数学期望E(x)D(x)
- 格式:ppt
- 大小:869.01 KB
- 文档页数:39
var(x)与D(x)有什么区别一、概念和公式方差的概念与计算公式,例1 两人的5次测验成绩如下:X:50,100,100,60,50 E(X)=72;Y:73,70,75,72,70 E(Y)=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里是一个数。
推导另一种计算公式得到:方差等于平方的均值减去均值的平方。
其中,分别为离散型和连续型计算公式。
称为标准差或均方差,方差描述波动程度。
基本定义:设X是一个随机变量,若E{[X-E(X)]2}存在,则称E{[X-E(X)]2}为X 的方差,记为D(X),Var(X)或DX。
即D(X)=E{[X-E(X)]2}称为方差,而(X)=D(X)0.5(与X有相同的量纲)称为标准差(或均方差)。
即用来衡量一组数据的离散程度的统计量。
方差刻画了随机变量的取值对于其数学期望的离散程度。
(标准差、方差越大,离散程度越大。
否则,反之)若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。
因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小二、计算方法和原理若x1,x2,x3......xn的平均数为m则方差方差公式方差公式例1 两人的5次测验成绩如下:X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。
平均成绩相同,但X 不稳定,对平均值的偏离大。
方差描述随机变量对于数学期望的偏离程度。
单个偏离是消除符号影响方差即偏离平方的均值,记为D(X ):直接计算公式分离散型和连续型,具体为:这里是一个数。
概率统计复习题2016复习题1. 已知()0.7,()0.6,()0.9,P A P B P A B === 则()P A B -= 。
2. 已知事件A,B 相互独⽴,()0.5,()0.6,P A P B ==则()P B A -= , ()P A B = 。
3. 设A,B 为两事件,()0.6,()0.2,()0.7,P A P B P A B === 则()P A B = , ()P AB = 。
4. 设随机变量1(4,),2X B 随机变量(1,4),Y N 则(2)E X Y -=。
5. 设随机变量X,Y 相互独⽴,且()3,()4D X D Y ==,则(34)D X Y -= 。
6. 在图书馆中随意抽取⼀本书,令事件A 表⽰“数学书”,事件B 表⽰“中⽂图书”,事件C 表⽰“平装书”,则ABC 表⽰,当时,.A B =7. 设A,B,C 是三个随机事件,将“三个事件⾄少有两个发⽣”⽤A,B,C 的运算表⽰出来。
8. 设随机变量X 的数学期望E(X)和⽅差D(X)均存在,则切⽐雪夫不等式成⽴。
9. 设随机变量X 的⽅差为2,则由切⽐雪夫不等式估计{|()|1}P X E X -≥ , {|()|2}P X E X -< 。
10. 随机变量X 的⽅差为2σ,由切⽐雪夫不等式有{|()|3}P X E X σ-< 。
11. 袋中装有10个晶体管,其中2个次品,在袋中任选2个,则取得2个正品的概率是,取得1个正品1个次品的概率是。
12. 某⼈向⼀个⽬标进⾏射击,直到击中为⽌,如果每次命中⽬标的概率为p ,则所需射击次数X 的分布律为,()E X = 。
13. 设X 表⽰20次独⽴重复射击命中⽬标的次数,每次射击命中⽬标的概率是0.3,则X ,()E X = , ()D X = 。
14. 已知⼆维随机变量(X,Y )的联合分布函数为F(x,y),⽤F(x,y)表⽰概率(,)P a X b c Y d <≤<≤= 。
数学期望的计算公式数学期望是概率论中的重要概念,用于描述随机变量在大量试验中的平均值。
数学期望常用于统计分析和决策模型的建立。
本文将介绍数学期望的计算公式,并举例说明其应用。
一、离散型随机变量的数学期望计算公式对于离散型随机变量X,其取值有限且可数,其概率分布可以用概率质量函数P(X=x)表示。
则X的数学期望E(X)计算公式如下:E(X) = Σ[xP(X=x)]其中,Σ表示求和运算,x表示随机变量X的取值,P(X=x)表示随机变量X取值为x的概率。
例如,假设有一个骰子,其有6个面,每个面的点数分别为1、2、3、4、5、6,且每个面的点数出现的概率相等。
我们可以通过计算骰子的数学期望来获取平均点数的预期值。
设随机变量X表示骰子的点数,则X取值为1、2、3、4、5、6的概率均为1/6,因此骰子的数学期望E(X)的计算如下:E(X) = (1 * 1/6) + (2 * 1/6) + (3 * 1/6) + (4 * 1/6) + (5 * 1/6) + (6 * 1/6) = 3.5因此,通过计算可得,骰子的数学期望为3.5。
二、连续型随机变量的数学期望计算公式对于连续型随机变量X,其取值在某个区间上,其概率分布可以用概率密度函数f(x)表示。
则X的数学期望E(X)计算公式如下:E(X) = ∫[xf(x)]dx其中,∫表示积分运算,x表示随机变量X的取值,f(x)表示随机变量X的概率密度函数。
例如,假设有一个服从均匀分布的随机变量X,其取值范围在0到1之间。
我们可以通过计算随机变量X的数学期望来预测其取值的平均数。
设随机变量X的概率密度函数为f(x),则在0到1之间,f(x)的取值为1。
因此,X的数学期望E(X)的计算如下:E(X) = ∫[x * 1]dx = ∫xdx = 1/2因此,通过计算可得,随机变量X的数学期望为1/2。
综上所述,对于离散型随机变量和连续型随机变量,其数学期望的计算公式分别为Σ[xP(X=x)]和∫[xf(x)]dx。
山东科技大学2010—2011学年第一学期《概率论与数理统计》考试试卷(A 卷)一、填空题(本大题共6小题,每小题3分,总计18分)1、1.设随机事件A ,B 互不相容,且3.0)(=A P ,6.0)(=B P ,则=)(A B P 。
2、设D(X)=4, D(Y)=9, 0.4xy ρ=,则D(X+Y)= 。
3、设随机变量X 服从参数为2的泊松分布,则应用切比雪夫不等式估计得{}22P X -≥≤ 。
4、设随机变量X 的期望()3E X =,方差()5D X =,则期望()24E X ⎡⎤+=⎣⎦。
5、设123,,X X X 是来自正态总体X ~(),1N μ的样本,则当a = 时,12311ˆ32X X aX μ=++是总体均值μ的无偏估计。
6、设n X X X ,,,21 为正态总体),(2σμN (2σ未知)的一个样本,则μ的置信 度为1α-的单侧置信区间的下限为 。
二、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共6个小题,每小题3分,总计18分)1、设随机变量的概率密度21()01qx x f x x -⎧>=⎨≤⎩,则q=( )。
(A)1/2 (B)1 (C)-1 (D)3/22、设每次试验成功的概率为)10(<<p p ,重复进行试验直到第n 次才取得)1(n r r ≤≤次成功的概率为( ).(A)r n r r n p p C ----)1(11;(B)r n r r n p p C --)1( ;(C)1111)1(+-----r n r r n p pC ;(D)r n r p p --)1(. 3、设)4,5.1(~N X ,则P{-2<x<4}=( )。
(A)0.8543 (B)0.1457 (C)0.3541 (D)0.25434、设,X Y 相互独立,且211~(,)X N μσ,222~(,)Y N μσ,则Z X Y =-服从正态分布,且Z 服从( ).(A) 22112(,)N μσσ+ ; (B)22212(,)N μσσ⋅; (C)221212(,)N μμσσ-+; (D)221212(,)N μμσσ++。
概率论与数理统计基本公式第一部分 概率论基本公式1、A BA B AAB; A BA(B A) 2、对偶率: AB A B ;ABA B .3、概率性率:P ( A B ) P( A) P(AB ), 特别, BA 时有:P( A B) P( A) P(B); P(A) P(B)有限可加: A 1、 A 2 为不相容事件,则 P( A 1A 2 ) P( A 1)P(A 2 )对任意两个事件有:P( AB)P( A) P( B)P( AB)4、古典概型例: n 双鞋总共 2n 只,分为 n 堆,每堆为 2只,事件 A 每堆自成一双鞋的概率 解:分堆法: C 22 n( (2n)!,自成一双为: n !,则 P( A)n!!!22n - 2) 2C2n5、条件概率P(B | A)P( AB), 称为在事件 A 条件下,事件 B 的条件概率, P( B)称为无条件概率。
P( A)乘法公式: P(AB)P(A)P(B | A) P(AB)P(B)P(A | B)全概率公式: P(B)P(A i )P(B | A i )i贝叶斯公式: P(A i | B)P( A i B)P( A i )P(B | A i )P( B) P( A j )P( B | A j )j例:有三个罐子, 1 号装有 2 红1黑共 3个球,2号装有 3红1黑 4个球,3 号装有 2 红 2黑 4 个球,某人随机从其中一罐,再从该罐中任取一个球, ( 1)求取得红球的概率; ( 2)如果取得是红球,那么是从第一个罐中取出的概率为多少?解: 设B i { 球取自 i 号罐 } , i。
{ 取得是红球 } ,由题知、、是一个完备事件(1) 1,2,3 AB 1B 2B 3由全概率公式 P( B)P( A i )P( B | A i ),依题意,有: P( A | B 1 )2;P(A|B 2)3;P(A|B 3) 1 .i342P( B 1)P(B 2 ) P( B 3 )1, P( A) 0.639.3(2)由贝叶斯公式: P(B 1 | A)P( A | B 1)P(B 1)0.348.P( A)6、独立事件( 1) P(AB)=P(A)P(B), 则称 A 、 B 独立。
二项分布,超几何分布数学期望与方差公式的推导在概率论和数理统计中,二项分布和超几何分布是重要的概率分布,它们的数学期望与方差可以用一定的公式来表示,并可以通过推导来算出。
本文从实际问题出发,详细介绍了二项分布和超几何分布数学期望与方差公式的推导过程。
一、二项分布1.1义在概率论中,“二项分布”又称为“伯努利分布”,是指在若干次独立重复实验中,只有两种结果:实验成功和实验失败之间的概率分布。
1.2学期望与方差公式假设在每次实验中,实验成功的概率为$p$,共进行$n$次实验,则二项分布的概率函数为:$$P(X=x)=C_{n}^{x}p^{x}(1-p)^{n-x}$$其中,$x$为实验成功的次数,$C_{n}^{x}$为$n$个不同元素中取$x$个的组合数,即$$C_{n}^{x}=frac{n!}{x!(n-x)!}$$数学期望和方差用如下公式表示:$$E(X)=np$$$$D(X)=np(1-p)$$二、超几何分布2.1义超几何分布也称为超几何试验、超几何抽样或者超几何实验,可用于描述一种只有限数量的可能事件的抽样模型,其中,采用的方法是在一大堆里随机的抽取一定数量的元素。
超几何分布用参数$n$、$N$和$p$来描述,它的概率分布为:$$P(X=x)=C_{N}^{x}C_{n}^{x}p^{x}(1-p)^{N-x}$$ 其中,$x$为抽取到实验成功的次数,$N$为堆里元素的总数量,$p$为实验成功的概率,$n$为抽取的总次数。
2.2学期望与方差公式数学期望和方差用如下公式表示:$$E(X)=np$$$$D(X)=frac{n(N-n)p(1-p)}{N-1}$$三、推导3.1导期望根据定义可得:$$E(X)=sum_{x=0}^{n}xP(X=x) $$二项分布的推导:$$E(X)=sum_{x=0}^{n}xC_{n}^{x}p^{x}(1-p)^{n-x}$$$$E(X)=npsum_{x=0}^{n}C_{n}^{x}p^{x-1}(1-p)^{n-x}$$ 由于$C_{n}^{x}$是以$x$为底的等比数列,有:$$sum_{x=0}^{n}C_{n}^{x}p^{x-1}(1-p)^{n-x}=frac{1-(1-p)^{n} }{p}=frac{1-q^{n}}{p}=1$$所以:$$E(X)=np $$超几何分布的推导:$$E(X)=sum_{x=0}^{n}xC_{N}^{x}C_{n}^{x}p^{x}(1-p)^{N-x}$$$$E(X)=npsum_{x=0}^{n}C_{N}^{x}C_{n}^{x}p^{x-1}(1-p)^{N-x}$ $由于$C_{n}^{x}$是以$x$为底的等比数列,有:$$sum_{x=0}^{n}C_{N}^{x}C_{n}^{x}p^{x-1}(1-p)^{N-x}=frac{1-(1-p)^{N}}{p}=frac{1-q^N}{p}=frac{Np-(N-n)p}{p}=N-n+1$$ 所以:$$E(X)=np(N-n+1) $$3.2导方差根据定义可得:$$D(X)=E(X^{2})-E(X)^2$$二项分布的推导:$$D(X)=E(X^{2})-E(X)^2$$$$D(X)=sum_{x=0}^{n}x^2C_{n}^{x}p^{x}(1-p)^{n-x}-np^2$$ 由于$C_{n}^{x}$是以$x$为底的等比数列,有:$$sum_{x=0}^{n}x^2C_{n}^{x}p^{x}(1-p)^{n-x}=npsum_{x=0}^{n} xC_{n}^{x}p^{x-1}(1-p)^{n-x}=np^2frac{1-(1-p)^{n}}{p}=np^2f rac{1-q^{n}}{p}=np^2$$所以:$$D(X)=np(1-p) $$超几何分布的推导:$$D(X)=E(X^{2})-E(X)^2$$$$D(X)=sum_{x=0}^{n}x^2C_{N}^{x}C_{n}^{x}p^{x}(1-p)^{N-x}-n p^2(N-n+1)^2$$由于$C_{n}^{x}$是以$x$为底的等比数列,有:$$sum_{x=0}^{n}x^2C_{N}^{x}C_{n}^{x}p^{x}(1-p)^{N-x}=np(N-n +1)sum_{x=0}^{n}xC_{N}^{x}C_{n}^{x}p^{x-1}(1-p)^{N-x}$$$$=np(N-n+1)^2frac{1-(1-p)^{N}}{p}=np(N-n+1)^2frac{1-q^N}{p }=np(N-n+1)^2frac{Np-(N-n)p}{p}$$$$=np(N-n+1)^2frac{N-n}{p}=np[N(N-n+1)-n(N-n+1)]$$ 所以:$$D(X)=frac{n(N-n)p(1-p)}{N-1} $$四、总结从上文可以看出,二项分布和超几何分布的数学期望与方差公式都有具体的推导过程,数学期望与方差之间也有一定的关系。
常见分布函数的期望和方差
六种常见分布的期望和方差:
1、0-1分布
已知随机变量X,其中P{X=1} = p,P{X=0} = 1-p,其中0 < p < 1,则成X 服从参数为p的0-1分布。
其中期望为E(X)= p,方差D(X)= p(1-p)。
2、二项分布
n次独立的伯努利实验(伯努利实验是指每次实验有两种结果,每种结果概率恒定,比如抛硬币)。
其中期望E(X)= np,方差D(X)= np(1-p)。
3、泊松分布
其概率函数为P{X=k}=λ^k/(k!e^λ) k=0,1,2…...k代表的是变量的值。
其中期望和方差均为λ。
4、均匀分布
若连续型随机变量X具有概率密度,则称X在(a,b)上服从均匀分布。
其中期望E(X)= (a+b)/ 2 ,方差D(X)= (b-a)^2 / 12。
5、正态分布
若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。
当μ= 0,σ= 1时的正态分布是标准正态分布。
其中期望是u,方差是σ的平方。
6、指数分布
若随机变量x服从参数为λ的指数分布,则记为X~E(λ)。
其中期望是E(X)=1/λ,方差是D(X)=1/λ。