10.1狄拉克函数-武汉大学数学物理方法
- 格式:pdf
- 大小:193.20 KB
- 文档页数:17
《数学物理方法》课程教学大纲(供物理专业试用)课程编码:140612090学时:64 学分:4开课学期:第五学期课程类型:专业必修课先修课程:《力学》、《热学》、《电磁学》、《光学》、《高等数学》教学手段:(板演)一、课程性质、任务1.《数学物理方法》是物理教育专业本科的一门重要的基础课,它是前期课程《高等数学》的延伸,为后继开设的《电动力学》、《量子力学》和《电子技术》等课程提供必需的数学理论知识和计算工具。
本课程在本科物理教育专业中占有重要的地位,本专业学生必须掌握它们的基本内容,否则对后继课的学习将会带来很大困难。
在物理教育专业的所有课程中,本课程是相对难学的一门课,学生应以认真的态度来学好本课程。
2.本课程的主要内容包括复变函数、傅立叶级数、数学物理方程、特殊函数等。
理论力学中常用的变分法,量子力学中用到的群论以及现代物理中用到的非线性微分方程理论等,虽然也属于《数学物理方法》的内容,但在本大纲中不作要求。
可以在后续的选修课中加以介绍。
3.《数学物理方法》既是一门数学课程,又是一门物理课程。
注重逻辑推理和具有一定的系统性和严谨性。
但是,它与其它的数学课有所不同。
本课程内容有很深广的物理背景,实用性很强。
因此,在这门课的教学过程中,不能单纯地追求理论上的完美、严谨,而忽视其应用。
学生在学习时,不必过分地追求一些定理的严格证明、复杂公式的精确推导,更不能死记硬背,而应重视其应用技巧和处理方法。
4.本课程的内容是几代数学家与物理学家进行长期创造性研究的成果,几乎处处都闪耀创新精神的光芒。
教师应当提示学生注意在概念建立、定理提出的过程中所用的创新思维方法,在课堂教学中应尽可能地体现历史上的创造过程,提高学生的创造性思维能力。
二、课程基本内容及课时分配第一篇复数函数论第一章复变函数(10)教学内容:§1.1.复数与复数运算。
复平面,复数的表示式,共轭复数,无穷远点,复数的四则运算,复数的幂和根式运算,复数的极限运算。
《数学物理方法》课程教学大纲Method of Mathematics and Physics学时数:72学时学分数:4学分适用专业:物理学、光信息科学与技术执笔者:杨灵娥编写日期:2004年11月一、课程的性质、目的和任务数学物理方法是本科物理专业的一门重要的必修课程。
它是继高等数学后的一门数学基础课程,是学习电动力学、量子力学、统计物理等理论物理课程及无线电类有关课程的基础。
本课程将涉及很多物理问题,尤其在数学物理方程部分,如电学、热传导、粒子扩散和波动传播等,但课程重点仍是数学计算方法。
通过本课程的学习,使学生掌握数学物理方程和特殊函数的基本理论和计算方法,并能将数学结果联系物理实际,加深对物理理论的理解。
本课程应把重点放在培养学生正确地理解和运用基本概念和基本方法上,注重提高学生运用数学知识解决较复杂的物理问题的能力。
二、课程教学的基本要求(一)复变函数1. 理解复数的三种表示方式,并能利用复数的几何表示及欧拉公式熟练进行三种形式之间的转换。
2. 掌握复数的运算规则并能灵活运用。
3. 理解复变函数的导数和解析的概念。
4. 能利用柯西-里曼条件判断函数是否解析,并能运用此条件由解析函数的实部或虚部求出该解析函数。
(二)复变函数的积分1. 理解复变函数沿曲线积分的概念,理解单连通与复连通区域的柯西定理、柯西公式的内容。
2. 能应用复变函数积分的概念计算积分,能利用柯西定理和柯西公式来计算复变函数的积分。
(三)幂级数展开1. 能熟练运用展开公式将解析函数展开成泰勒级数,并能利用已知的解析函数的泰勒展开式将其它的解析函数展开成泰勒级数或洛朗级数。
2. 会判断幂级数的收敛范围。
正确地将孤立奇点进行分类。
(四)留数定理1.理解函数在孤立奇点的留数的意义,熟练掌握留数的计算方法。
2.用留数定理计算复变函数的回路积分和三种类型的实变函数定积分。
(五)傅里叶变换1.能熟练地求出所给函数傅里叶变换,知道傅里叶变换的性质。
第五章 Green 函数前几章主要讲授了拉普拉斯、波动方程、热传导等齐次方程的求解,对于这类方程,求解区域非常规则(直角坐标系、球坐标系、柱坐标系),并且方程为齐次的,利用分离变量法求解非常方便。
但对于非齐次方程,例如 ()t x f u ,2=∇,分离变量法不再适用,本章主要采用Green函数法求解线性非其次方程。
本章主要内容:1、δ函数2、Laplace 方程的Green 函数3、Helmholtz 方程的Green 函数4、波动方程的Green 函数法§5.1 δ函数一、δ函数的定义()⎩⎨⎧≠=∞+=000x x x ,,δ其积分 ()()1==∫∫+−+∞∞−εεδδdx x dx x性质()()()0f dx x x f =∫∞∞−δ0+εδ(x)x−ε或者 ()⎩⎨⎧≠=∞=−000,0,x x x x x x δ其积分 ()()10000=−=−∫∫+−∞∞−εεδδx x x x x x性质()()()00x f dx x x x f =−∫∞∞−δ二、物理意义1、直导线的电荷密度:假设一个导线AB 上电量分布为()x e ,其电荷密度()()()()x e xx e x x e x x 'lim0=Δ−Δ+=→Δρ 2、单位点电荷:假设导线AB 上只有在中心存在一个单位点电荷,即()⎩⎨⎧=≠=0,10,0x x x e 电荷密度()⎪⎪⎩⎪⎪⎨⎧=∞→Δ=Δ⎟⎠⎞⎜⎝⎛Δ=Δ⎟⎠⎞⎜⎝⎛Δ−⎟⎠⎞⎜⎝⎛Δ≠=0,12220,0x x x x e x x e x e x x ρ 由δ函数的定义可知,单位点电荷的密度就是δ函数。
()()1==∫∫+∞∞−+∞∞−dx x dx x δρ因此,()x δ可以看成是单位点电荷密度。
当单位点电荷放在0x x =处,点电荷密度可写为()()0x x x −=δρ当电荷量为q 的点电荷放在0x x =处,点电荷密度可写为()()0x x q x −=δρ 三、δ函数可以看成普通函数的弱极限极限{}*x x n →:对于0*0,0εε<−>>∃>∀x x N n N n 时,当函数(){}()x fx f n *→:对于时,当N n N >>∃>∀0,0ε()()ε<−x f x f n *上述严格定义的极限称为强极限。
狄拉克函数1. 引言狄拉克函数(Dirac Delta function)由英国物理学家保罗·狄拉克(Paul Dirac)在20世纪初提出。
狄拉克函数是一种特殊的分布函数,具有极其奇特的性质,常常用来描述粒子或波的位置、质量、速度等特征。
狄拉克函数在物理学、工程学、数学等领域中有着广泛的应用,是一种非常重要的数学工具。
2. 定义与性质狄拉克函数可以通过多种方式定义,以下是其中一种常用的定义方式:定义 1:狄拉克函数是一种以0为中心,无限高、无限窄的脉冲函数,其函数形式可以表示为:\[ \delta(x-a) = \begin{cases} +\infty, & x = a \\ 0, & xeq a \end{cases} \]其中,a为常数。
根据定义可知,狄拉克函数在除了a以外的所有点上都等于零,而在a点上取无限大值。
由于狄拉克函数具有这种集中无穷大的特性,它被称为一个“广义函数”(generalized function),而非传统意义上的函数。
狄拉克函数有以下一些重要的性质:性质 1:归一性\[ \int_{-\infty}^{\infty} \delta(x-a) \, dx = 1 \]即狄拉克函数在整个实数轴上的积分为1。
性质 2:积分性质对于任意的函数f(x),有以下积分关系:\[ \int_{-\infty}^{\infty} \delta(x-a) f(x) \, dx = f(a) \]这个性质表明,在狄拉克函数参与的积分运算中,狄拉克函数会起到“滤波”作用,将函数f(x)在x=a处的值提取出来。
性质 3:位移性质\[ \delta(x-a) = \delta(-x+a) \]这个性质表明,狄拉克函数关于中心点a具有对称性。
性质 4:缩放性质\[ \delta(bx) = \frac{1}{|b|} \delta(x) \]这个性质表明,狄拉克函数可以通过改变自变量的比例来调整脉冲的窄度。
各能级被电子占据的数目服从特定的统计规律这个规律就是费米-狄拉克分布规律。
一般而言,电子占据各个能级的几率是不等的。
占据低能级的电子多而占据高能级的电子少。
统计物理学指出,电子占据能级的几率遵循费米的统计规律:在热平衡...状态下,能量为E 的能级被一个电子占据的几率为:f(E) 称为电子的费米(费米-狄拉克)分布函数,k 、T 分别为波耳兹曼常数和绝对温度。
E fermi 称为费米能级,它与物质的特性有关。
只要知道了费米能级E fermi 的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。
费米分布函数的一些特性: 【根据f(E)公式来理解】第一, 费米能级E fermi 是一种用来描述电子的能级填充水平的假想能级...., E f 越大,表示处于高能级的电子越多;E f 越小,则表示高能级的电子越少。
(E f 反映了整体平均水平)第二,假定费米能级E f 为已知,则f(E)根据f(E)式可画出 f(E) 的曲线如图所示,但要注意 因变量f(E)不像普通习惯画在纵轴,而是破天荒的画在横轴。
0 1/2 1 E费米分布函数变化曲线T 3 >T 2 >T 1 >T 0第三,费米能级E f 在能级图中的位置与材料掺杂情况有关。
对于本征半导体,E f 处于禁带E g 的中央,在绝对零度时,在导带E c 中E >E f ,f(E)=0;在价带E v 中E <E f ,f(E)= =1,表明电子全部处于价带E v 之中,因而此时半导体是完全不导电的。
第四,在T=0K 处于绝对零度的前提下,若E <E f , exp →0,则f(E)=1;当T=0K 时,若E >E f ,则f(E)=0。
可见,在绝对零度时,能量比 E f 小的能级被电子占据的几率是100%,而能量比E f 大的能级被电子占据的几率为零。
即所有低于E f 的能级都被占满,而所有高于E f 的能级都空着。
因而费米能级E f 是在绝对零度时电子所具有的最大能量,是能级在绝对零度时能否被占据的一个界限,因而它是一个很重要的参数。
圆盘电荷密度函数狄拉克函数狄拉克函数在物理学中有着重要的应用,特别是在描述电荷分布时。
圆盘电荷密度函数可以用狄拉克函数来描述,这在电场和电势问题中是一个常见的情况。
首先,让我们来看看狄拉克函数是什么。
狄拉克函数,通常表示为δ(x),是一种广义函数,其定义如下:δ(x) = 0, x ≠ 0。
δ(x) = +∞, x = 0。
∫δ(x)dx = 1。
狄拉克函数在x=0时的取值是无穷大,但是在其他地方都是0。
其积分在整个实数轴上等于1。
这使得狄拉克函数在描述点电荷或者局部电荷密度时非常有用。
现在我们来考虑圆盘电荷密度函数。
假设有一个半径为R的均匀带电圆盘,其电荷面密度为σ,我们可以用狄拉克函数来描述这个电荷分布。
圆盘的电荷密度函数可以表示为:ρ(r,θ) = σδ(r-R)。
其中,ρ(r,θ)是圆盘上某一点的电荷密度,r是该点到圆盘中心的距离,θ是极角。
δ(r-R)表示狄拉克函数,描述了电荷密度在圆盘上的分布情况。
使用狄拉克函数描述圆盘电荷密度函数的好处在于,我们可以利用狄拉克函数的性质来简化电场和电势的计算。
通过将狄拉克函数代入相关公式,我们可以得到圆盘电荷所产生的电场和电势分布。
另外,我们还可以通过狄拉克函数的性质来分析圆盘电荷的电场特性,比如计算电场的散度和旋度,以及利用高斯定律来计算圆盘电荷所产生的电场强度。
这些分析可以帮助我们更好地理解圆盘电荷的行为。
总之,狄拉克函数在描述圆盘电荷密度函数时具有重要的作用,它简化了电场和电势的计算,并且帮助我们深入理解圆盘电荷的电场特性。
通过合理应用狄拉克函数,我们可以更好地研究和应用电荷分布在物理学和工程学中的问题。