第5章狄拉克delta函数_476401940
- 格式:pdf
- 大小:778.87 KB
- 文档页数:27
当 时,电荷分布可看作位于 的单位点电荷。
此时把定义在区间 上,满足上述这两个要求的函数称为 函数,并记作 ,即0→l (,)−∞+∞)4(1)(=∫∞∞−dxx η)3()()(0)(00⎩⎨⎧=∞≠=x x x x x ηδ0x x =)6(1)(0=−∫∞∞−dx x x δ)(0x x −δ)5()()(0)(000⎩⎨⎧=∞≠=−x x x x x x δ根据(5)式,在 时, ,所以(6)式左边的积分不需要在 的区间进行,而只需要在一个包含 点在内的区间内进行,即引入 函数后,位于 处、电量为q 的点电荷的线电荷密度为:位于坐标原点,质量为m 的质点的质量线密度为:(,)−∞+∞0x x ≠0)(0=−x x δ0x x =⎩⎨⎧><<<=−∫),(0)(1)(0000x b x a b x a dx x x b a δδ0x )()(0x x q x −=δη)()0()(x m x m x δδη=−=说明:1.函数并不是通常意义下的函数,而是广义函数: 它没有给出函数与自变量之间的对应关系,仅给出这在通常情况下没有意义。
2. 函数所给出的“函数值”只是在积分运算中才 有意义。
例:δ⎩⎨⎧=∞≠=)0()0(0)(x x x δδ)0()()(f dx x x f =∫∞∞−δ二、 函数的性质性质1:若f (x )是定义在区间 的任一连续函数,则00())()f x x x dx f x δ+∞−∞−=∫(——将 乘上f (x )进行积分,其值为将f (x )的宗量换为 或者说: 函数具有挑选性(把f (x )在 的值挑选出来)证明:设 是任意小的正数,则由于 在 时为零, 所以 0000())())x x f x x x dx f x x x dx εεδδ+∞+−∞−−=−∫∫((由积分中值定理有:(,)−∞+∞δ)(0x x −δ)(0x x −δ0x δ0x x =ε0x x ≠)()()()()(000000εξεδξδεε+<<−−=−∫∫+−∞∞−x x dx x x f dx x x x f x x当 时, ,连续函数 ,且所以特别地: 时,说明:也可作为 函数的定义, 即 函数可以通过它在积分号下对任一连续函数f (x )的运算性质来定义。
狄拉克delta函数狄拉克Δ函数(DiracDeltaFunction)是物理学、工程学和数学等领域的重要概念。
它最初被引入来研究电磁场中的能量流,而后被用于描述各种物理系统的动力学。
此外,它也是数学中离散函数和概率分布的重要工具,甚至是解析函数概念的来源。
在本文中,将详细介绍狄拉克Δ函数的基本概念、特性和应用,不仅让我们了解它,而且可以将它用于研究和解决复杂的物理问题。
一、什么是狄拉克Δ函数?狄拉克Δ函数(Dirac Delta Function)是一种泛函,即一种特殊的函数,它没有原函数,其值只有在某个特定点处才有意义,而在其他任何地方均为零。
这个函数不仅可以用与物理学,还可以应用于数学,其实用性极广。
二、狄拉克Δ函数的定义根据狄拉克Δ函数的定义,狄拉克Δ函数可以由以下表达式定义:Δ(x)=0 (前提 x≠0)Δ(x)= +∞ (前提 x=0)由上式可知,x非零时,狄拉克Δ函数值为零,x为零时,狄拉克Δ函数值无限大。
因此,我们可以得到狄拉克Δ函数的函数图。
三、狄拉克Δ函数的特性1、由于狄拉克Δ函数的定义,我们可以知道它是一个不可积的函数,而且它的积分区间只有一个,也就是[0,0]。
2、狄拉克Δ函数的另一个特性是它的叠加效应,即将狄拉克Δ函数的多个函数叠加,经数学处理后可以得到另一个狄拉克Δ函数的积。
3、狄拉克Δ函数的最后一个特性是它可以用来表达离散函数,这就是何乐私下发明的。
四、狄拉克Δ函数的应用1、在物理学中,狄拉克Δ函数可以用来描述质量点对电场的作用,可以用来描述电流密度。
2、在数学中,狄拉克Δ函数可以用来表示概率分布,可以用来分析离散数据。
3、在工程学中,狄拉克Δ函数可以用来解决微分方程,也可以用来描述信号的传输和吸收特性。
五、总结从上面的内容可以看出,狄拉克Δ函数是一个非常有用的函数,它可以应用于物理学、工程学、数学等领域,可以用来解决各种问题。
然而,由于它的特殊性,在使用它时,也要特别小心,保证它的精确性和可靠性。
狄拉克delta函数狄拉克Delta函数,也被称为狄拉克函数,是一种特殊的函数。
它可以被用来描述和解决在数学、物理和工程等领域的问题。
狄拉克Delta函数的主要特征是改变原始函数中的有限个离散值,转换为有限个连续变量,从而优化计算性能。
本文将通过一系列案例,介绍狄拉克Delta函数的基本原理和应用,以及它的基本特性。
一、狄拉克Delta函数的概念狄拉克Delta函数是一种特殊的函数,它的概念是由希腊数学家雷普洛斯狄拉克发展的。
它的计算方式与一般的数学函数不同,它不是以实数为自变量,而是以一个被称为“自变量域”的一组离散的数字来计算的。
它的计算结果是一个连续的函数,它的值依赖于两个变量,即自变量域和实变量域。
二、狄拉克Delta函数的基本特性a.简洁性:狄拉克Delta函数具有高度的简洁性,它能够简化一般数学运算,减少数学表达式中函数的数量,同时可以改善算法的执行效率。
b.可用性:狄拉克Delta函数可以被用于多种应用领域,它可以用于统计分析、数值分析、机器学习、动态系统模拟等。
c.完整性:狄拉克Delta函数能够将离散的输入变量转换为连续的输出变量,从而构成一个完整的系统,有利于提高计算性能和历史记录的可视化显示。
三、狄拉克Delta函数的应用1.数值分析:狄拉克Delta函数可以应用于数值分析,将一组离散的数据转换为一个连续的函数,从而更好地描述物理现象。
2.机器学习:狄拉克Delta函数可以应用于机器学习,可以将被观察到的数据转换为连续函数,从而更好地进行训练和预测。
3.图形处理和图像处理:狄拉克Delta函数可以将一组离散的像素点转换为一组连续的函数,从而更好地处理图像。
四、结论综上所述,狄拉克Delta函数是一种特殊的函数,它具有简洁性、可用性和完整性等特性,可以用于数值分析、机器学习、图形处理和图像处理等领域。
通过将离散的输入变量转换为连续的输出变量,从而实现优化的计算性能以及可视化的历史记录。
狄拉克分布函数
狄拉克分布函数是一种特殊的概率密度函数,也称为δ函数或Dirac函数。
它在数学中的应用非常广泛,特别是在量子力学中。
狄拉克分布函数的定义为:
δ(x-a) = 0 (x ≠ a)
δ(x-a) = ∞ (x = a)
其中,a为一个常数,δ(x-a)表示在x=a时函数的取值。
在其他点上,函数的值为0。
狄拉克分布函数具有以下性质:
1. 积分区间内的面积为1;
2. 在积分区间外,函数值为0;
3. 在积分区间内,函数值为无穷大,但积分结果为有限值;
4. 狄拉克分布函数是一个偶函数。
由于狄拉克分布函数具有无穷大的尖峰,因此在实际应用中,可以将其看作是一个极限情况下的高斯分布函数。
它可以用来表示一个粒子在某个位置出现的概率,也可以用来描述量子力学中的波函数。
在信号处理中,狄拉克分布函数也常用于描述脉冲信号。
- 1 -。
第五章 Green 函数前几章主要讲授了拉普拉斯、波动方程、热传导等齐次方程的求解,对于这类方程,求解区域非常规则(直角坐标系、球坐标系、柱坐标系),并且方程为齐次的,利用分离变量法求解非常方便。
但对于非齐次方程,例如 ()t x f u ,2=∇,分离变量法不再适用,本章主要采用Green函数法求解线性非其次方程。
本章主要内容:1、δ函数2、Laplace 方程的Green 函数3、Helmholtz 方程的Green 函数4、波动方程的Green 函数法§5.1 δ函数一、δ函数的定义()⎩⎨⎧≠=∞+=000x x x ,,δ其积分 ()()1==∫∫+−+∞∞−εεδδdx x dx x性质()()()0f dx x x f =∫∞∞−δ0+εδ(x)x−ε或者 ()⎩⎨⎧≠=∞=−000,0,x x x x x x δ其积分 ()()10000=−=−∫∫+−∞∞−εεδδx x x x x x性质()()()00x f dx x x x f =−∫∞∞−δ二、物理意义1、直导线的电荷密度:假设一个导线AB 上电量分布为()x e ,其电荷密度()()()()x e xx e x x e x x 'lim0=Δ−Δ+=→Δρ 2、单位点电荷:假设导线AB 上只有在中心存在一个单位点电荷,即()⎩⎨⎧=≠=0,10,0x x x e 电荷密度()⎪⎪⎩⎪⎪⎨⎧=∞→Δ=Δ⎟⎠⎞⎜⎝⎛Δ=Δ⎟⎠⎞⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛Δ≠=0,12220,0x x x x e x x e x e x x ρ 由δ函数的定义可知,单位点电荷的密度就是δ函数。
()()1==∫∫+∞∞−+∞∞−dx x dx x δρ因此,()x δ可以看成是单位点电荷密度。
当单位点电荷放在0x x =处,点电荷密度可写为()()0x x x −=δρ当电荷量为q 的点电荷放在0x x =处,点电荷密度可写为()()0x x q x −=δρ 三、δ函数可以看成普通函数的弱极限极限{}*x x n →:对于0*0,0εε<−>>∃>∀x x N n N n 时,当函数(){}()x fx f n *→:对于时,当N n N >>∃>∀0,0ε()()ε<−x f x f n *上述严格定义的极限称为强极限。
第40卷第7期大 学 物 理Vol.40No.72021年7月COLLEGE PHYSICSJuly2021 收稿日期:202-10-10;修回日期:2020-11-05 基金项目:国家自然科学基金(12071021);北京交通大学研究生课程建设项目(134869522)资助 作者简介:郑神州(1965—),男,浙江临海人,北京交通大学理学院教授,博士,博士生导师,主要从事偏微分方程理论和应用研究.狄拉克δ-函数及有关应用郑神州1,康秀英2(1.北京交通大学理学院,北京 100044;2.北京师范大学物理系,北京 100875)摘要:狄拉克δ-函数实际上是离散情况下的Kroneckerδ-函数的连续化,它在数学和物理中都有重要的应用.基于广义函数概念引入狄拉克δ-函数的精确定义,证实狄拉克δ-函数不是通常Lebesgue局部可积意义下的普通函数;文中分别以单位矩形脉冲函数、高斯函数、钟形函数和Sinc函数的序列在弱极限意义下来逼近狄拉克δ-函数.另外,验证了狄拉克δ-函数可以作为Heaviside函数的广义导数,以及其高价广义导数,并给出狄拉克δ-函数的卷积性质、伸缩性质、复合变换性质、正交性和狄拉克梳函数,最后引入了狄拉克δ-函数与广义傅里叶变换的关系,以及其在泊松方程Dirichlet边值问题求解中的应用.关键词:狄拉克δ-函数,广义函数,弱极限,广义傅里叶变换格林函数中图分类号:O4-1 文献标识码:A 文章编号:1000 0712(2021)07 0025 05【DOI】10.16854/j.cnki.1000 0712.200456狄拉克δ-函数是一类“奇怪”的函数,有广泛应用.它按照通常古典的函数定义方式是无法做到,实际上它是非通常意义下的“函数”,更准确地称为“广义函数、Schwarz分布函数或泛函”,它是以英国理论物理学家狄拉克名字命名的,在数学和物理中有着独特的地位[1,2].狄拉克δ-函数可以用来描写物理学中一切点量,如:点质量、点电荷、瞬时源等;数学上可以进行微分和积分变换,为处理数学物理问题带来极大的方便.尤其它在偏微分方程、数学物理方程、傅立叶分析和概率论等领域都离不开这个函数的应用[3-7],有了狄拉克δ-函数,傅立叶变换就不受绝对可积条件限制,通常称为广义傅立叶变换.狄拉克δ-函数具有悠久的历史,这得从Krone ckerδ-函数讲起,Kroneckerδ-函数非常简单:δij=1,i=j0,i≠jp (1)对于一列数{ai},i=1,2,...有 jδijaj=ai,并满足规范化 jδij=1,对称化δij=δji.将离散的序列{ai}转化为连续的函数f(x),将以上式子类似地写成积分式:∫∞-∞f(x)δ(x-x0)dx=f(x0)(2)(简记:(f δ)(x)=f(x),f(x)δ(x)=f(0)δ(x))∫∞-∞δ(x-x0)dx=1(3)δ(x-x0)=δ(x0-x)(4)从离散过渡到连续,自然地从求和过渡到积分;这看起来两种δ-函数很雷同了.所以狄拉克δ-函数就达到类似于Kroneckerδ-函数的选择器效果,对于δ-函数的选择器作用是泊松先提出的,后来Cauchy利用它的选择器性质研究了许多应用问题,进一步地傅里叶给出了其无穷级数表示,在此基础上狄拉克对研究量子力学时发现了连续型的δ-函数重要作用.物理上看,狄拉克δ-函数可以看成一些通常意义下函数列的逼近,但严格的数学理论表明:这不是通常意义下的极限(这是泛函意义下的极限,或称“弱收敛”).事实上,其真正严格意义下的定义方式是在Schwarz分布函数[2](广义函数或泛函)基础上才有的,这表明从此物理上广泛实用的狄拉克δ-函数可做数学严谨的推理了.在物理和工程技术中,常常会碰到单位脉冲函数(狄拉克δ-函数)[3],如:在电学中,要研究线性电路受具有脉冲性质的电势作用后产生的电流;在力学中,要研究机械系统受冲击力作用后的运动情况.像这种常用来表示为集中在一点上单位量的质点、点电荷、瞬时力等的密度分布就是狄拉克δ-函数应用的实际背景;其特点是该函数在除了零以外的点取值都等于零,而其在整个定义域上的积分等26 大 学 物 理 第40卷于1.这种对又窄又高的尖峰函数的逼近(脉冲)有着特殊的应用,如:球棒撞击棒球接触的瞬间力作用,其密度分布函数δ(x).物理和工程上的狄拉克δ-函数通常是这样来引入的:δ(x)=∞ x=00 x≠0p ,∫∞-∞δ(x)dx=1,但这种方式定义在数学上有着明显的缺陷,是无法进行严格推理的.实际上,这不能用通常的函数来理解,严格说狄拉克δ-函数不算是一个普通函数;由于它集中在一点上的值为无穷大(无穷大的任意倍数还是无穷大),其通常函数在一点上的积分为0(没有面积).本论述从数学严格的狄拉克δ-函数定义出发,综述其基本性质,以及考虑其在数学和物理学科中的重要应用[3-7];这起抛砖引玉作用,也为狄拉克δ-函数的进一步应用建立起数学理论基础.1 狄拉克δ-函数作为广义函数定义1)广义函数[2,5]:δ-函数的准确定义需要从广义函数有关概念出发:设函数列φ(x),φn(x)∈C∞0(R)(无穷光滑的且具有紧支集),若存在M>0使得|x|>M时对任意自然数n有φ(x)=0,φn(x)=0且对k=0,1,2,..满足limn→∞supx∈[-M,M]φ(k)n(x)-φ(k)(x)=0(5)其中φ(k)(x)表示k阶导数,k=0表示原函数.则称序列φn(x)收敛于φ(x),此时称C∞0(R)为基本空间,记作函数D(R);φ(x)∈D(R)称为试验函数.若f是D(R)上的连续线性泛函,称f是D(R)上的广义函数.对于试验函数φ(x)∈D(R),用〈f,φ〉表示它所对应的泛函值,称为对偶积.D(R)上广义函数全体记成D′(R).2)狄拉克δ-函数定义[1,5]〈δ,φ〉=φ(0), φ∈D(R)(6)它是广义函数.事实上:①δ(x)是线性的:对于任意的α、β∈R以及φ1(x)、φ2(x)∈D(R),有〈δ,αφ1+βφ2〉=αφ1(0)+βφ2(0)=α〈δ,φ1〉+β〈δ,φ2〉(7)②δ(x)是连续泛函:对于φn(x)∈D(R),若limn→∞φn(x)=φ(x),有limn→∞〈δ,φn〉=limn→∞φn(0)=φ(0)=〈δ,φ〉(8)这里要强调的广义函数收敛性一定要在试验函数作用下收敛的,泛函分析中称为弱收敛.3)狄拉克δ-函数不是通常意义下“函数”.首先,普通意义下的函数一定是广义函数,作为一般Lebesgue意义下的局部可积函数可以等同于广义函数.事实上,实轴上局部可积函数Lloc(R)对任意的闭区间[a,b],有∫ba|f(x)|dx<∞.定义对偶积为〈F,φ〉=∫∞-∞f(x)φ(x)dx(9)简单的验证:这是一个线性连续泛函.任一个局部可积函数按以上做法都有唯一的广义函数与之对应,且可证明:不同的局部可积函数对应于不同的广义函数,并保持线性运算不变;这样可以将局部可积函数f等同于与其对应的广义函数F.反之,狄拉克δ-函数不是通常函数,没有局部可积函数与之对应[1,5].事实上,反证法:若存在这样的局部可积函数f(x),有〈f,φ〉=∫∞-∞f(x)φ(x)dx=〈δ,φ〉=φ(0), φ∈D(R)(10)特别地取特殊的试验函数为φ(x)=e-11-x2+1,x≤10,x>1p (11)则φ(nx)∈D(R),且 ∫∞-∞f(x)φ(nx)dx=φ(0)=1, n∈N(12)但另一方面∫∞-∞f(x)φ(nx)dx=∫1n-1nf(x)φ(nx)dx≤∫1n-1nf(x)dx→0, (n→∞)(13)这是一个矛盾,所以狄拉克δ-函数没有局部可积函数与之对应.2 狄拉克δ-函数的逼近方式上面定义的广义函数有点抽象,下面我们从物理直观上,用各种函数列逼近的方式来理解狄拉克δ-函数,这种逼近也不是通常意义下的极限,而是泛函意义下的逼近,是一种弱形式的极限[1,2,5].例如:1)用一个积分值为1矩形脉冲函数序列{Hn(t)}序列的弱极限来逼近.从直观上看,函数序列{Hn(t)}是在区间-1n,1ny r 上一系列均匀地放置单位质量所产生的质量分布密度,当n趋向无穷时,其广义极限(弱极限)就是在原点上放置单位质量第7期郑神州,等:狄拉克δ-函数及有关应用27 所产生的质量分布密度.因此,狄拉克δ-函数就是在原点上放置单位质量所产生的分布密度.数学推导:对任意正整数n,在-1n,1ny r 上均匀地放置单位质量的分布密度Hn(t)=n2,t<1n0,t>1n(14)显然Hn(t)∈Lloc(R)(积分值不超过1).对任意φ(x)∈D(R),有〈Hn,φ〉=∫∞-∞Hn(x)φ(x)dx=n2∫1n-1nφ(x)dx(15)用积分中值定理于φ(x)∈D(R)得到limn→∞〈Hn,φ〉=φ(0)=〈δ,φ〉.所以δ(x)是Hn(t)弱极限.同理可以得到逼近δ(x)的其它常用函数列.2)对于任意φ(x)∈D(R),有:对ρt(x)=12aπ槡te-x24a2t(高斯函数,或称正态分布密度函数), limt→0+〈ρt(x),φ〉=limt→0+∫∞-∞12aπ槡te-x24a2tφ(x)dx=δ(0)=〈δ,φ〉.3)对ρa(x)=aπa2+x2C o (钟形函数),lima→0〈ρa(x),φ〉=〈δ,φ〉.4)ρn(x)=sinnxπx(Sinc函数), limn→∞〈ρa(x),φ〉=〈δ,φ〉.3 广义导数(弱导数)和狄拉克δ-函数先给出广义导数定义:对一个广义函数f∈D′(R),若存在f′使得〈f′,φ〉=-〈f,φ′〉, φ∈D(R)(16)则称为广义函数f有一阶广义导数,其广义导数为f′(见文献[1,2,5]).一般地,定义k-阶广义导数为;若有f(k)使得〈f(k),φ〉=(-1)k〈f,φ(k)〉, φ∈D(R)(17)称f(k)为广义函数f的k-阶广义导数,k=1,2,….注:通常意义下的导数一定是广义导数,其本质就是分部积分公式;反之不对,从定义得知:广义导数不是逐点定义的.例如:Heaviside函数H(x)=1,x≥00,x<0p (18)对于任意φ(x)∈D(R),则有〈H′,φ〉=-〈H,φ′〉=-∫∞-∞H(x)φ(x)dx=-∫∞0φ(x)dx=φ(0)=〈δ,φ〉(19)所以狄拉克δ-函数可看作是Heaviside函数的广义导数.考虑函数|x|的第m阶广义导数(m为不小于1自然数),有〈|x|′,φ〉=-〈|x|,φ′〉=-∫∞-∞|x|φ(x)dx=∫0-∞xφ(x)dx-∫∞0xφ(x)dx=-∫0-∞φ(x)dx+xφ∞0+∫∞0φ(x)dx-xφ0-∞=-∫0-∞φ(x)dx+∫∞0φ(x)dx=∫∞-∞g(x)φ(x)dx=〈g,φ〉(20)其中g(x)=1,x≥0-1,x<0p .所以|x|′=2H(x)-1.一般地|x|(m)=2δ(m-1), m≥2(21)4 狄拉克δ-函数性质和广义傅里叶变换[1,3,5]两个已知函数f1(t)、f2(t)卷积定义:f1(t) f2(t)=∫+∞-∞f1(τ)f2(t-τ)dτ(22)狄拉克δ(x)函数一些重要性质:1)卷积性质 ∫∞-∞f(x)δ(x)dx=f(0),∫∞-∞f(x-x0)δ(x)dx=f(x0)(23)这里若取f(x)=1,则有∫∞-∞δ(x)dx=1.更一般地,∫baf(x)δ(x-x0)dx=f(x0),x0∈(a,b)0,x0(a,b)p .2)积分下作一个变量代换得到伸缩变换:δ(ax)=1aδ(x)(a≠0).一般地,狄拉克δ(x)函数的复合:设an为连续函数f(x)的单零点(即:f(an)=0,f′(an)≠0),则有δ[f(x)]= nδ(x-an)f′(an).事实上,对于试验函数φ(x)∈D(R)和f(x)的单零点an,由于f(an)=0,f′(an)≠0,在每个an存28 大 学 物 理 第40卷在邻域都是一一对应,作局部的变量代换y=f(x)∫∞-∞φ(x)δ[f(x)]dx= i∫ai+εai-εφ(x)δ[f(x)]dx= i∫f(ai+ε)f(ai-ε)φ[f-1(y)]δ(y)dy|f′(x)|= iφ(ai)|f′(ai)|(24)从而δ[f(x)]= nδ(x-an)f′(an)(见[6]).由此f(x)=(x2-a2) δ(x2-a2)=12|a|δ(x-a)+δ(x+a)C o(25)3)正交性:设{ n(x)}是区间(a,b)上函数空间的一个完备正交基函数,n(x)为 n(x)的共轭函数,则对于(a,b)上任意两个内点x,x0∈(a,b),有: nn(x) n(x0)=δ(x-x0).事实上,由狄拉克δ(x)函数的卷积性质,对于任意的f(x)∈C∞0(a,b),所以只要证∫baf(x)nn(x) n(x0)C o dx=f(x0)即可.由于{ n(x)}是完备正交基,f(x)= mcmm(x),cm=∫bam(x)f(x)dx,则A=∫baf(x) nn(x) n(x0)C o dx= ∫bamcmm(x) nn(x) n(x0)C o dx= mcm n∫bam(x) n(x)dxC o n(x0)(26)考虑{ n(x)}是正交基∫bam(x) n(x)dx=δmnA= mcmnδmnn(x0)= mcmm(x0)=f(x0)(27)得证.4)狄拉克梳函数[1,8]:平移狄拉克δ(x)-函数的无穷级数Comba(x)= ∞m=-∞δ(x-ma)称为狄拉克梳函数(a≠0).对此,我们有F[Comba(x)]=Comb1a(ω)(28)即狄拉克梳函数的傅里叶变换仍是狄拉克梳函数.事实上,考虑函数列1a槡e-2πimx/ap i ∞-∞是周期为|a|单位正交基(三角函数正交系),狄拉克梳函数Comba(x)是以|a|为周期的函数,傅里叶级数展开:∞m=-∞δ(x-ma)=1a ∞n=-∞e-2πinx/a.所以,由傅里叶变换的平移性质:F[Comba(x)]=F[ ∞m=-∞δ(x-ma)]=∞m=-∞e-i2πmaω= ∞k=-∞δω-k1aC o=Comb1a(ω)(29)得证.5)三维狄拉克函数:δ(x,y,z)=δ(x)δ(y)δ(z),即:δ(x,y,z)=0, x2+y2+z2≠0∞, x2+y2+z2=0p ,∞-∞δ(x,y,z)dxdydz=1.类似于一维的性质:∞-∞f(x,y,z)δ(x-x0,y-y0,z-z0)dxdydz=f(x0,y0,z0), f(x,y,z)∈C(R3)常见的一些重要函数,如:常数函数,符号函数,单位阶跃函数以及正余弦函数等不满足傅里叶积分定理的绝对可积条件,即不满足条件∫ba|f(x)|dx<∞,所以一般的傅里叶变换不存在;但引入δ(x)-函数可以求它的广义傅里叶变换.按照经典数学函数的定义,功率信号(比如周期信号,最典型的是正弦余弦函数)的傅里叶变换是不存在的,但如果引入了广义函数概念,则可以求得功率信号的广义傅里叶变换,于是我们就可以方便地进行频谱分析了[1,5,8].例如:1)δ(x)函数的傅里叶变换为1,即:F[δ(x)]=1.事实上F[δ(t)]=∫+∞-∞δ(t)e-iωtdt=e-iωtt=0=1.2)Heaviside函数H(x)=1,x≥00,x<0p 定义在x轴上不是绝对可积的,但它却有广义傅里叶变换1iω+πδ(ω).3)又如求正弦函数f(t)=sinω0t的不是绝对可积的,但它的广义傅里叶变换F(ω)=F[f(t)]=∫+∞-∞e-iωtsinω0tdt=第7期郑神州,等:狄拉克δ-函数及有关应用29 12i∫+∞-∞(eiω0te-iωt-ei(-ω0)te-iωt)dt=12i2πδ(ω-ω0)-2πδ(ω+ω0)=iπδ(ω+ω0)-δ(ω-ω0)(30)一般地,不满足可积性条件函数的广义傅里叶变换,其像函数通常与狄拉克δ-函数有关[8].5 δ-函数在边值问题中的应用基本解和格林函数是由δ-函数来定义的.这里以拉普拉斯算子为例谈论其在线性偏微分方程中边值问题求解中的应用.若在3维空间中坐标原点放置一个单位正电荷,即电荷密度分布函数为δ-函数,这时电位满足方程-ΔΓ=δ(r),这里拉普拉斯算子Δ= 2x2+ 2y2+2z2;则其解(拉普拉斯方程的基本解)为Γ(x,y,z)=14πr,其中r=x2+y2+z槡2.事实上,对方程两边同时作傅里叶变换Γ(ρ)=F[Γ(r)]= R3Γ(r)e-iρ·rdr,则有ρ2Γ=1 Γ=1ρ2,其中ρ=|ρ|;再作傅里叶逆变换Γ(r)=F-1[Γ(ρ)]=18π3 R3Γ(ρ)eiρ·rdρ=14πr.于是对全空间具有电荷分布为f(r)的泊松方程-Δu=f(r),电位u的解为u(r)= R314π|r-r′|f(r′)dr′.而在一个区域Ω R3内放置一个单位正电荷,并保持边界值为零,即满足-ΔG=δ(r), r∈ΩGΩ=0, r∈ Ωp ,这样的解函数称为格林函数.格林函数在偏微分方程中有重要的作用,对于线性问题,不论外力项和边界值,该问题求解统一化为求只与区域形状有关的格林函数,当其区域比较特殊时,利用物理意义(如镜像法)可以解出其格林函数具体表达式.这时-Δu=f(r), r∈Ωu Ω=φ(r), r∈ Ωp 的解就可以表示为:对于任意r∈Ω,有u(r)= ΩG(r,r′)f(r′)dr′+ ΩnG(r,r′)φ(r′)dSr′(31)其中n为 Ω上的外单位法向向量.参考文献:[1] HoskinsRF.Deltafunctions:introductiontogeneralisedfunctions[M].2nded.WoodheadPublishingLimited,2010.[2] L施瓦兹.广义函数论[M].姚家燕,译.北京:高等教育出版社,2010.[3] 梁昆淼.数学物理方法[M].4版.北京:高等教育出版社,2010.[4] 库朗,希尔伯特.数学物理方法:1、2卷[M].北京:科学出版社,1981.[5] 姜礼尚,陈亚浙,刘西垣,等.数学物理方程讲义[M].3版.北京:高等教育出版社,2007.[6] 姜礼尚.偏微分方程选讲[M].北京:高等教出版社,1997.[7] 谷超豪,李大潜,陈恕行.数学物理方程[M].3版.北京:高等教育出版社,2012.[8] BradG.Osgood.LecturesontheFouriertransformanditsapplications[M].Providence,RhodeIsland:AmericanMathematicalSociety,2019,33.Diracδ-functionanditsrelatedapplicationsZHENGShen zhou,KANGXiu ying(1.CollegeofScience,BeijingJiaotongUniversity,Beijing100044,China;2.DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:ItisindicatedthatDiracδ-functionisacontinuationofthediscreteKroneckerδ-function,whichplaysanimportantroleinbothmathematicsandphysics.Inthispaper,theprecisedefinitionofDiracδ-functionisintroducedbasedontheconceptofgeneralizedfunctions,anditisprovedthattheDiracδ-functionisnotausualfunctionintheLebesguesenseoflocalintegrableone.Tothisend,theDiracδ-functionishereapproximatedinthesenseofweaklimitbymakinguseofthesequencesoftheunitrectangleimpulsefunctions,Gaussfunctions,Bell(下转77页)第7期胡 立:硬币“跳舞”的动力学分析77 同时,实验所测得的全过程时间比较短,这是因为实验过程中液膜破裂并不完全,瓶口与硬币的接触部分仍有一部分残留的液膜.倘若在理论模型中的液膜破裂后运动过程也加入部分表面张力,则理论模型的全过程时间会更接近实验测定值.图5 等差地改变放置误差Δx时H与t的理论关系曲线在图5中,等差地改变放置误差Δx,发现硬币所能达到的最大高度Hmax随着Δx的增大而增大.这与我们的物理直觉是相符的,放置误差越大,瓶内压强提供的向上支持力力臂(R+Δx)越大,硬币翘起的角加速度就越大,硬币更容易翘起且翘起更快,进而在液膜破裂时积累了更大的角速度,能够达到的最大高度Hmax也随之增大.3 结论本文通过提出“放置误差”这一重要概念,从动力学的角度,对硬币“跳舞”的过程进行了分析,推导出硬币运动的二阶常微分方程,通过数值计算发现硬币翘起的最大高度与转动全程时间都与放置误差存在密不可分的联系.放置误差越大,硬币翘起的最大高度就越大,转动全程所花的时间越少,并且通过实验验证了理论模型的正确性.参考文献:[1] 庆秉承,刘萍,袁识博,等.置于冷瓶口硬币的弹起现象研究[J].大学物理,2019,38(11):52 56.[2] 陶封邑,庄洋,黄敏,等.一个有趣的热力学问题:硬币何时“翩翩起舞”[J].大学物理,2019,38(12):58 61.[3] 漆安慎,杜婵英.普通物理学教程力学[M].北京:高等教育出版社,1997:201 207.DynamicanalysisofdancingcoinHULi(DepartmentofPhysics,BeijingNormalUniversity,Beijing100875,China)Abstract:Fromtheperspectiveofdynamics,thispaperconductsatheoreticalanalysisonthethirdproblemofthe2018InternationalYoungPhysicists’Tournament(IYPT2018),“DancingCoin”,andobtainsthechangeintheheightofthecoinovertimeduringasinglebeating.Atthesametime,theconceptof“placeerror”ispro posed,andtheinfluenceofcoinplaceerroronthecoin’stiltingheightisfurtherdiscussed.Itisfoundthatthegreatertheplaceerror,thefasterthecoinwillrotateandthegreaterthemaximumheightofthecoinwillbereached.Intheexperiment,theprocessofcoindancingunderdifferentplaceerrorswasrecordedwithahigh-speedcamera,andsoftwaretrackerwasusedtotrack.Thecomparisonbetweentheexperimentalresultsandthetheoreticalmodelverifiesthecorrectnessofthetheoreticalmodel.Keywords:dynamics;IYPT;dancingcoin;placeerror(上接29页)shapedfunctionsandSinc-functions,respectively.Inaddition,itischeckedthattheDiracδ-functionisobtainedasageneralizedderivativeoftheHeavisidefunction,anditshigherderivativeisalsoshown.Moreover,theconvolutions,scales,compoundtransformations,orthogonalityandCombDiracfunctionsarerecalled,respectively.Fi nally,therelationshipbetweenDiracδ-functionandgeneralizedFouriertransformisintroduced,andwepresentanapplicationtosolvetheDirichletboundaryvalueproblemofthePoissonequation.Keywords:Diracδ-function;generalizedfunction;weaklylimits;generalizedFouriertransform;Greenfunc tion。
狄拉克delta函数狄拉克(Dirac)δ函数是由英国理论物理学家保罗·狄拉克提出的一种特殊的数学函数,一种奇异函数。
狄拉克δ函数在物理、工程和数学等领域起着重要的作用。
它在量子力学、信号处理、微积分和控制工程等领域具有广泛的应用。
狄拉克δ函数由以下性质定义:∫δ(x)dx = 1∫f(x)δ(x−a)dx = f(a)这意味着狄拉克δ函数是一个以0为中心,并在x=0处取无穷大值的奇异函数。
它在其他地方为0。
通过与其他函数的乘积进行积分运算,可以得到在特定点处取有限值的结果。
狄拉克δ函数在量子力学中的应用非常重要。
在量子力学中,波函数描述了粒子的位置和性质。
波函数的平方表示了在给定位置上找到粒子的概率。
狄拉克δ函数可以用来描述点状粒子,例如电子或光子。
在空间中的给定位置上,粒子可以被认为是局部集中的,因此可以使用狄拉克δ函数来描述其位置。
例如,假设有一个处于位置a的电子,其波函数可以表示为Ψ(x)。
那么,当我们在位置a处测量电子的位置时,根据量子力学原理,有一个非常高的概率它将处于a附近的一个微小区域内。
通过使用狄拉克δ函数,我们可以将测量电子位置的结果表示为Ψ(a)。
狄拉克δ函数还可以用来解决微积分中的问题,尤其是当涉及到奇异函数、积分和广义函数时。
例如,在积分运算中,狄拉克δ函数可以用来表示极限。
狄拉克δ函数可以与其他函数进行卷积运算。
卷积运算用于描述两个函数之间的关系。
通过与一个函数进行卷积,我们可以将狄拉克δ函数应用于另一个函数,并得到一个新的函数作为结果。
在信号处理中,狄拉克δ函数被广泛用于描述连续信号和离散信号之间的关系。
通过狄拉克δ函数,我们可以将一个连续信号转换为离散信号,并将离散信号转换为连续信号。
狄拉克δ函数还与控制工程密切相关。
在控制系统中,经常需要对信号进行滤波和处理。
通过将狄拉克δ函数应用于输入信号,我们可以估计系统对这个信号的响应。
这对于设计和分析控制系统非常重要。
狄拉克和他的δ函数弘扬数学文化,推动数学教育•本文选自《数学文化》第6卷第1期如果让我选一个“最优美的函数”的话,我会选“狄拉克δ 函数”。
1狄拉克δ 函数为数学家、物理学家及工程技术人员所熟悉;它由英国科学家保罗·狄拉克引进,因而得名。
保罗· 狄拉克保罗· 狄拉克(Paul Adrien Maurice Dirac)1902年8月8日出生于英国的布里斯托尔(Bristol),就读于主教路(Bishop Road)小学,在和布里斯托尔大学合办的Merchant Venturers 男子技术学校(现已不存在)读完中学,之后在布里斯托尔大学工学院电子工程及应用数学专业以优异成绩毕业,最后于1926 年在剑桥大学圣约翰学院取得物理博士学位。
有两件事足以表明狄拉克在学术界的地位:英国剑桥大学有一个灿耀得无与伦比的卢卡斯数学荣誉讲座教授职位,于1663 年根据当时著名的大学议会议员亨利· 卢卡斯(Henry Lucas)的捐款和遗愿而设立。
曾荣登此宝座的有大名鼎鼎的牛顿和霍金。
1932 年,30 岁的狄拉克便荣膺这个桂冠。
翌年,狄拉克和薛定谔(Erwin Schrödinger)一起分享了当年的诺贝尔物理奖。
我通常认为狄拉克是一个“工程物理数学家”。
在向大家作更详尽的解释之前,先让我们一起来简要地回顾他的δ 函数的背景和简史。
对于工程技术人员、物理学和应用科学家们来说,下面这两个式子算是定义了δ函数:这两个式子一目了然且功能巨大:对实轴 R 上的任何连续函数 f(x) 和任何实数 r 都有这实在太好用了,不是吗?数学家对此不以为然,因为它不是一个常义下的标准实值函数。
它只是一种广义函数,因而需要把它的定义严格化。
现在知道,可以把δ 函数严格地定义为一种测度:对定义在实轴上任意连续函数f(·),可以令δ 为满足Lebesgue–Stieltjes 积分的一种测度,其中 H(x) 是 Heaviside 阶梯函数。