3个C.1个D.1个2、在△ABC 中,∠A ∶∠B ∶∠C =1∶1∶2,则此三角形的形状为( ) A 、等腰三角形 B 、直角三角形 C 、钝角三角形 D 、等腰直角三角形3、等腰三角形的一边长是6,另一边长是12,则周长为( ) A.30 B.24 C.24或30 D.184、如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA =2, 则PQ 的最小值为( )A 、1B 、 2C 、 3D 、 4 5、等腰三角形的一个角是80°,则它的底角是( ) A. 50° B. 80° C. 50°或80° D. 20°或80° 6、一个多边形的每个内角为108°,则这个多边形是( ) A 、四边形 B 、五边形 C 、六边形 D 、七边形7、下列命题中:⑴形状相同的两个三角形是全等形;⑵在两个三角形中,相等的角是对应角,相等的边是对应边;⑶全等三角形对应边上的高、中线及对应角平分线分别相等.其中真命题的个数有( )A.3个B.2个C.1个D.0个8、将一矩形纸片按如图方式折叠,BC 、BD 为折痕,折叠后//A B E B 与与在同一条直线上,则∠CBD 的度数 ( )A. 大于90°B. 等于90°C. 小于90°D. 不能确定9、如图, 已知△ABC 中, AB=AC, ∠BAC =90°, 直角∠EPF 的顶点P 是BC 中点, 两边PE 、PF 分别交AB 、AC 于点E 、F, 给出以下四个结论: ①AE=CF; ②△EPF 是等腰直角三角形; ③S 四边形AEPF =21S △ABC ; ④BE+CF =EF. 当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A 、B 重合). 上述结论中始终正确的有( )A. 1个B. 2个C. 3个D. 4个10、如图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ .以下五个结论:① AD =BE ;② PQ ∥AE ;③ AP =BQ ;④ DE =DP ;⑤ ∠AOB =60°.恒成立的有( )个. A .1 B .2C .3D .4二、填空题(每题3分,6题共18分)11、已知点P (-3,4),关于x 轴对称的点的坐标为 。
2015~2016学年度第一学期期中考试八年级数学试卷时间120分钟 满分120分一、选择题(每小题2分,共16分)1.下列图形中,是轴对称图形的是 ……………………………………………………( )2.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为…( ) A .35°B .45°C .55°D .60°3.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开.若测得BM 的长为1.2 km ,则点M 与点C 之间的距离为 …………………………………………( ) A .0.5 km B .0.6 kmC .0.9 kmD .1.2 km4.如图,∠ABC =∠DCB ,下列所给条件不.能证明△ABC ≌△DCB 的是 ………( ) A .∠A =∠DB .AB =DCC .∠ACB =∠DBCD .AC =BD 5.由下列条件不.能判定△ABC 为直角三角形的是…………………………………( ) A .∠A +∠C =∠BB .a = 13 ,b = 14 ,c = 15C .(b +a )(b -a )=c 2D .∠A :∠B :∠C =5:3:26.如图,在△ABC 中,∠A =36°,AB =AC ,CD 是△ABC 的角平分线.若在边AC 上截取CE =CB ,连接DE ,则图中等腰三角形共有………………………………………( )AB CDAB CDEDCBA AC第2题图 第3题图 第4题图 第6题图A .2个B .3个C .4个D .5个7.如图,请仔细观察用直尺和圆规作一个角∠A′O ′B ′等于己知角∠AOB 的示意图,根据所学知识,说明∠A′O ′B ′=∠AOB 的依据是…………………………………………( ) A .SSSB .SASC .ASAD .AAS8.如图①是4×4正方形方格,已有两个正方形方格被涂黑,请你再将其中两个方格涂黑,并且使得涂黑后的整个图案是轴对称图形,约定经过旋转后全等的图案都视为同一种,图②中的两幅图就视为同一种,则得到的不同图案共有 …………………………( ) A .6种 B .7种 C .8种 D .9种二、填空题(每小题3分,共30分)9.如果等腰三角形有一个角等于50°,那么它的底角为___________°. 10.角是轴对称图形,它的对称轴是______________________________________. 11.已知△DEF ≌△ABC ,等腰△ABC 的周长为22cm ,BC =4cm ,则DE = cm . 12.如图,在△ABC 中,∠C =90°,AD 是角平分线,AC =12,AD =15,则点D 到AB 的的距离为_________. 13.观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13; ③7,24,25; ④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:_________________. 14.如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形构成的大正方形,若直角三角形的两边长分别为3和5,则小正方形的面积为_____________. 15.如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =105°,则∠ADC = °. 16.如图,在等边△ABC 中,点D 、E 分别在边BC 、第7题图 第8题图 图① 图②B'O'A'B O A ABCD第12题图第14题图ABCAB 上,且DE ∥AC ,过点E 作EF ⊥DE ,交CB 的延长线于点F ,若BD =2,则EF 2=__________.17.如图是单位长度为1的网格图,A 、B 、C 、D 是4个网格线的交点,以其中两点为端 点的线段中,任意取3条,能够组成 个直角三角形.18.如图,矩形ABCD 中,AB =8,BC =6,P 为AD 上一点,将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE =OD ,则AP 的长为__________.三、解答题(共74分.解答时应写出必要的文字说明、推理过程或演算步骤)19.(本题满分6分)如图,AC 平分∠BAD ,∠1=∠2,AB 与AD 相等吗?请说明理由.20.(本题满分7分)如图,△ABC 是正方形网格上的格点三角形 (顶点A 、B 、C 在正方形网格的格点上).A B C D 12第16题图 第17题图 第18题图F EA BCDFEO PABCD(1)画出△ABC 关于直线l 的对称图形;(2)画出以P 为顶点且与△ABC 全等的格点三角形(规定:点P 与点B 对应).21.(本题满分7分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明设计了这样一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你帮助小明计算出旗杆的高度.22.(本题满分7分)如图,△ABC ≌△ADE ,∠EAB =125°,∠CAD =25°,求∠BFD 的度数.GF EDCNMDCB A21ABCDE23.(本题满分8分)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,AB 平分∠DAE ,AE ⊥BE ,垂足为E .(1)求证:AD =AE ;(2)若BE ∥AC ,试判断△ABC 的形状,并说明理由.24.(本题满分8分)如图,在四边形ABCD 中,∠BAD =∠BCD =90°,M 、N 分别是BD 、AC 的中点.(1)求证:MN ⊥AC ;(2)若∠ADC =120°,求∠1的度数.FENMDCBADCBAEF25.(本题满分9分)如图,在△ABC 中,AC 边的垂直平分线DM 交AC 于D ,BC 边的 垂直平分线EN 交BC 于E ,DM 与EN 相交于点F . (1)若△CMN 的周长为20cm ,求AB 的长; (2)若∠MFN =70°,求∠MCN 的度数.26.(本题满分10分)如图,在Rt △ABC 中,∠ACB =90°,E 为AC 上一点,且AE =BC , 过点A 作AD ⊥CA ,垂足为A ,且AD =AC ,AB 、DE 交于点F . (1)判断线段AB 与DE 的数量关系和位置关系,并说明理由;(2)连接BD 、BE ,若设BC =a ,AC =b ,AB =c ,请利用四边形ADBE 的面积证明勾股 定理.27.(本题满分12分)在△ABC 和△DEC 中,AC =BC ,DC =EC ,∠ACB =∠ECD =90°. (1)如图1,当点A 、C 、D 在同一条直线上时,AC =12,EC =5.①求证:AF ⊥BD , ②求AF 的长度;(2)如图2,当点A 、C 、D 不在同一条直线上时.求证:AF ⊥BD ;(3)如图3,在(2)的条件下,连接CF 并延长CF 交AD 于点G ,∠AFG 是一个固定的值吗?若是,求出∠AFG 的度数,若不是,请说明理由.GF EDCB AAB CDEFFE DCBA图1 图2 图3答案及评分说明一、选择题 1-4 ACDD 5-8 BDAC二、填空题 9. 50°或65° 10. 角平分线所在的直线 11. 9 12. 3 13. 13,84,8514. 1或4 15. 50 16. 9 17. 3 18. 4.8 三、解答题19. 解:AB =AD .……1分∵AC 平分∠BAD ,∴∠BAC =∠DAC ,∵∠1=∠2,∴∠ABC =∠ADC ,……3分∵∠ABC =∠ADC ,∠BAC =∠DAC ,AC =AC ,∴△ABC ≌△ADC ,……5分∴AB =AD .……6分 20.(1)图(略),……3分 (2)图(略),……7分 21. 解:设旗杆的高度为x 米,则绳子的长度为(x +1)米,……1分由勾股定理,得 x 2+52=(x +1)2……4分 解得 x =12……6分 答:旗杆的高度为12米.……7分22. 解:∵△ABC ≌△ADE ,∴∠EAD =∠CAB ,∠B =∠D ,……2分∴∠EAD -∠CAD =∠CAB -∠CAD ,∴∠EAC =∠DAB =(125°-25°)÷2=50°,……5分∵∠B =∠D ,∠FGD =∠AGB ,∴∠BFD =∠DAB =50°.……7分 23.(1)证明:∵AB =AC ,点D 是BC 的中点,∴AD ⊥BD ,……1分 ∵AB 平分∠DAE ,AD ⊥BD ,AE ⊥BE ,∴BD =BE ,……3分 ∵AB =AB ,BD =BE ,∴Rt △AEB ≌Rt △ADB ,∴AD =AE .……4分 (2)△ABC 是等边三角形.……5分∵BE ∥AC ,∠EBC +∠ACB =180°,∵Rt △AEB ≌Rt △ADB ,∴∠EBA =∠DBA , ∵AB =AC ,∴∠DCA =∠DBA ,∴∠EBA =∠DBA =∠DCA =13 ×180°=60°,……7分∵AB =AC ,∴△ABC 是等边三角形.……8分24. (1)证明:∵∠BAD =∠BCD =90°,M 是BD 的中点,∴AM =CM =12 BD ,……2分∵N 是AC 的中点,∴MN ⊥AC .……4分(2)∵M 是BD 的中点,∴ MD =12 BD ,∴AM =DM ,∴∠AMD =180°-2∠ADM ……6分同理∠CMD =180°-2∠CDM ,∴∠AMD +∠CMD =180°-2∠ADM +180°-2∠CDM =120°,……7分∵AM =DM ,∴∠1=30°.……8分 25.(1)解:如图1,∵DM 垂直平分AC ,∴AM =CM ,……1分∵EN 垂直平分BC ,∴BN =CN ,……2分∴C △CMN =CM +CN +MN = AM +BN +MN =AB =20cm .……4分 (2)如图1,∵DM ⊥AC ,EN ⊥BC ,∴∠CDF =∠CEF =90°, ∠MFN =70°,∴∠ACB =110°,……6分 ∴∠A +∠B =70°,∵AM =CM ,BN =CN ,∴∠A =∠ACM ,∠B =∠BCN , ∴∠ACM +∠BCN =70°,∠MCN =110°-70°=40°.……9分 26. (1)解:AB =DE , AB ⊥DE .……1分如图2,∵AD ⊥CA ,∴∠DAE =∠ACB =90°,∵AE =BC ,∠DAE =∠ACB ,AD =AC ,∴△ABC ≌△DEA ,∴AB =DE ,……3分 ∠3=∠1,∵∠DAE =90°,∴∠1+∠2=90°,∴∠3+∠2=90°, ∴∠AFE =90°,∴AB ⊥DE .……5分(2)如图2,∵S 四边形ADBE = S △ADE + S △BDE =12 DE ·AF +12 DE ·BF =12 DE ·AB =12c 2,……7分F EN M D C BA 图1S 四边形ADBE =S △ABE +S △ADB =12 a 2+12b 2,……9分∴12 a 2+12 b 2=12c 2,∴a 2+b 2=c 2..……10分27.(1)①证明:如图3,∵AC =BC ,∠ACB =∠ECD =90°,EC =DC ,∴△ACE ≌△BCD , ∴∠1=∠2,∵∠3=∠4,∴∠BFE =∠ACE =90°,∴AF ⊥BD .……2分②∵∠ECD =90°,BC = AC =12,DC = EC =5,∴BD =13, ∵S △ABD =12 AD ·BC =12 BD ·AF ,∴AF =20413.……4分(法2:∵∠ECD =90°,BC = AC =12,DC = EC =5,∴AE =BD =13,BE =7,设EF =x , ∵∠BFE =90°,∴BF 2=BE 2-EF 2,BF 2=AB 2-AF 2,∴72-x 2=288-(13+x )2, ∴x =3513 ,∴AF =13+3513 =20413.)(2)证明:如图4,∵∠ACB =∠ECD ,∴∠ACB +∠ACD =∠ECD +∠ACD ,∴∠BCD =∠ACE , ∵AC =BC ,∠ACE =∠BCD ,EC =DC ,∴△ACE ≌△BCD ,∴∠1=∠2, ∵∠3=∠4,∴∠BF A =∠BCA =90°,∴AF ⊥BD .……7分 (3)∠AFG =45°.……8分如图4,过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,……9分 ∵△ACE ≌△BCD ,∴S △ACE =S △BCD ,AE =BD ,∵S △ACE =12 AE ·CN ,S △BCD =12BD ·CM ,∴CM =CN ,……10分∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,……11分∵AF ⊥BD ,∴∠BFE =90°,∴∠EFC =45°,∴∠AFG =45°.……12分(法2:过点C 作CM ⊥BD ,CN ⊥AE ,垂足分别为M 、N ,∵CM ⊥BD ,CN ⊥AE ,∴∠BMC =∠ANC =90°,∵△ACE ≌△BCD ,∴∠1=∠2,∵∠BMC =∠ANC =90°,∠1=∠2, AC =BC ,∴△BCM ≌△ACN ,∴CM =CN ,∵CM ⊥BD ,CN ⊥AE ,∴CF 平分∠BFE ,∵AF ⊥ BD ,∴∠BFE =90°,∴∠EFC =45°,∴∠AFG =45°.)图34312FE D CB A图41243N M A BCD EF GF cb ac b a 312EAB CD图2。