4.3常见分布的数学期望与方差
- 格式:ppt
- 大小:290.50 KB
- 文档页数:9
常见分布的期望和方差6、随机变量的独立性:若F(x,y) F X (x)F Y (y)则称随机变量 X , Y 相互独立。
简称 X 与Y 独立。
概率与数理统计重点摘要X1正态分布的计算:F(x) P(X x) ( )。
X 是服从某种分布的随机变量,求 Y f(X)的概率密度:f Y (y) f X (x)[h(y)] h'(y)。
(参见P66〜72)x y ..f (u, v)dudv 具有以下基本性质:⑴、是变量x , y 的非降函数;⑵、0 F(x, y) 1,对于任意固定的 x , y 有:F( , y) F(x, ) 0;⑶、F(x, y)关于x 右连续,关于y 右连续;⑷、对于任意的(为,yd (X 2, y 2),捲 X 2,y 1 y ,有下述不等式成立:Fgy) F(X 1,y 2)F(X 2,yJ5、二维随机变量的边缘分布:f x (X ) f (x,y)dy 边缘概率密度:f Y (y)f (x, y)dxF X (X )XF(x,) [ f (u, y)dy]du边缘分布函数:y二维正态分布的边缘分布为一维正态分布。
F Y (¥)yF( ,y)[f (x, v)dx]dv2、随机变量函数的概率密度:3、分布函数F(x, y)4、一个重要的分布函数:arcta n -)(— 2arCtany)的概率密度为: 2f(x,y)F(x,y)x y62 2 2 (x 4)( y 9)F(x, y)7、两个独立随机变量之和的概率密度:f z (Z ) f x (x)f Y (z x)dx f Y (y)f x (z y)dy 其中 Z = x + Y8、两个独立正态随机变量的线性组合仍服从正态分布,即 Z aX bY : N (a 1 b 2,a 2 12 b 2 2。
9、期望的性质: (3)、E(X Y) E(X) E(Y) ;(4)、若 X ,Y 相互独立,则 E(XY) E(X)E(Y)。
各个分布的数学期望和方差
当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的
平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。
因此方差越大,数据的波动越大;方差越小,数据的波动就越小。
样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方
根为样本标准差。
样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样
本标准差越大,样本数据的波动就越大。
方差和标准差为测算线性趋势最重要、最常用的指标,它就是测算数值型数据线性程
度的最重要的方法。
标准差为方差的算术平方根,用s则表示。
罕睹分散的憧憬战圆好之阳早格格创做(0,1)N 2()Yx n t =概率取数理统计沉面纲要1、正态分散的预计:()()()X F x P X x μσ-=≤=Φ.2、随机变量函数的概率稀度:X是遵循某种分散的随机变量,供()Y f X =的概率稀度:()()[()]'()Y X f y f x h y h y =.(拜睹P66~72)3、分散函数(,)(,)xyF x y f u v dudv -∞-∞=⎰⎰具备以下基赋本量:⑴、是变量x ,y 的非落函数;⑵、0(,)1F x y ≤≤,对付于任性牢固的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 闭于x 左连绝,闭于y 左连绝;⑷、对付于任性的11221212(,),(,),,x y x y x x y y << ,有下述没有等式创造:4、一个要害的分散函数:1(,)(arctan )(arctan )23x y F x y πππ2=++22的概率稀度为:22226(,)(,)(4)(9)f x y F x y x y x y π∂==∂∂++ 5、二维随机变量的边沿分散:边沿概率稀度:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰边沿分散函数:()(,)[(,)]()(,)[(,)]xX yY F x F x f u y dy du F y F y f x v dx dv+∞-∞-∞+∞-∞-∞=+∞==+∞=⎰⎰⎰⎰二维正态分散的边沿分散为一维正态分散.6、随机变量的独力性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独力.简称X 取Y 独力.7、二个独力随机变量之战的概率稀度:()()()()()Z X Y Y X f z f x f z x dx f y f z y dy +∞+∞-∞-∞=-=-⎰⎰其中Z =X +Y8、二个独力正态随机变量的线性推拢仍遵循正态分散,即22221212(,Z aX bYN a b a b μμσσ=+++).9、憧憬的本量:……(3)、()()()E X Y E X E Y +=+;(4)、若X ,Y 相互独力,则()()()E XY E X E Y =. 10、圆好:22()()(())D X E X E X =-. 若X ,Y 没有相闭,则()()()D X Y D X D Y +=+,可则()()()2(,)D X Y D X D Y Cov X Y +=++,()()()2(,)D X Y D X D Y Cov X Y -=+-11、协圆好:(,)[(())(())]Cov X Y E X E X Y E Y =--,若X ,Y 独力,则(,)0Cov X Y =,此时称:X 取Y 没有相闭. 12、相闭系数:(,)()()XYCov X Y X Y ρσσ==1XY ρ≤,当且仅当X 取Y 存留线性闭系时1XYρ=,且1,b>0;1,b<0XYρ⎧=⎨-⎩ 当 当。
概率论中的常见分布和期望与方差——概率论知识要点概率论是数学中的一个重要分支,研究随机现象的规律性。
在概率论中,常见的分布函数和概率密度函数描述了随机变量的分布规律,而期望和方差则是描述随机变量的中心位置和离散程度的重要指标。
本文将介绍概率论中的常见分布以及期望和方差的概念和计算方法。
一、离散型分布在概率论中,离散型分布描述了随机变量取有限个或可列个数值的概率分布。
以下是几个常见的离散型分布:1. 伯努利分布伯努利分布是最简单的离散型分布,描述了只有两个可能结果的随机试验,比如抛硬币的结果。
设随机变量X表示试验的结果,取值为1或0,表示成功或失败的情况。
伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。
2. 二项分布二项分布描述了一系列独立的伯努利试验中成功的次数。
设随机变量X表示成功的次数,取值范围为0到n,n为试验的次数,p为每次试验成功的概率。
二项分布的概率质量函数为:P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中C(n,k)为组合数。
3. 泊松分布泊松分布描述了在一定时间或空间内随机事件发生的次数。
设随机变量X表示事件发生的次数,取值范围为0到无穷大。
泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中λ为事件发生的平均次数。
二、连续型分布在概率论中,连续型分布描述了随机变量在某个区间内取值的概率分布。
以下是几个常见的连续型分布:1. 均匀分布均匀分布描述了随机变量在某个区间内取值的概率相等的情况。
设随机变量X 在[a, b]区间内取值,均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a≤x≤b。
2. 正态分布正态分布是概率论中最重要的分布之一,也被称为高斯分布。
正态分布的概率密度函数为:f(x) = (1 / √(2πσ^2)) * e^(-(x-μ)^2 / (2σ^2)),其中μ为均值,σ为标准差。