七年级数学上册51相交线新版华东师大版
- 格式:pptx
- 大小:7.69 MB
- 文档页数:14
第五章相交线与平行线5.1.1 对顶角(一)知识与技能目标1.理解对顶角的概念,能在图形中辨认对顶角.2.掌握对顶角相等的性质和它的推证过程.3.会用对顶角的性质进行有关的推理和计算.二、教学重点、难点(一)教学重点: 对顶角的概念,对顶角的性质与应用.(二)教学难点: 在较复杂的图形中准确辨认对顶角.三、教学方法问题情境——探究教学法四、教具学具准备投影仪或电脑、三角尺.教学过程一、创设情境,引入课题导语:在日常生活中我们可以看到许许多多的相交线,相信同学们对此并不陌生,请看投影打出的图片(投影片),然后引导学生观察,并回答问题.问题1:请观察后找出图片中的相交直线、平行线。
问题2:你能再举出一些身边的相交直线、平行线的实例吗?【板书】5.1.1 对顶角二、探究新知,讲授新课如果两条直线有一个公共点,就说这两条直线相交,公共点叫做这两条直线的交点。
直线AB、CD相交于点O。
问题:两条相交直线.形成的小于平角的角有几个?问题:请同学们画出任意两条相交直线,用量角器量一量4个角的度数,看看这四个角有什么关系?1.对顶角的概念学生活动:观察右图,学生举手回答,教师统一学生观点对顶角:如果两个角有一个公共顶点,并且他们的两边分别互为反向延长线,那么这样的两个角叫做对顶角。
学生活动:让学生找一找右图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.练习1、下列各图中∠1、∠2是对顶角吗?为什么?对顶角的性质: 对顶角相等.例1、如图,直线a、b相交,∠1=30°,求∠2、∠3、∠4的度数。
解:由邻补角的定义,可得∠2=180°-∠1=180°-30°=150°由对顶角相等,可得∠3=∠1=30°∠4=∠2=150°练习2变题:若∠1= m°,求各角的度数。
例2、如图,若∠1:∠2=2:7 ,求各角的度数。
华师大版数学七年级上册第5章《相交线与平行线》说课稿一. 教材分析华师大版数学七年级上册第5章《相交线与平行线》是学生在学习几何初步知识后的进一步拓展。
本章主要介绍了相交线与平行线的概念、性质及运用。
通过本章的学习,学生能够理解并掌握相交线与平行线的基本性质,提高空间想象能力,并为后续几何学习打下基础。
二. 学情分析七年级的学生已经具备了一定的几何基础,对基本的几何概念和性质有所了解。
但学生在空间想象方面还存在一定困难,对相交线与平行线的认识尚浅。
因此,在教学过程中,教师需要注重引导学生建立空间观念,激发学生学习兴趣,提高学生几何素养。
三. 说教学目标1.知识与技能:学生会识别相交线与平行线,掌握它们的基本性质,并能运用所学知识解决实际问题。
2.过程与方法:通过观察、操作、交流等活动,学生能够培养空间想象能力,提高几何思维能力。
3.情感态度与价值观:学生能够积极参与课堂活动,体验数学学习的乐趣,增强对几何学科的兴趣。
四. 说教学重难点1.重点:相交线与平行线的概念及其性质。
2.难点:相交线与平行线的判定与应用。
五. 说教学方法与手段1.教学方法:采用启发式教学法、小组合作学习法、案例教学法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、模型、实物等辅助教学,提高学生的空间想象力。
六. 说教学过程1.导入:通过展示生活中常见的相交线与平行线现象,引导学生关注本节课的主题。
2.新课导入:介绍相交线与平行线的概念,引导学生理解并掌握它们的基本性质。
3.实例分析:分析实际问题,让学生运用所学知识解决,巩固所学内容。
4.课堂练习:设计相关练习题,让学生在实践中进一步理解和掌握相交线与平行线的性质。
5.小组讨论:分组讨论相交线与平行线的判定方法,培养学生的合作意识。
6.总结提升:对本节课内容进行总结,强化学生对相交线与平行线的认识。
7.课后作业:布置相关作业,让学生巩固所学知识。
七. 说板书设计板书设计如下:相交线与平行线1.相交线:两条直线在同一平面内,有一个公共点。
相交线教学目标1、经历探究对顶角、邻补角的位置关系的过程;2、了解对顶角、邻补角的概念;3、知道“对顶角相等”并会运用它进行简单的说理。
重点难点对顶角、邻补角的概念和“对顶角相等”是重点;正确区别互为邻补角与互为补角和运用“对顶角相等”说理是难点。
教学过程一、情景导入下图是一段铁路桥梁的侧面图,找出图中的相交线、平行线。
“米”字形中的线段都相交,“米”字形中间的线段都平行,等等。
相交线和平行线都有许多重要性质,并且在生产和生活中有广泛应用。
我们将在前一章的基础上,进一步研究直线间的位置关系,同时还要介绍一些有关推理证明的常识,为后面的学习做些准备。
二、邻补角和对顶角下面是一把剪刀,你能联想到什么几何图形?两条直线相交,如图。
上图中两条相交直线形成的四个角中,两两相配共能组成六对角,即:∠1和∠2、∠1和∠3、∠1和∠4、∠2和∠3、∠2和∠4、∠3和∠4。
量一量各个角的度数,你能将上面的六对角分类吗?可分为两类:∠1和∠2、∠1和∠4、∠2和∠3、∠3和∠4为一类,它们的和是1800;∠1和∠3、∠2和∠4为二类,它们相等。
第一类角有什么共同的特征?一条边公共,另一条边互为反向延长线。
1 2 3 4 O B A C D具有这种关系的两个角,互为邻补角。
讨论:邻补角与补角有什么关系?邻补角是补角的一种特殊情况,数量上互补,位置上有一条公共边,而互补的角与位置无关。
第二类角有什么共同的特征?有公共的顶点,两边互为反向延长线。
具有这种位置关系的角,互为对顶角。
思考:〔投影3〕下列图形中,∠1和∠2是对顶角的是〔 〕A B C D注意:对顶角形成的前提条件是两条直线相交,而邻补角不一定是两条直线相交形成的;每个角的对顶角只有一个,而每个角的邻补角有两个。
三、对顶角的性质在用剪刀剪布片的过程中,随着两个把手之间的角逐渐变小,剪刀刃之间的角也相应变小,直到剪开布片。
在这过程中,两个把手之间的角与剪刀刃之间的角有什1 2 1 2 1 2 12么关系?为了回答这个问题,我们先来研究下面的问题。