当前位置:文档之家› 大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题
大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题

时间:2011-2-25 来源:<电器工业>

广东电网公司茂名电白供电局区邓恩思

近年来,我国风电已经迈向快速发展的步伐。按装机总容量计算,我国已经超过意大利和英国,成为世界第6大风电大国。大规模的风力发电必须要实现并网运行,然而由于风电自身的特点,大规模风电接入会对电网产生负面影响。由于风力资源分布的限制,风电场大多建设在电网的末梢,网络结构相对薄弱,风电场并网运行必然会影响到电网的电压质量和电压稳定性。由于风电本身具有不可控、不可调的特征,造成风电出力的随机性和间歇性。而电网必须按照发、供、用同时完成的规律,连续、安全、可靠、稳定地向客户提供频率、电压合格的优质电力。风电场并网的研究内容涉及到电能质量、电压稳定性、暂态功角稳定性及频率稳定性等。本文主要介绍大型风电场并网对电力系统的影响及对策。

一、大型风电场运行的特点

1、风能的能量密度小,为了得到相同的发电容量,风力发电机的风轮尺寸比相应的水轮机大几十倍。

2、风能的稳定性差。风能属于过程性能源,具有随机性、间歇性、不稳定性,风速和风向经常变动,它们对风力发电机的工况影响很大。为得到较稳定的输出电能,风力发电机必须加装调速、调向和刹车等调节和控制装置。

3、风能不能储存。对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

4、风轮的效率较低。风轮的理论最大效率为59.3%,实际效率会更低一些,统计显示,水平轴风轮机最大效率通常在20%~50%,垂直轴风轮机最大效率在

30%~40%。

5、风电场的分布位置经常偏远。例如,我国的风电资源虽然比较丰富,但多数集中在西北、华北和东北“三北地区”。

由于风能具有以上特点,使得利用风能发电比用水力发电困难得多。

总之,风电的最大缺点是不稳定,风电系统所发出的电能若直接并入电网将影响局部电网运行的稳定性。

二、大型风力发电场并网运行引起的问题分析

风电场接入电网一般有两种方式,一种是传统的并网方式,单个风电场容量均比较小,作为一种分布式电源,分散接入地区配电网络,以就地消纳为主;另一种是在风能资源丰富区域集中开发风电基地,通过输电通道集中外送,如欧美国家规划中的海上风电和我国正在开发的内蒙古、张家口、酒泉和江苏沿海千万千瓦级风电基地。风电机组单机容量和并网运行的风电装机规模越来越大,对系统的影响也越来越明显。与小型风电场不同,大型风电场接入电网后,风电场对电网

的影响已从简单的局部电压波动等问题发展到对电网调节控制(调频调峰、经济调度)、电能质量、电网稳定等诸多方面。

1、对电网调节控制的影响

电网传统的调度(发电)计划的编制及实施,完全基于电源的可靠性、负荷的可预测性。当系统风电容量达到一定的规模后,风电的随机性和不可预测性会给传统的调度(发电)划的安排和实施带来问题。

我国东南沿海地区风力资源丰富,随大规模风电场接入其所属电网,首先将带来电网的调节控制问题。风电场的输出功率曲线很重要,与风的大小、方向都相关。各地区风电场的输出功率曲线会有差异,但对电网调节有利的特性情况较少见到,如输出功率曲线与电网负荷特曲线性相近;而较多的情况是对电网不利的特性,如:①午夜时段输出功率较高,而此时电网处在低谷时段。午后时段输出功率很低,而此时电网处在高峰时段。②最高、最低出输出功率差一般较大,可能在50%以上。③基本无调节能力,且其功率呈频繁波动状态。这样,其输出功率特性对电网负荷曲线在非高峰时段成为“反调节”性质,即增加了电网的峰谷差,加大了对电网调峰调频能力的要求,从而增加了电网调节控制的难度。

电网状况也不乐观。①沿海各大区域电网(如华东、南方等)均属千万kW级或亿kW级,按理接纳目前规模的风电应无问题,但实际电网虽名为“统一调度”、而从调节控制角度而言更多的是“互联”性质,即属分块(地区)控制性质:系统的调峰及频率调节控制按统一规则将任务分配到块(地区)、考核到块(地区);考核一般又与经济利益挂钩。这样,具有地区性质的风电场的接入将由该块(地区)电网承接、消化。②地区电网的承接能力决定于该电网的具体情况,对以火电比重较大的电网如上海、山东等,调节能力差,承接能力就较小。对大受端的上海电网而言,因多种原因今后接受区外来电的比重将越来越大,如25%及以上;一般区外来电的调节性能又较差;更增加了电网调节控制的难度。③大城市国际化的步伐加快使地区负荷特性向负荷率更低、峰谷差更扩大发展。作为“反调节”的风电场更增加了对电网的调节控制的压力。

风电场高峰输出功率替代了电网常规能源机组,但因其“反调节”性质而使非高峰时段特别是低谷时段增加了对电网调节能力的要求。于是,电网原有调峰能力的余额,即调峰能力扣除负荷峰谷差后的裕量部分(特别在夏季)、其非高峰时段的电网调节能力余额,成为约束,决定了电网允许接入的最大“综合风电场容量”。

2、风电接入对电网电压的影响

由于风速为随机变化的量,使得风电场的输出功率具有波动性,风电机组的频繁启停、切换,产生电压的波动、闪变,从而将影响局部电网的电能质量;风电场大量采用电子器件,给电网带来谐波,如并联电容与电抗元件发生谐振会放大谐波效应。必须重视和计算分析风电场造成局部电网的电压波动、闪变和谐波污染问题。目前,由于风电场的规模较小,如上海、南澳电网等,大都在3%及以下,还不能构成重大影响。但随规模的扩大,如在10%及以上时,通过对风电场在不同运行工况下的系统仿真计算,表明电压波动和闪变等可能超出国家有关标准。

风力发电机如采用异步发电机,在运行时需要从系统吸收无功功率来建立磁场,从而使局部电网的电压水平有明显的下降。风电场的无功需求使负荷特性的极限功率减少,降低了静态电压稳定性。由于风电场大多采用异步发电机,变速恒频风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率,风电场的无功仍可看作是一个正的无功负荷,因此风电场可能引起电压稳定性降低或电压崩溃现象。但只要系统的无功供给足够多,则整体上可以认为风电场的并网增强了系统的静态电压稳定性。随着接入风电容量的增大,风电场从系统中吸收的无功功率逐渐增大,如果系统不能提供充足的无功,网内相关节点电压会逐渐降低。在电网规划没有与风电规划协调发展时,往往电网接纳风电的能力不能适应风电规划的发展,接入的风电场容量受到电网自身条件的限制。

3、风电接入对电网稳定性的影响

风力发电系统通常接入电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。当风电注入功率增大时,风电场附近局部电网的电压和联络线功率可能会超出安全范围,严重时会导致电压崩溃。

在异步发电机并网系统中,风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率。因此,为了补偿风电场的无功功率,每台风力发电机都配有功率因数校正装置,目前常用的是分组投切的并联电容器。电容器的无功补偿量的大小与接人点电压的平方成正比,当系统电压水平较低时,并联电容器的无功补偿量迅速下降,导致风电场对电网的无功需求上升,进一步恶化电压水平,严重时会造成电压崩溃。

由于异步发电机的功率恢复特性,当电网发生短路故障时,若故障排除不及时,也将容易导致暂态电压失稳。另外,随着风电场规模的不断扩大,风电场在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加显著,严重情况下将会使系统失去动态稳定性,导致整个系统的瓦解。

4、对电能质量的影响

随着越来越多的风电机组并网运行,风力发电对电网电能质量的影响引起了广泛关注。风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率呈波动性,可能会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。

风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。当风速超过切出风速时,风机会从额定出力状态自动退出运行。如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围内,因此风机在正常运行时也会给电网带来闪变问题。目前,电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。

风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。另一种是风力发电机的并联补偿电容器可能和线路电

抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。

5、风电接入对继电保护的影响

为了减少风电机组的频繁投切对接触器的损害,在有风期间风电机组都保持与电网相连,当风速在起动风速附近变化时,允许风电机组短时间电动机运行,因此风电场与电网之间联络线的功率流向有时是双向的。所以,风电场继电保护装置的配置和整定应充分考虑到这种运行方式。尽管风力发电提供的故障电流非常有限,但有可能影响现有配电网络保护装置的正确运行,这在最初的配电网保护配置和整定时是没有考虑到的。

6、风电接入对电力系统运行成本的影响

风力发电的运行成本很低,与火电机组相比可以忽略不计。但是,风力发电是一种间歇性能源,风电场的功率输出具有很强的随机性,目前的预报水平还不能满足电力系统实际运行的需要,在做运行计划时风电是作为未知因素考虑的。为了保证风电并网以后系统运行的可靠性,因此需要在原来运行方式的基础上,额外安排一定容量的旋转备用以响应风电场发电功率的随机波动,维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本;另一方面又增加了电力系统的可靠性成本。

三、小结

根据风电场的运行经验,大规模风电并网带来的主要问题:一是风速的波动性和随机性引起风电场出力随时间变化而导致的安全隐患;二是薄弱系统的稳定性与电能质量问题。由于风能资源有着间歇性和随机性的特点,因此大规模的风电并入电网将对电网的规划建设、运行调度、分析控制、经济运行和电能质量等产生一定的影响。

为保证电网、风电场的安全,必要时应该控制风电场接入系统的容量。国内外学者和工程技术人员通常采用以下2个指标来表征电网可承受的风电场并网容量:(1)风电穿透功率极限;(2)风电场短路容量比。适当提高电容器的补偿容量,有助于提高风电系统短路故障后的稳定性,进一步可以选择安装动态无功补偿装置来提供动态的电压支撑,改善系统的电压稳定性。限制接入一个点的风电容量,这样就可以在该点发生故障时,尽量降低其对其它风电场的影响,即采取“分散接入”的原则。在做好风电规划的基础上引入合适的新技术,如轻型直流输电,储能装置来减少对日益增长的风电规模给电网带来的影响。另外,为了降低风电接入对电网调度的影响及对备用容量的要求,进行风电功率预测十分必要和迫切。

参考文献:

[1] 傅旭,李海伟,李冰寒.大规模风电场并网对电网的影响及对策综述[J]. 陕西电力,2010,(01):53-57

[3] 梁国艳.大型风力发电场并网运行引起的问题及对策[J].大众用

电,2010,(01):20-21

风电场接入电力系统技术规定

《风电场接入电力系统技术规定》全文 所属分类: 新闻资讯来源: 国家标准化管理委员会更新日期: 2012-09-20 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准实施后代替GB/Z 19963-2005。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司,南方电网技术研究中心,中国电力工程顾问集团公司。 本标准主要起草人:王伟胜,迟永宁,戴慧珠,赵海翔,石文辉,李琰,李庆,张博,范子超,陆志刚,胡玉峰,陈建斌,张琳,韩小琪。 风电场接入电力系统技术规定 1 范围 本标准规定了风电场接入电力系统的技术要求。 本标准适用于通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场。 对于通过其他电压等级与电力系统连接的风电场,可参照执行。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 12325-2008 电能质量供电电压偏差 GB/T 12326-2008 电能质量电压波动和闪变 GB/T 14549-1993 电能质量公用电网谐波 GB/T 15945-2008 电能质量电力系统频率偏差 GB/T 15543-2008 电能质量三相电压不平衡 GB/T 20320-2006 风力发电机组电能质量测量和评估方法 DL 755-2001 电力系统安全稳定导则 DL/T 1040-2007 电网运行准则 SD 325-1989 电力系统电压和无功电力技术导则 3 术语和定义 下列术语和定义适应于本文件。 4、风电机组wind turbine generator system; WTGS 将风的动能转换为电能的系统。

风电生产运营管理

风电生产运营管理1、生产系统及生产机构的设置 生产指挥系统是风电场运行管理的重要环节,它的正常运转能有力 地保证指挥有序,有章可循,层层负责,人尽其职,也是实现风电 场安全生产,提高设备可利用率增加发电量的重要手段;更是严格 贯彻落实各项规章制度的有力保证。风力发电作为一种新兴的发电 企业形式,因其自身发展和生产性质的特点,还未形成一种象火电 一样的较为统一和固定的组织机构形式,因此风电场的生产管理在 机构设置上必须充分适应风力发电的行业特点,特别是大型风电场,必须要做到机构精干、指挥有力、工作高效。风电公司必须明确一 名有业务能力的领导分管安全生产运营工作,主抓风机运行、设备 维护、生产技术、计划、经济指标及科技方面的工作。在机构设置 上可以成立一个大生产单位如运行部,负责风场的生产运行、消缺 维护、安健环和各项技术及经济工作,配备部门经理、副经理(或经 理助理)、专工、值长、运行维护员等管理和生产岗位。如果分细一点,可以成立安全生产技术部和风电场两个部门,配备部门经理、 风场场长、专工、值长、运行维护员等管理和生产岗位。 2、风电场运行的主要方式及风电场运行管理

风电场运行管理工作的主要任务就是提高设备可利用率和供电可靠性,保证风电场的安全经济运行和工作人员的人身安全,保证所发 电能符合电网质量标准,降低各种损耗,力争多发电量,提高经济 效益。生产管理工作中必须以安全生产为基础,以经济效益为中心,全面扎实地做好各项工作。 随着中国风电突飞猛进的发展,目前国内几大集团的风电场运行方 式也不尽相同,各家也都在探索更好的风电生产管理模式。实际工 作中采用的主要形式有;风电场业主自行运行维护和委托专业运行 公司承包运行维护。对于大多数风电公司来说,从企业长远发展考虑,由各风电公司自行负责运行维护符合长远利益。 风电场运行工作的主要内容包括两个部分,分别是风力发电机组的 运行维护和场区升压变电站及相关输变电设施的运行及维护。风力 发电机组的正常运行工作主要包括:监视风力发电机组的各项参数 变化及运行状态,对发现异常变化的风机采取相应的处理措施,对 风电场设备进行定期巡视。 3、风电场安全管理

华北区域风电场并网运行管理实施细则

华北区域风电场并网运行管理实施细则 第一章总则 第一条为保障电力系统安全稳定运行,落实国家可再生能源政策,规范风电并网调度运行管理,依据《中华人民共和国电力法》、《中华人民共和国可再生能源法》、《电力监管条例》、《电网调度管理条例》、《风电场接入电力系统技术规定》GB/T 19963-2011、《风电场功率预测预报管理暂行办法》(国能新能…2011?177号)、《发电厂并网运行管理规定》(电监市场…2006?42号)等制定本细则。 第二条本细则应用范围为已并网运行的,由地级及以上电力调度机构调度的风电场。县电力调度机构及其调度的风电场可参照执行。 新建风电场自第一台风电机组并网当日起,六个月后参与本细则;扩建风电场自第一台风电机组并网当日起,进行参数设臵更新,自动纳入本细则考核管理,免除因扩建期间配合主站调试引起的技术管理考核。 第三条风电场以工商注册公司为基本结算单元参与本细则。 第四条能源监管机构负责对风电场执行本细则及结算情况实施监管。华北区域省级及以上电力调度机构在能源监管机构授 - 1 -

权下按照调度管辖范围具体实施所辖电网内风电场参与本细则的执行与结算,运行结果报能源监管机构批准后执行,依据运行结果风电场承担相应的经济责任。 第二章调度管理 第五条风电场应严格服从所属电力调度机构的指挥,迅速、准确执行调度指令,不得以任何借口拒绝或者拖延执行。接受调度指令的并网风电场值班人员认为执行调度指令将危及人身、设备或系统安全的,应立即向发布调度指令的电力调度机构值班调度人员报告并说明理由,由电力调度机构值班调度人员决定该指令的执行或者撤销。 出现下列事项之一者,定为违反调度纪律,每次按照全场当月上网电量的1%考核,若考核费用不足10万元,则按10万元进行考核。 (一)未经电力调度机构同意,擅自改变调度管辖范围内一、二次设备的状态, 以及与电网安全稳定运行有关的安全稳定控制装臵、AGC、AVC装臵等的参数或整定值(危及人身及主设备安全的情况除外,但须向电力调度机构报告); (二)拖延或无故拒绝执行调度指令; (三)不如实反映调度指令执行情况; - 2 -

风机并网前验收要点

风机并网前验收要点 为确保风力发电机组在现场安装调试完成后,综合检验风电机组的安全性、功率特性、电能质量、可利用率和噪声水平,并形成稳定生产能力,制定本验收标准。 一、编制依据: 1、风力发电机组验收规范 GB/T20319-2006 2、建筑工程施工质量验收统一标准GB50300 3、风力发电场项目建设工程验收规程 DL/T5191-2004 4、电气设备交接试验标准GB50150 5、电气装置安装工程接地装置施工及验收规范GB50169 6、电气装置安装工程盘、柜及二次回路结线施工及验收规范GB50171 7、电气装置安装工程低压电器施工及验收规范GB50254 8、电器安装工程高压电器施工及验收规范GBJ147 9、建筑电气工程施工质量验收规范GB50303 10、风力发电厂运行规程DL/T666 11、电力建设施工及验收技术规程DL/T5007 12、联合动力风电机组技术说明书、使用手册和安装手册 13、风电机组订货合同中的有关技术性能指标要求 14、风力发电机组塔架及其基础设计图纸与有关标准 二、验收组织机构 风电机组工程调试完成后,建设单位组建验收领导小组,设组长1名、副组长4名、组员若干名,由建设、设计、监理、施工、安装、调试、生产厂家等有关单位负责人及有关专业技术人员组成。

三、验收程序 1 现场调试 (1)风力发电机组安装工程完成后,设备通电前应符合下列要求:(a)现场清扫整理完毕; (b)机组安装检查结束并经确认(内容见附表1); (c)机组电气系统的接地装置连接可靠,接地电阻经检测符合机组的设计要求(小于4欧姆); (d) 测定发电机定子绕组、转子绕组的对地绝缘电阻,符合机组的设计要求; (e) 发电机引出线相序正确,固定牢固,连接紧密; (f) 照明、通讯、安全防护装置齐全。 (2) 机组启动前应进行控制功能和安全保护功能的检查和试验,确认各项控制功能好安全保护动作准确、可靠。 (3) 检查设定风力发电机组控制系统的参数,控制系统应能完成风力发电机组的正常运行控制。 (4)风机必须通过下列试验:紧急停机试验、振动停机试验、超速保护试验。(说明:依据《DL/T5191—2004 风力发电机项目建设工程验收规程》) 2 试运行 风力发电机组经过通电调试后,进行试运行,要求试运行的时间不得小于250小时。试运行前应具备齐全的安装验收报告、调试报告等必须的报告资料,业主、设备制造商、试运行单位达成共同认可的试运行验收协议。试运行时间从所签署预验收申请表中的时间开始算起。

风电并网对电力系统的影响

风电并网对电力系统的影响 发表时间:2017-12-11T17:26:36.300Z 来源:《电力设备》2017年第23期作者:崔强谷岩刘志明[导读] 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。 (新疆新能源(集团)有限公司 830011) 摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。关键词:风电并网;电力系统;影响;措施 随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。 1 风电并网对电力系统的影响 1.1 风电并网对系统稳定性的影响 一方面,风电并网引起的稳定问题主要是电压稳定问题。风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。 另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。 1.2 风电并网对系统运行成本的影响 风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。但是风力发电的波动性和间歇性使风电场的功率输出具有很强的随机性,目前的预报水平难以满足电力系统实际的运行需要。为了保证风电并网后系统运行的可靠性,需要在原有运行方式基础上,额外安排一定容量的旋转备用,以维持电力系统的功率平衡与稳定。可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本,另一方面又增加了电力系统的可靠性成本。 1.3 风电并网对电网频率的影响 当风速大于切入风速时,风电机组启动挂网运行;当风速低于切入风速时,风电机组停机并与电网解列。当风速大于切出风速时,为保证安全,风电机组必须停机。因此,受风速变化的影响,风电机组的出力也随时变化,一天内可能有多次启动并网和停机解列。风电场不稳定的功率输出会给电网的运行带来许多问题。如果风电容量在电网总装机容量中所占比例很小,风电功率的注入对电网频率影响甚微。但是,当风电场与其他发电方式的电源组成一个小型的孤立电网时,可能会对孤立系统的频率造成较大影响。随着电网中风力发电装机容量所占的比例逐步提高,大量风电功率的波动增大了系统调频的难度,而系统频率的变化又会对风电机组的运行状态产生影响。 1.4 风电并网对电能质量的影响 风能资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量,如电压波动和闪变、电压偏差以及谐波等。 电压波动及闪变,源于波动的功率输出。由风速动力特性诱发的有功功率波动取决于当地的风况和湍流强度,频率不定;风电机组输出功率的波动主要由风速快变、塔影效应、风剪切、偏航误差等因素引起,其波动频率与风力机的转速有关。固定转速风电机组引起的闪变问题相对较为严重,某些情况下已经成为制约风电场装机容量的关键因素。风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置可能带来谐波问题;另外一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振。电压偏差问题属于电网的稳态问题。大幅度波动的风速引起风电机组出力波动较大,所以风电功率的波动导致电网内某些节点电压偏差超出国家标准规定的限值。 发电机本身产生的谐波是可以忽略的,谐波电流的真正来源是风电机组中的电力电子元件,谐波干扰的程度取决于变流装置以及滤波系统的结构状况,而且与风速大小相关。对于固定转速风电机组,在持续运行过程中没有电力电子元件的参与,几乎不会产生谐波电流。实际需要考虑谐波十扰的是变速恒频风电机组,就是因为运行过程中变速恒频风电机组的变流器始终处于工作状态。 2 改善风电并网影响的措施 2.1 利用静止无功补偿器和超导储能装置改善系统稳定性 静止无功补偿器可以快速平滑地调节无功补偿功率的大小,提供动态的电压支撑,改善系统的运行性能。将静止无功补偿器安装在风电场的出口,根据风电场接入点的电压偏差量来控制静止无功补偿器补偿的无功功率,能够稳定风电场节点电压,降低风电功率波动对电网电压的影响。 具有有功和无功功率综合调节能力的超导储能装置,代表了柔性交流输电系统的新技术方向,将超导储能装置用于风力发电可实现对电压和频率的同时控制。超导储能装置能灵活地调节有功和无功功率,为系统提供功率补偿,跟踪电气量的波动。在风电场出口安装超导储能装置装置可充分利用其综合调节能力,降低风电场输出功率的波动,稳定风电场电压。超导储能装置是一种有源的补偿装置,与静止无功补偿器相比,其无功功率补偿量对接入点电压的依赖程度小,在低电压时补偿效果更好。 2.2 利用源滤波器、动态电压恢复器改善电能质量 源滤波器、动态电压恢复器装置的主要功能是抑制电压波动和闪变。

[2011]182号国家能源局关于加强风电场并网运行管理的通知

国际能源局文件 国能新能【2011】182号 国际能源局关于 加强风电场并网运行管理的通知 各省(区、市)发展改革委(能源局)、国家电网公司、南方电网公司、华能集团公司、大唐集团公司、华电集团公司、国电集团公司、中电投集团公司、神华集团公司、中广核集团公司、中节能集团公司、水电水利规划设计总院、华锐风电科技公司、金风科技公司、东方汽轮机公司、湘电集团公司、北京鉴衡认证中心: 今年以来,我国发生多起大规模风电机组脱网事故,对电网运行安全和风电产业持续健康发展造成了不利影响。为吸取教训,防止类似事故再次发生,现就加强风电并网运行管理通知如下: 一、加强风电场建设施工管理。各开发企业应加强对参与风电场建设的施工企业与人员资质的管理和现场质量监督与检查验收。各风电场应严格按照相关标准和规程进行试验和投产验收,要针对风电场内电缆头、电压互感器等设备故障频发问题开展专项隐患排查。因设备质量和工程施工质量引发大范围事故的风电场,要立即检查评估和整改,再经测试和验收后,方可并网运行。 二、加强风电场并网运行管理。风电开发企业应规范风电场无功

补偿装置运行管理,按照要求配备无功补偿和调节装置并保障正常运转确保所属各风电场严格按照国家和行业相关标准并网运作,并具备承受一定的过电压的能力,要深入研究和完善改造场内升压站,实现风电场汇集线单向故障的快速切除、避免故障扩大。 三、提高并网运行风电机组的低电压穿越能力。新核准并网运行的风电机组应严格按照《风电机组并网检测管理暂行办法》的要求,具备低电压穿越能力的机组和风电场,开发企业应会同设备制造企业尽快制定切实可行的技术方案,在一年内完成设备或风电场的改造,使其符合并网运行要求。未按规定完成改造的风电机组和风电场,不得并网运行。 四、加强电力系统安全运行管理。电网企业应根据风电并网运行特点和电网安全运行的有关要求,制定合理的风电场接入电力系统技术规定,加强对风电好接入方案的审查和并网验收。各级电网调度机构要加强即时监控,优化电网运行管理,同时制定有效的反事故预案,确保电网安全稳定运行。 五、国家风电技术检测研究中心要提高低电压穿越监测能力,加快开发方便适用的低电压穿越技术和测试系统,满足风电并网运行和管理的需要。各风电场应尽快委托有资质的检测机构测试风电机组的低电压穿越能力,直到取得检测认可。 六、加强风电并网运行设计规范和反事故措施的研究。水电水利规划设计总院会同国家电网公司,深入研究事故原因,国家电网公司尽快制定风电并网运行反事故措施和相关管理要求,水电水利规划设

光伏电站并网验收管理规定

目录 1.编制目的及原则 (1) 2.主要编制依据 (1) 2.1通用依据 (1) 2.2其它依据 (2) 3.适用范围 (2) 4.验收组织及工作流程 (3) 4.1验收组织 (3) 4.2工作流程 (3) 5.验收内容 (4) 5.1一般性要求 (4) 5.2通信与信号 (7) 5.3并网电站的电能质量 (9) 5.4并网电厂的运行特性 (12) 5.5并网电厂在电网异常时的响应特性 (14) 5.6其它规定 (16) 6.系统测试规定 (17) 6.1电能质量 (17) 6.2有功输出特性 (18) 6.3有功和无功控制特性 (18) 6.4调度运行部门要求的其它并网调试项目 (18) 附图:验收工作流程图 (19)

1.编制目的及原则 按照国家发改委和国家电监会有关文件精神要求,为保证电网的安全稳定运行、电厂的可靠送出和用户的可靠供电;充分体现国家电网公司“四个服务”的宗旨,努力“服务于电厂、服务于用户”,实现电源与电网的协调发展。 2.主要编制依据 2.1通用依据 GB/T 2297-1989太阳光伏能源系统术语 GB/T 12325-2008电能质量供电电压偏差 GB/T 12326-2008电能质量电压波动和闪变 GB 14549-1993电能质量公用电网谐波 GB/T 15543-2008电能质量三相电压不平衡 GB/T 18479-2001地面用光伏(PV)发电系统概述和导则 GB/T 19939-2005光伏系统并网技术要求 GB/T 20046-2006光伏(PV)系统电网接口特性 GB 2894安全标志(neq ISO 3864: 1984) GB 16179安全标志使用导则 DL/T448-2000 电能计量装臵技术管理规程 GB/T 17883-1999 0.2S和0.5S级静止式交流有功电度表 DL/T614-2007多功能电能表 DL/T645-2007多功能电能表通信协议

大型风电场运行的特点及并网运行的问题

大型风电场运行的特点及并网运行的问题 时间:2011-2-25 来源:<电器工业> 广东电网公司茂名电白供电局区邓恩思 近年来,我国风电已经迈向快速发展的步伐。按装机总容量计算,我国已经超过意大利和英国,成为世界第6大风电大国。大规模的风力发电必须要实现并网运行,然而由于风电自身的特点,大规模风电接入会对电网产生负面影响。由于风力资源分布的限制,风电场大多建设在电网的末梢,网络结构相对薄弱,风电场并网运行必然会影响到电网的电压质量和电压稳定性。由于风电本身具有不可控、不可调的特征,造成风电出力的随机性和间歇性。而电网必须按照发、供、用同时完成的规律,连续、安全、可靠、稳定地向客户提供频率、电压合格的优质电力。风电场并网的研究内容涉及到电能质量、电压稳定性、暂态功角稳定性及频率稳定性等。本文主要介绍大型风电场并网对电力系统的影响及对策。 一、大型风电场运行的特点 1、风能的能量密度小,为了得到相同的发电容量,风力发电机的风轮尺寸比相应的水轮机大几十倍。 2、风能的稳定性差。风能属于过程性能源,具有随机性、间歇性、不稳定性,风速和风向经常变动,它们对风力发电机的工况影响很大。为得到较稳定的输出电能,风力发电机必须加装调速、调向和刹车等调节和控制装置。 3、风能不能储存。对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。 4、风轮的效率较低。风轮的理论最大效率为59.3%,实际效率会更低一些,统计显示,水平轴风轮机最大效率通常在20%~50%,垂直轴风轮机最大效率在 30%~40%。 5、风电场的分布位置经常偏远。例如,我国的风电资源虽然比较丰富,但多数集中在西北、华北和东北“三北地区”。 由于风能具有以上特点,使得利用风能发电比用水力发电困难得多。 总之,风电的最大缺点是不稳定,风电系统所发出的电能若直接并入电网将影响局部电网运行的稳定性。 二、大型风力发电场并网运行引起的问题分析 风电场接入电网一般有两种方式,一种是传统的并网方式,单个风电场容量均比较小,作为一种分布式电源,分散接入地区配电网络,以就地消纳为主;另一种是在风能资源丰富区域集中开发风电基地,通过输电通道集中外送,如欧美国家规划中的海上风电和我国正在开发的内蒙古、张家口、酒泉和江苏沿海千万千瓦级风电基地。风电机组单机容量和并网运行的风电装机规模越来越大,对系统的影响也越来越明显。与小型风电场不同,大型风电场接入电网后,风电场对电网

2021风电场运行、检修和安全工作的基本内容

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 2021风电场运行、检修和安全工 作的基本内容

2021风电场运行、检修和安全工作的基本内 容 导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 风电场的运维工作主要包括运行、检修和安全三个方面,具体如下: 一、运行工作内容 1、一般规定 风电场运行工作主要包括: 风电场系统运行状态的监视、调节、巡视检查。 风电场生产设备操作、参数调整。 风电场生产运行记录。 风电场运行数据备份、统计、分析和上报。 工作票、操作票、交接班、巡视检查、设备定期试验与轮换制度的执行。 风电场内生产设备的原始记录、图纸及资料管理。 风电场内房屋建筑、生活辅助设施的检查、维护和管理。

开展风电场安全运行的事故预想和对策。 应根据风电场安全运行需要,制定风电场各类突发事件应急预案。 生产设备在运行过程中发生异常或故障时,属于电网调管范围的设备,运行人员应立即报告电网调度;属于自身调管范围的设备,运行人员根据风电场规定执行。 2、系统运行 风电场变电站中属于电网直接调度管辖的设备,运行人员按照调度指令操作;属于电网调度许可范围内的设备,应提前向所属电网调度部门申请,得到同意后进行操作。 通过数据采集与监控系统监视风电机组、输电线路、升压变电站设备的各项参数变化情况,并做好相关运行记录。 分析生产设备各项参数变化情况,发现异常情况后应加强该设备监视,并根据变化情况做出必要处理。 对数据采集与监控系统、风电场功率预测系统的运行状况进行监视,发现异常情况后做出必要处理。 定期对生产设备进行巡视,发现缺陷及时处理。 进行电压和无功的监视、检查和调整,以防风电场母线电压或吸收电网无功超出允许范围。

关于印发风电并网运行反事故措施要点的通知

国家电网公司文件 国家电网调〔2011〕974号 关于印发风电并网运行反事故措施要点的通知 各分部,华北电网有限公司,各省(自治区、直辖市)电力公司,中国电科院,国网电科院,国网经研院: 为落实《国家能源局关于加强风电场并网运行管理的通知》(国能新能〔2011〕182号),公司在总结分析风电并网运行故障原因和存在问题的基础上,组织制定了《风电并网运行反事故措施要点》,现予印发,请各单位严格执行。 风电机组低电压穿越能力缺失是当前风电大规模脱网故障频发的主要原因。为防止类似故障再次发生,各单位要督促网内风力发电企业对风电机组低电压穿越性能进行改造、调试,并通过国家有关部门授权的有资质的检测机构按《风电机组并网检测 管理暂行办法》(国能新能〔2010〕433号)要求进行的检测验证。对此,特别强调: 1. 新建风电机组必须满足《风电场接入电网技术规定》等相关技术标准要求,并通过按国家能源局《风电机组并网检测管理暂行办法》(国能新能〔2010〕433号)要求进行的并网检测,不符合要求的不予并网。 2. 对已并网且承诺具备合格低电压穿越能力的风电机组,风电场应在半年内完成调试和现场检测,并提交检测验证合格报告。同一型号的机组应至少检测一台。逾期未交者,场内同一型号的机组不予并网。 3. 对已并网但不具备合格低电压穿越能力的容量为1MW及以上的风电机组,风电场应在一年内完成改造和现场检测,并提交检测验证合格报告。报告提交前,场内同一型号的机组不予优先调度。逾期未交者,场内同一型号的机组不予并网。 附件:风电并网运行反事故措施要点

二○一一年七月六日 主题词:综合风电反事故措施通知 国家电网公司办公厅2011年7月6日印发

新能源场站并网验收方案

新能源场站验收检查方案 (一)涉网电气设备检查 序 号 项目内容核查方案负责人 1 (光伏逆变器)应具有低电压穿岳能 力,低电压穿岳能力满足国家相关标准要 求。 现场查阅:1、统一格式的单机信息台账;3、发电机、变流器、变桨、 叶片、(光伏逆变器)、主控版本应与型式试验报告相符;4、、现场查阅大部 件软件版本以及关键涉网保护定值应与型式试验报告相符。 如风机(光伏)硬件和软件与型式试验报告不一致,需厂家出具一致性 评价报告;如重大设备与型式试验报告不一致需提供具备资质的单位出具的 低穿一致性评估报告。 2 (光伏逆变器)电能质量应满足规程 要求(电压偏差、电压变动、闪变、谐波 和三相电压不平衡度在规定的范围内) 现场查阅:1、资质单位出具的电能质量测试报告(盖章版),其结论页 电压偏差、电压变动、闪变、谐波和三相电压不平衡度应在国标规定范围内。 2、查阅(光伏逆变器)接入系统评审意见,并按照评审意见要求检查现场无 功补偿装臵配臵情况。3、低电压穿岳能力型式试验报告(盖章版); 3 (光伏逆变器)的电压、频率、三相 不平衡等涉网的参数定值单齐全 现场查阅:1、(光伏逆变器)的电压、频率、三相不平衡等涉网的参数 定值单;2、现场调试报告;3、抽查现场设臵情况。 4 (光伏逆变器)接地电阻应进行测 试,接地电阻应合格 现场查阅:全部(光伏逆变器)接地电阻测试报告(资质单位出具盖章 版),组织应不大于4Ω。 5 电缆隧道、电缆沟堵漏及排水设施应 完好,分段阻燃措施符合要求 现场检查电缆隧道、电缆沟堵漏及排水设施应完好,分段阻燃措施符合 要求。 6 新能源场站无功容量配臵和无功补 偿装臵(含滤波装臵)选型配臵符合接入 系统审查意见,其响应能力、控制策略应 满足电力系统运行需求。无功补偿装臵应 无缺陷,出厂试验结果合格 1、现场检查无功容量配臵和无功补偿装臵(含滤波装臵)选型配臵符合 接入系统审查意见要求;2、现场查阅无功补偿装臵出厂试验报告;3、现场 查阅无功补偿装臵交接试验报告;4、现场查阅无功补偿装臵静态调试报告; 5、现场查阅控制策略设臵应满足电力系统运行要求; 6、现场检查无功补偿 装臵控制功能及控制参数设臵正确。

一种评价风电场运行情况的新方法

一种评价风电场运行情况的新方法 申洪,王伟胜 (中国电力科学研究院,北京100085) 摘要:提出了一种基于实际年发电量和故障停运时间来评价风电场实际运行情况的新方法。首先根据风电场的历史运行数据来计算风电场的年理想发电量,然后引入衡量风电机组分布、风资源和故障停运对风电场年发电量影响的三个新指标—风电机组分布系数、风资源系数和损失系数,并推导出风电场容量系数与这三个系数之间的表达式。所提出的三个新指标具有明确的物理意义,可以定量评价风电场风资源、风电机组分布和风电机组故障对风电场运行情况的影响。最后对两个实际风电场进行了计算和分析,结果表明了所提出方法的正确性和实用性。 关键词:风电场;发电量;风资源;容量系数 1 引言 近年来风力发电得到了迅速的发展。与常规发电厂相比,风力发电场有其独有的特点。常规火电厂的燃料供应(如煤、石油等)和水电厂的水量供应一般认为是安全的,在无故障情况下可以始终工作在满负荷状态下,调度员可以根据系统负荷的实际需求对发电机组的发电功率进行调节,使整个电力系统工作于比较安全与经济的运行方式下。而风电机组是由风能驱动的,风能是一种间歇性能源,风速大小是随机波动的,因而风电机组的有功出力是随机波动的。虽然通过优化的方法可以增加风电场安装容量[1],但由于受风速条件的限制,风电场的发电功率不能够随意调度,所以不能用风电场的容量来考虑它对系统做出的贡献,而只能通过其在一段时间内的发电量来衡量其价值。风电场的投资较大,但它不需要原料,启停机方便,运行和维护费用低。然而风电场不能始终工作于满负荷状态,一般情况下发电功率都远低于额定容量,因而只有让风电场尽可能多的发电,才能使发电成本降低到最低水平。 考核风电场运行情况的重要指标是风电场容量系数[2]。风电场容量系数是风电场一段时间内的实际发电量与这段时间内的额定发电量的比值,它等价于风电场在一段时间内满负荷工作的时间,代表了风电场总的发电情况。然而风电场的发电量不仅受风速大小的影响,而且受风电机组的分布位置以及风电机组计划或强迫停机情况等因素的影响,只用容量系数不能完全描述上述因素对风电场发电量的影响。 为此,本文根据文献[3]中对风电场发电量的计算方法,提出了风电场理想发电量的概念,并提出了风电机组分布系数、风资源系数和损失系数三种新的指标,应用这三个指标,可以定量描述风电场运行分别受风电机位置分布、风资源以及风电机组停机情况影响的程度。应用上述模型和指标,本文对两个实际风电场进行了计算分析。 2 风电场理想发电量 某一时间段T内一台风电机组的发电量W th可以表示为[3]

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电并网稳定性开题报告

南京工程学院 毕业设计开题报告 课题名称:风力发电场并网运行稳定性研究 学生姓名:李金鹏 指导教师:陈刚 所在院部:电力工程学院 专业名称:电气工程及其自动化 南京工程学院 2012年3月5日

说明 1.根据南京工程学院《毕业设计(论文)工作管理规定》,学生必须撰写《毕业设计(论文)开题报告》,由指导教师签署意见、教研室审查,系教学主任批准后实施。 2.开题报告是毕业设计(论文)答辩委员会对学生答辩资格审查的依据材料之一。学生应当在毕业设计(论文)工作前期内完成,开题报告不合格者不得参加答辩。 3.毕业设计开题报告各项内容要实事求是,逐条认真填写。其中的文字表达要明确、严谨,语言通顺,外来语要同时用原文和中文表达。第一次出现缩写词,须注出全称。 4.本报告中,由学生本人撰写的对课题和研究工作的分析及描述,应不少于2000字,没有经过整理归纳,缺乏个人见解仅仅从网上下载材料拼凑而成的开题报告按不合格论。 5.开题报告检查原则上在第2~4周完成,各系完成毕业设计开题检查后,应写一份开题情况总结报告。

毕业设计(论文)开题报告 学生姓名李金鹏学号206080923 专业电气工程及其自动化指导教师姓名陈刚职称讲师所在院部电力工程学院课题来源自拟课题课题性质工程研究课题名称风力发电场并网运行稳定性研究 毕业设计的内容和意义 内容: 早期风电的单机容量较小,大多采用结构简单、并网方便的异步发电机,直接和配电网相连,对系统影响不大。但随着风电场的容量越来越大,对系统的影响也越来越明显,而风电场所在地区往往人口稀少,处于供电网络的末端,承受冲击的能力很弱,给配电网带来谐波污染、电压波动及闪变等问题。 因此以恒速恒频异步风力发电机组成的风电场为研究对象,建立风力发电系统的线性化状态方程。研究包含风电场的电力系统潮流算法,利用MATLAB及其仿真平台实现电力系统潮流计算以及机电暂态仿真。分析比较各种潮流算法的优缺点。建立简单系统的小干扰稳定分析线性化状态方程,得出了状态矩阵元素的参数表示形式。用特征值分析方法研究大型风电场接入电网后的系统小干扰稳定问题。分析风电场改变对系统小干扰稳定性的影响。采用时域仿真方法研究大型风电场接入电网后的系统暂态稳定问题。 意义: 据国际能源署统计,全球风力发电机总装机容量1999年的2000兆瓦增加到2005年的60000兆瓦,世界风能市场装机资金达450亿欧元,提供50万个就业岗位。风能这种清洁能源每年可以减少2.04亿吨的二氧化碳排放量。 随着风电装机容量的增加,在电网中所占比例的增大,风能的随机性、间隙性特点,和风电场采用异步发电机的一些特性,使稳态电压值上升、过电流、保护装置的动作误差,电压闪变、谐波、浪涌电流造成的电压降落,从而使得风电的并网运行对电网的安全,稳定运行带来重大的影响。其中最为突出的问题就是使风电系统的电能质量严重下降,甚至导致电压崩溃。风电场脱网事故频发,对电网安全运行构成威胁,所以进行风力发电并网运行稳定性研究是非常必要的。

光伏-风电项目并网发电需具备的条件及并网流程

光伏,风电项目并网发电需具备的条件及并网流程一、需要具备的条件 1、发改委核准文件(业主所需提交文件) 2、接入系统审查批复文件(业主所需提交文件) 3、公司营业执照复印件(业主所需提交文件) 4、公司税务登记证(业主所需提交文件) 5、公司组织机构代码证(业主所需提交文件) 6、调度设备命名及编号(业主申请,省调度中心命名) 7、调管设备范围划分(业主协调部分,划分:一般原则省调调管发电部分,调管到逆变器输出功率;地调调管站区设备,110kV及以上主设备归省调调管) 8、并网原则协议签订(业主协调与省调、地调签订) 9、高压合同、外线委托运营合同 10、并网申请(国网中心、交易中心各1份) 二、升压站反送电流程或具备的流程 1、与省调、各地调的《并网调度协议》已签订 2、与各地调的《供用电合同》已签订(业主与各省电力交易中心签订) 3、《并网原则协议》已签订(业主与调度中心签订) 4、工程质检报告(返送电)(工程质检由当地电力质检站验收出具)

安评报告(一般由当地电科院组织验收出具)、5. 6、技术监督报告 7、消防验收意见 8、电力公司验收报告 9、针对各检查报告提出问题的整改报告 10、返送电协调会 三、机组并网流程或具备的条件 1、工程质检报告(电力质检站出具) 2、安评报告 3、技术监督报告 4、消防验收意见 5、电力公司验收报告 6、针对各检查报告提出问题的整改报告 7、《供用电合同》 8、召开启委会 9、机组并网 四、启委会流程 启委会及启动委员会,光伏电站启动委员会,源于中华人民共和国电力行业标准DL/T5437--2009《火力发电建设工程启动试运行及验收规程》中,对新建电力项目建设项目结束验收后,带电运行前,由投资方、政府有关部门、电力建设质量监督机构、项目公司、监理、电网调度、设计、施工、

风电场生产运行指标

全国风力发电技术协作网(以下简称“风电协作网”)在深入调查研究,广泛征求各方面意见的基础上,提出了《风电场生产运行统计指标体系》(试行稿),并于今年1月29日在北京召开了“协作网”在京理事长、理事工作会。会议围绕构建风电场生产运行统计指标体系进行了广泛和深入讨论,原则通过了《风电场生产运行统计指标体系》(试行稿)。并于二月印发给“风电协作网”全体会员单位。希望各会员单位按照试行稿的办法,对2007年底已经投产运行的风电场进行统计填报。截止目前,“风电协作网”秘书处共收到25个风场的统计资料。下面将相关情况予以通报说明。 一、统计指标体系的主要内容 (一)统计填报的对象:风电场生产运行统计指标体系,统计填报的对象就是已经投产运行的风电场。这里讲的风电场一般应以项目核准的容量来统计。一个项目全部机组投产后可以参加统计。投产是指一个项目全部机组完成了240小时的试运行。但是,由于整个风电场运行时间不满一年,第一年有些数据没有或不够准确,所以投产运行不满一年的风电场有些指标只作参考。 (二)指标体系:风电场生产运行统计指标体系分五类13项。 第一类是风能资源指标本类指标用来反映风电场在统计周期内的实际风能资源状况。具体有3个指标:年平均风速、有效风时数和平均空气密度。此类指标的统计,供了解分析时参考。 1、年平均风速是反映风电场风资源状况的一个重要数据。在给定时间内瞬时风速的平均值。应该按自然日历时间进行统计。如有因测风仪器原因造成数据缺少的应合理进行修正。测风仪器须安装在具有代表性的专用测风塔上,其高度应与风力发电机轮毂高度相等或接近。风机本身记录的数据由于受尾流的影响,统计的风电场的年平均风速不准确。 2、有效风时数是指在风力发电机组轮毂高度(或接近)处测得的、介于切入风速与切出风速之间的风速持续小时数的累计值。 3、平均空气密度(平均气温)风电场所在处空气密度在统计周期内的平均值。 由于同一地区的气压是一个比较稳定值,而气温却随季节变化有较大起伏,因此风电场的空气密度与气温间有确定的对应关系。平均气温应逐日统计,在此基础上计算月度和年度的平均空气密度并反映在月报和年报上。 第二类是电量指标本类指标用来反映风电场在统计周期内的出力和购网电量情况。具体有四个指标:发电量、上网电量、购网电量和年利用小时数。 1、发电量,风电场发电量是每台风力发电机发电量的总和。 单机发电量是在风力发电机出口处计量的输出电能。一般从发电机监控系统读取。 2、上网电量,风电场与电网的关口表计计量的风电场向电网输送的电能。 3、购网电量,风电场与电网的关口表计计量的电网向风电场输送的电能。 4、年平均利用小时数,也称作等效满负荷发电小时数。是风电场全部机组发电量折算到全场装机容量满负荷运行时的发电小时数。该指标以年度为单位统计。 第三类是能耗指标用来反映风电场电能消耗和损耗的指标,具体有三个指标:场用电率、场损率和送出线损率。 1、场用电率是风电场场用电变压器计量指示的电量减去基建、技改等用电量后占全场发电量的百分比。 2、场损率消耗在风电场内输变电系统和风电机自用电的电量占全场发电量的百分比。这里要注意是要把购网电量计算在内。 3、送出线损率消耗在风电场送出线的电量占全场发电量的百分比。由于每个风电场接入电网的情况不一样,所以此项指标只作统计参考。 第四类是设备运行水平指标。是用来反映风电机设备运行可靠性的指标。采用风电机设备可利用率一个指标。 1、风电机设备可利用率在统计周期内,除去风力发电机组因维修或故障未工作的时数后余下的

风电并网对电网的影响及其策略

风电并网对电网的影响及其策略-机电论文 风电并网对电网的影响及其策略 李梦云 (武汉理工大学自动化学院,湖北武汉430070) 【摘要】目前,中国风电已超核电成为第三大主力电源。但风力电场等分布式电源对电力网络的日益渗透的同时,给现代电力系统带来了很多方面的影响,比如改变了电力网络中能量传递的单向性,对现有配电网的稳定性产生较大的影响(尤其是对电网电压稳定性的影响)。因此,对风电并入配电网后产生的影响及其应对策略进行相关的研究是非常具有现实意义的。介绍了风力发电目前的发展状况和风电接入电网后对电力系统带来的影响,尤其是针对风电场并网后对电网的稳态电压的稳定性,以风速和风电机组的功率因数作为影响因素,从原理上,分别分析其对含风电场的电网的稳态电压的影响。最后在此基础上,提出初步的应对策略。 关键词风力发电;电网;稳态电压;影响;策略 0 前言 随着日益增长的电力负荷、能源的短缺、环境恶化的愈发严重,以及用户要求电能质量的提高,大家越来越关注DG(分布式发电)。研究表明,分布式发电的发展可以反映能源的综合运用、电力行业的服务程度和环境保护的提升。尤其是其中的风力资源,因为其是可再生能源、开发潜力大、环境和经济效益好,因此得到了广泛的应用,使风力发电成为分布式发电中重要的发展方向,同时也使其成为一种当今新型能源中发展迅速的发电方式。 1 风电并网对电力系统的影响

风电场并入配电网,使输电网对部分地区的电力输送压力得到缓解和电力系统的网损得到改善的同时,也对电力系统产生了许多不好的影响如电压波动、闪变等。 同时由于风具有随机性,其输入电网的有功和无功有很大的波动性。风速的不可预测这一特性,使我们不能对风电进行准确而又可靠地出力预测,我们需要更加注重负荷跟踪、备用容量等,提高了风电场的运行成本。 风电并网增加电力系统调峰调频的难度,不仅需要风电场容量,而且需要风电场快速响应负荷变化;风电机组并网时,会不可避免的对电网有冲击电流。风电场与电网的联络线的潮流的双向性,使并网后的电网的继电保护的保护配置提高了要求。 2 风电并网对电网电压的影响 配电网的电压分布情况由电力系统的潮流所决定,当电力网络中电源功率和负荷发生变化时,将会引发电力网络各个母线的节点产生变化。对风电并网的配电网来说,风电场的功率的波动会影响电网电压出现偏移。由于风电场接入配电网后,风电场的接入点的变化、有功功率和无功功率的不平衡等,会导致无功功率从无功源流向负荷。风电场的电压偏移会影响风电场的接入容量和风电并网后电力系统的安全运行。 2.1 风速变化对配电网电压的影响 将接入风电场的配电网系统的供电线路作等值电路,则风电场并网点至无限大系统两端的电压降落为: U1-U2=I(R1+R2+jX1+ jX2) (1) 上式中,U1为风电场的输出电压,U2为电网电压,R1、X1表示风电场的电

相关主题
文本预览
相关文档 最新文档