大型风电场运行的特点及并网运行的问题
- 格式:doc
- 大小:35.50 KB
- 文档页数:5
大型风电场运行的特点及并网运行的问题时间:2011-2-25 来源:<电器工业>广东电网公司茂名电白供电局区邓恩思近年来,我国风电已经迈向快速发展的步伐。
按装机总容量计算,我国已经超过意大利和英国,成为世界第6大风电大国。
大规模的风力发电必须要实现并网运行,然而由于风电自身的特点,大规模风电接入会对电网产生负面影响。
由于风力资源分布的限制,风电场大多建设在电网的末梢,网络结构相对薄弱,风电场并网运行必然会影响到电网的电压质量和电压稳定性。
由于风电本身具有不可控、不可调的特征,造成风电出力的随机性和间歇性。
而电网必须按照发、供、用同时完成的规律,连续、安全、可靠、稳定地向客户提供频率、电压合格的优质电力。
风电场并网的研究内容涉及到电能质量、电压稳定性、暂态功角稳定性及频率稳定性等。
本文主要介绍大型风电场并网对电力系统的影响及对策。
一、大型风电场运行的特点1、风能的能量密度小,为了得到相同的发电容量,风力发电机的风轮尺寸比相应的水轮机大几十倍。
2、风能的稳定性差。
风能属于过程性能源,具有随机性、间歇性、不稳定性,风速和风向经常变动,它们对风力发电机的工况影响很大。
为得到较稳定的输出电能,风力发电机必须加装调速、调向和刹车等调节和控制装置。
3、风能不能储存。
对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。
4、风轮的效率较低。
风轮的理论最大效率为59.3%,实际效率会更低一些,统计显示,水平轴风轮机最大效率通常在20%~50%,垂直轴风轮机最大效率在30%~40%。
5、风电场的分布位置经常偏远。
例如,我国的风电资源虽然比较丰富,但多数集中在西北、华北和东北“三北地区”。
由于风能具有以上特点,使得利用风能发电比用水力发电困难得多。
总之,风电的最大缺点是不稳定,风电系统所发出的电能若直接并入电网将影响局部电网运行的稳定性。
二、大型风力发电场并网运行引起的问题分析风电场接入电网一般有两种方式,一种是传统的并网方式,单个风电场容量均比较小,作为一种分布式电源,分散接入地区配电网络,以就地消纳为主;另一种是在风能资源丰富区域集中开发风电基地,通过输电通道集中外送,如欧美国家规划中的海上风电和我国正在开发的内蒙古、张家口、酒泉和江苏沿海千万千瓦级风电基地。
提升风电场并网稳定性的关键对策与建议摘要:本文旨在探讨提升风电场并网稳定性的关键对策与建议。
摘要首先介绍了风电发展背景与意义,指出风电场并网稳定性问题的重要性。
随后,对风电场并网稳定性现状进行分析,强调面临的挑战。
在关键对策与建议部分,提出了三方面的措施:技术改进、电网规划与运行优化,以及监测与预测能力增强。
技术改进方面包括提高风电场响应速度、增强控制能力和优化机组设计与运行。
电网规划与运行方面强调加强规划布局、提高调度能力和建立灵活运行机制。
监测与预测能力方面着重于建设完善的监测系统、提高预测准确性以及应用智能化运维技术。
以期能推动风电产业的可持续发展。
关键词:风电场;并网稳定性;技术改进;电网规划与运行;监测与预测随着全球对可再生能源的需求不断增长,风电作为一种清洁、可再生的能源形式得到了广泛应用。
然而,随着风电场规模的扩大和并网规模的增加,风电场并网稳定性问题日益凸显。
并网稳定性是指风电场与电网之间的相互作用,影响着风电发电的可靠性、稳定性以及对电网的影响程度。
因此,提升风电场并网稳定性具有重要的研究意义和实践价值。
本文旨在通过对风电场并网稳定性现状进行分析,明确问题所在,并提出关键对策与建议,以期为风电场的稳定运行和健康发展提供有效的解决方案。
一、风电场并网稳定性现状分析1.1 风电场并网稳定性的概念与意义风电场并网稳定性是指风力发电场与电网之间的相互作用情况,主要包括风电场的响应速度、控制能力以及对电网运行的影响程度。
在电力系统中,风电场作为不稳定性源之一,其接入电网会对电力系统的稳定性产生影响,因此提升风电场并网稳定性显得尤为重要。
风电场并网稳定性的提升意义重大。
首先,稳定的风电场并网可以保障电网的可靠运行,减少电网波动,降低事故风险。
其次,提高风电场的响应速度和控制能力,有助于增加风电对电网调峰调频的支撑能力,优化电力系统的供需平衡。
此外,改善风电场并网稳定性还有助于提高风电场的发电效率,降低发电成本,推动风电产业的健康发展。
风电场并网装置运行稳定性分析与优化随着节能减排政策的推进,新能源领域的发展越来越受到人们的关注。
其中,风力发电是最具代表性的新能源形式之一,具有环保、永续等显著特点。
风电场并网装置是风电系统中必不可少的一环,它直接关系到风电发电量与能源质量。
因此,对于风电场并网装置的运行稳定性分析与优化显得尤为重要。
一、现状分析风电场并网装置的现状分析是分析与优化的基础。
我国近年来在新能源领域的发展迅速,风电场并网装置的应用也在不断加强。
然而,由于目前风电场并网装置技术取得较大进步,因此出现的一些问题也日益凸显。
风电场并网装置的问题主要体现在以下三个方面:1. 设备故障率高由于风电场并网装置涉及设备较多,对设备的要求非常高。
而在现实情况下,由于设备制造商或者使用者未能严格遵守技术规范与标准,导致风电场并网装置出现相应故障。
2. 调试周期长正常运行的风电场并网装置需要经过一定的调试期,调试期较长或者中途出现问题,也会影响风电场的发电量与能源质量。
3. 维修成本高由于风电场并网装置的维修周期较长,维修成本往往也比较高,因此会影响风电场的运行成本,降低其经济效益。
二、优化措施为了解决以上问题,需要从多方面进行优化。
1. 技术标准制定与遵守风电场并网装置的制造商需要按照技术标准进行制造。
同时,使用者也需要按照技术标准进行使用,并逐步推广和推动使用标准化技术。
2. 故障监测与预防在风电场并网装置的使用过程中,应建立完善的故障监测与预防机制,及时处理并预防可能出现的故障,降低故障率。
3. 故障处理与调试周期缩短风电场并网装置故障处理流程应该明确,并尽可能缩短调试周期,以保证风电场的正常运转。
4. 维修成本的优化采用先进的技术手段,降低风电场并网装置的维修成本,提高其运行效益和经济效益。
三、结论风电场并网装置的运行稳定性是保障风电站发电量和能源质量的关键。
为此,需要制定与遵守技术标准、建立故障监测与预防机制、缩短调试周期、优化维修成本等多方面进行优化,以提高风电场并网装置的运行稳定性,保证风电场的正常运转。
风电场运营管理的特点及对策分析摘要:风力发电作为一种新型的发电模式,具有安全、可靠、稳定、经济、高效等特点,非常适用于现代化的经济社会,不仅能够增加发电效率和发电质量,还能为风力发电企业创造经济效益。
但是,由于自然、管理、人才缺失等因素的存在,极易导致风电场运营出现一系列问题。
因此,分析风电场运营管理的特点,并总结存在的问题,才能有效的提出相应的解决措施,确保风电场的正常运营。
关键词:风电场,运营管理,特点,对策一、风电场运营管理的特点风电场的运营管理是由研发、制造、投资、生产等多个环节相互协调、相互促进的一种管理模式,其作用是充分发挥各个部门的职能,提升风电场的发电量,降低投入成本,保证设备运行的安全,从而实现经济利益最大化。
风电场运营管理的主要对象是风电场,风电场又称之为风力发电厂,主要运行模式是“风能→机械能→电能”,其风力发电机组高度在60~100m,叶片长度也达到50~80m。
同时,由于尾流效应,风机与风机之间不宜摆放过于密集,因而风电场一般占地巨大,一个风电场总面积至少是几十平方千米。
正是由于风电场比较特殊,因而具有以下特点:(1)风电场运用设备比较多,使用型号差异大,使得整个电气系统结构比较复杂。
这是因为各个风电项目实施阶段不同,造成各个风电项目的主机机型千差万别,电气设备、电气系统复杂多样,在一定程度上左右风电场运营风电场的运营。
(2)与其他能源发电相比,稳定性差、能量密集度小是风力发电的重要缺陷。
这是因为风能属于不可控能源,来源于自然,自然风能大小、风向、持续时间等都会影响发电效率和发电质量。
在风电场运营管理中,为了有效地解决风力发电的不稳定问题,风电企业应该根据风力发电的特点购置调速、调向和刹车等装置,便于更好地运用风能,保证发电的质量和效率。
风能的产生和利用主要依靠风力发电机的风轮,但是由于尺寸比较大,不够集中,致使能源密度比较小,直接影响风能发电。
(3)风能是一种过程性的能源,是在自然气候、风力选址、发电机组等共同作用下产生的,因而其转化效率受限于自然条件、发电机组等因素。
海上风电场并网的影响及对策海上风电出力随机性强,间歇性明显,机组本身的运行特性和风资源的不确定性,使得风电机组不具备常规火电机组的功率调节能力。
因此,海上风电场并网会对电网的运行产生一定的影响,本章将从研究风电机组的电气特性出发,详细阐述风电出力的特点,进而指出风电场并网对电网的影响,最后给出相应的解决措施。
3.1 海上风电场并网的影响针对风速的随机性、间歇性导致海上风电功率的不确定性大,以及风电机组本身的运行特性使风电场输出功率具有波动性强的特点,需要从系统电压、频率以及系统的稳定性等方面研究海上风电场出力的特点和海上风电场并网对电网的影响,以提出相应的对策和解决措施。
3.1.1 风电出力的特点(1)风电出力随机性强,间歇性明显。
风电出力波动幅度大,波动频率也无规律性,在极端情况下,风电出力可能在0~100%范围内变化。
风电出力有时与电网负荷呈现明显的反调节特性。
风电场一般日有功出力曲线如图3-1所示。
图3-1 风电场一般日有功出力曲线可见,风电功率出力的高峰时段与电力系统日负荷特性的高峰时段(8:00—11:00,18:00—22:00)并不相关,体现了较为明显的反调峰特性。
一些地区全年出现反调峰的天数可占全年天数的1/3~1/2。
反调峰的现象导致风电并入后的等效负荷峰谷差变大,恶化了电力系统负荷变化特性。
(2)风电年利用小时数偏低。
国家能源局发布数据显示,2014年年底全国并网风电装机容量9581万kW,设备平均利用小时1905h。
其中,海上风电约38.9万kW,设备平均利用小时略高,可达到2500h左右。
(3)风电功率调节能力差。
风电机组在采用不弃风方式下,只能提供系统故障状况下的有限功率调节。
风电机组本身的运行特性和风资源的不确定性,使得其不具备常规火电机组的功率调节能力。
3.1.2 对电网的影响风电等可再生能源接入系统主要有以下问题:(1)通常风能资源丰富地区距离负荷中心较远,大规模的风电无法就地消纳,需要通过输电网输送到负荷中心。
风电并网技术及其存在的问题摘要:风电在最近几十年保持着了蓬勃发展的势头,在相当长的未来,风电装机容量将继续保持这种良好的发展势头,风电将逐渐成为电源的重要部分。
风电场装机容量有逐渐增大的趋势,我国和其他国家已经开始建设风电基地。
建设风电基地,集中开发风能,大规模甚至超大规模利用风能,可以降低风电开发成本。
另外,风力资源分布相对集中,这为风电的大规模利用提供了条件。
风电场较小,风电场一般是通过配电网接入。
但是,装机规模较大的风电场和风电基地不能通过配电网接入,而需要接入输电网,使风电场的电能在较大范围内消纳,大容量、远距离输电成为风电场联网不可或缺的一环。
随着陆地风力发电的进一步开发,陆地可供开发的风能资源逐渐减少,为了进一步开发风能,人类把目光投向了海洋。
海上风电技术日益成熟,大规模开发海上风电指日可待。
关键字:风电、交直流并网、VSC-HVDC引言:装机容量大的风电场和风电基地,一般远离负荷中心,风电场需要经过电压等级高的输电线路进行联网。
目前,风电场联网可以分为交流和直流两大类: 高压交流输电和高压直流输电。
风电并网是大规模利用风能节约资源、保护环境、建设国民经济最有效的方式。
风电场联网有交流联网和直流联网两种方式。
传统的交流联网方式应用时间已相当长,目前仍然占据主要地位。
过去的风电机组装机容量小,对电网的冲击相当有限,那时风电并网给系统带来的影响主要有电压波动和闪变、谐波污染等一些电能质量问题,随着现代风电场规模的不断扩大,大容量风电机组并入电网,风电联网给系统带了的负面影响扩展到系统的稳定性和安全性。
1.风电的交流并网技术(HVAC)HVAC 的主要优点是传输系统结构简单,当传输距离比较近时,其成本比较低。
但是交流输电也存在一系列难以跨越的技术阻碍,如线路的容性功率、同步运行系统的稳定性、潮流控制等。
风电存在波动且波动范围很大,最大出力接近风电场的总装机容量,而最小出力接近零。
风电场出力在较大范围内波动,这需要系统具有足够的、实时性能好的无功调节能力和足够的调频能力。
风力发电对电网运行的影响及对策近年来,随着全球化石油能源的日益匮乏,加上日本地震带来的核电警示,加快包括风电在内的安全性清洁能源产业的发展已成为大势所趋。
大规模的风力发电需实现并网运行,国外风电大国虽然对风力发电和电网运行积累了一些经验,但由于我国电网结构的特殊性,风力发电和电网运行如何协调发展已成为风电场规划设计和运行中不可回避的最重要课题。
一、我国风力发电对电网运行的影响我国风力资源的富集地区,电网均比较薄弱,风力发电对电网运行的影响主要体现在电网调度、电能质量和电网安全稳定性等方面。
1.1对电网调度的影响风能资源丰富的地区人口稀少、负荷量小、电网结构薄弱等特点,风电功率的输入必然要改变电网的潮流分布,对局部电网的节点电压也将产生较大的影响。
风能本身是不可控的能源,它是否处于发电状态和所发电量基本取决于风速状况,而风速的不稳定性和间歇性决定了风电机组发电量具有较大的波动性和间歇性,并网后的风电场相当于电网的随机扰动源,具有反调节特性,需要电网侧预留出更多的备用电源和调峰容量,由于风力发电的不稳定性,增加了风力发电调度的难度。
1.2对电能质量的影响风电机组输出功率的波动性,使风电机组在运行过程中受湍流效应、尾流效应和塔影效应的影响,造成电压偏差、波动、闪变、谐波和周期性电压脉动等现象,尤其是电压波动和闪变对电网电能质量影响严重。
风力发电机中的异步电动机没有独立的励磁装置,并网前本身无电压,在并网时要伴随高于额定电流5~6倍的冲击电流,导致电网电压大幅度下跌。
在变速风电机组中大量使用的电力电子变频设备会产生谐波和间谐波,谐波和间谐波的出现,会导致电压波形发生畸变。
1.3对电网安全稳定性的影响电网在最初设计和规划时,没考虑到风电机组接入电网末端会改变配电网功率单向流动从而使潮流流向和分布发生改变的特点,造成风电场附近的电网电压超出安全范围,甚至导致电压崩溃。
大规模的风力发电电量注入电网,必将影响电网暂态稳定性和频率稳定性。
风电场总体并网方式的研究摘要:风电并网是风能资源开发利用并获得经济利益的重要环节,但由于风能资源存在随机性,在风电传输过程中会对电力系统的稳定产生影响,降低电网电能质量。
这种不良影响会随着风电渗透率的增大而趋于扩大,因此在风电迅速发展的情况下,必须对这些影响进行研究,处理好并网过程中产生的问题,最终予以消除。
关键词:风电场海上风电并网电力系统稳定性0 引言通过近些年来的艰苦努力,我国在风电规划设计、运行控制、调度管理、技术标准等各个方面取得了长足进步,对风电的发展规律和特性有了更为深刻的认识。
风电规模从小到大,标准从无到有,技术水平从跟随到领先,运行控制能力从弱到强,取得了令人振奋的成绩。
由于风电可持续发展的关键在于消纳,电网消纳既是风电发展的关键环节,也是各种矛盾的焦点。
因此,对并网方式的的研究显得尤其重要。
1 风力发电特点风能与其他的自然资源相似,既存在促进生产,满足经济社会需要的有利特点,又天然具有在时间分布上的随机性和在地域分布上显著差异性等不利特点。
总体上,它的优点值得我们为克服其缺点而付出代价。
风力发电的不利特点是:a) 风能的稳定性差。
风能属于过程性能源,是自然产生的,具有随机性、间歇性、不稳定性的特点,风速和风向决定了风力发电的发电状态以及出力大小。
b) 风能不能储存。
对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。
c) 风电场的分布位置通常比较偏远。
我国的风电场多数集中在风能资源比较丰富的西北、华北和东北地区。
由以上特点伴随的风电场并网,将对接入的电网产生不利影响。
2 风电场并入电网2.1 同步发电机同步发电机并网运行时,既能输出有功功率,又能提供无功功率,且频率稳定。
该结构允许同步发电机以可变速度运行。
能够产生可变电压和频率的功率。
一般是通过AC—DC-AC的整流逆变方式与系统进行并网。
并网方式可采用自动准同步并网和自同步并网。
由于自同步并网装置相对简单。
风力发电故障分析及并网技术——故障分析:谢吉堂并网技术:金崇伟1 风力发电背景风能是一种干净清洁的、储量及其丰富的可再生能源,它和其他存在自然界的矿物燃料能源如煤、石油、天然气等不同,它不会随着其本身的转化利用而减少,因而也可以说风能是一种取之不尽、用之不竭的新能源;而煤、石油、天然气等矿物燃料能源,其储量随着利用时间的增长而日益减少枯竭。
矿物燃料在利用的过程中会带来严总的环境污染问题,如空气中CO2、SO2、NO、CO等气体的排放增多导致了温室效应、酸雨等问题产生。
从上个世纪七十年代,世界各个国家对环境保护、能源危机、节能技术等的关注,认为大规模风力发电是减少空气污染、减少有害气体的排放量的有效措施之一。
德国、丹麦、荷兰、瑞典、印度、加拿大等国大力发展风力发电技术,并且取得了显著成绩。
2013年全球风电装机新增35467MW,截止到2013年底,全球风电累计装机容量达到318137MW。
中国风能储量大,分布广,而且开发利用潜力巨大。
全国平均风功率密度为100W/m2,风能资源总储量约32.26亿kW,可开发和利用的陆地上风能储量有2.53亿kW,近海可开发和利用的风能储量有7.5亿kW,共计约10亿kW。
在“九五”期间,我国的风力发电有了快速发展。
到2012年底,我国已在14个省份建立了风电场,累计装机达到75324MW,占世界装机容量的1/4。
风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。
风力发电技术是一种利用风能驱动风机桨叶,进而带动发电机组发电的能源技术。
由于风能清洁、无污染、可再生的特点,世界各国大力发展风电技术,风电正不断超越其预期的发展速度而发展,并一直保持着世界增长最快能源地位。
2 风力发电故障分析的意义风电对于缓解能源供应、改善能源结结构、保护环境等方面意义重大。
这些年,风电机组在我国得到了广泛的安装使用。
由于风力发电机组通常处于野外,环境条件恶劣,容易出现故障,维修起来耗费大量人力物力,对风机的可靠性越来越高。
大型风电场运行的特点及并网运行的问题摘要:我国随着社会的发展电力事业也在不断的发展中,直至目前我国的风力发电已经逐渐发展稳定。
但是,较大规模的风力发电在实际的运行中需要实现并网,但是又因为风力发电本身具有一定的特性,导致在接入风电时就会对电网产生一定的影响。
在实际的建设风电场时,一般会将风电场建设在电网的末端,这样对电场的运行有一定的影响,同时也会影响到电压的质量。
本文笔者主要针对大型风电场运行的特点及并网运行的问题进行分析,希望通过笔者的分析可以为大型的风电场运行提供一些帮助。
关键词:大型风电场;风力发电;运行特点;并网运行问题由于风电本身有一定的特性,所以,电网一定要根据规律运行,保证向顾客输送的电压可以连续稳定,同时电场也要保证电能的质量,以及电压的稳定。
但是目前很多规模较大的风电场在实现并网时都会面临一些问题,尤其是风速对风电场的安全影响以及运行的稳定对电能质量的影响,这些都对较大规模的风电场的建设以及电网规划、运行控制好质量经济上有很大的影响。
所以,为了更好地保证风电场的运行,一定要结合运行的特点,及时发现运行中的问题,并采取有效的措施进行解决。
1.我国目前的大型风电场运行的特点分析我国目前的大型风电场在运行时具有以下的特点。
其一,就是风能的能量具有较小的密度,在运行的过程总为了保证具有相同的电容量,发电机的风轮尺寸较大,比正常的水轮机大很多,其二,就是在实际的运行是风能的稳定性不是很好,由于风能具有一定的特性,他的随机性以及稳定性较差,经常会因为风速和风向的变动,发动机受到影响,因此,在实际的运行中,为了使发电机能更好地发电,必须安装可以对风速和风向进行调节控制的装置;其三,就是风电场的风能不能实现有效的储存,例如独立发电的机组如果想实现持续发电,就要在运行中安装储存装置;其四,就是发电场的风轮的发电效率过低;其五,就是目前的风电场的建设位置都在偏远地区,虽然我国的风力发电发展势头很好,但大多都集中在北部地区。
风电场建设中的电网并网难题如何解决在当今全球能源转型的大背景下,风能作为一种清洁、可再生的能源,其开发和利用日益受到重视。
风电场的建设如雨后春笋般在各地兴起,然而,风电场建设中的电网并网难题却成为了制约其发展的重要因素。
要理解风电场电网并网的难题,首先得明白风电场发电的特点。
风是一种不稳定的能源,风速的大小和方向随时都在变化,这就导致风电场的输出功率具有波动性和间歇性。
这种不稳定性给电网的安全稳定运行带来了巨大挑战。
电网需要保持供需平衡,以确保电压和频率的稳定,而风电场功率的随机变化可能打破这种平衡。
电网的容量和架构也是影响风电场并网的重要因素。
如果电网的容量有限,无法容纳风电场输出的大量电力,就会出现电力拥堵的情况。
同时,电网的架构不合理,输电线路过长、电阻过大等,都会导致电能在传输过程中的损耗增加,降低了电网的输电效率。
此外,技术标准和规范的不一致也是一个棘手的问题。
风电场和电网在设备参数、控制策略、通信协议等方面可能存在差异,导致双方难以有效对接和协同运行。
那么,面对这些难题,我们应该如何解决呢?一方面,从技术层面来看,需要不断提升风电机组的性能和控制技术。
通过采用先进的变速恒频技术、智能控制算法等,使风电机组能够更加灵活地适应风速的变化,输出相对稳定的功率。
同时,发展储能技术也是解决功率波动问题的有效途径。
电池储能、超级电容储能等技术可以在风电场发电过剩时储存电能,在电力不足时释放,从而平滑风电场的输出功率。
加强电网的建设和改造同样至关重要。
提高电网的容量和输电能力,优化电网架构,缩短输电距离,采用高压直流输电等先进技术,可以有效减少电能损耗,提高电网的接纳能力。
在技术标准和规范方面,风电场和电网双方需要加强沟通与协调,制定统一的标准和规范。
这包括设备的技术参数、通信协议、控制策略等,确保双方能够无缝对接,实现高效协同运行。
另一方面,政策和管理机制的完善也不可或缺。
政府应出台相关政策,鼓励和支持风电场的发展,同时加强对电网建设的规划和投资。
大型风电场运行的特点及并网运行的问题时间:2011-2-25 来源:<电器工业>广东电网公司茂名电白供电局区邓恩思近年来,我国风电已经迈向快速发展的步伐。
按装机总容量计算,我国已经超过意大利和英国,成为世界第6大风电大国。
大规模的风力发电必须要实现并网运行,然而由于风电自身的特点,大规模风电接入会对电网产生负面影响。
由于风力资源分布的限制,风电场大多建设在电网的末梢,网络结构相对薄弱,风电场并网运行必然会影响到电网的电压质量和电压稳定性。
由于风电本身具有不可控、不可调的特征,造成风电出力的随机性和间歇性。
而电网必须按照发、供、用同时完成的规律,连续、安全、可靠、稳定地向客户提供频率、电压合格的优质电力。
风电场并网的研究内容涉及到电能质量、电压稳定性、暂态功角稳定性及频率稳定性等。
本文主要介绍大型风电场并网对电力系统的影响及对策。
一、大型风电场运行的特点1、风能的能量密度小,为了得到相同的发电容量,风力发电机的风轮尺寸比相应的水轮机大几十倍。
2、风能的稳定性差。
风能属于过程性能源,具有随机性、间歇性、不稳定性,风速和风向经常变动,它们对风力发电机的工况影响很大。
为得到较稳定的输出电能,风力发电机必须加装调速、调向和刹车等调节和控制装置。
3、风能不能储存。
对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。
4、风轮的效率较低。
风轮的理论最大效率为59.3%,实际效率会更低一些,统计显示,水平轴风轮机最大效率通常在20%~50%,垂直轴风轮机最大效率在30%~40%。
5、风电场的分布位置经常偏远。
例如,我国的风电资源虽然比较丰富,但多数集中在西北、华北和东北“三北地区”。
由于风能具有以上特点,使得利用风能发电比用水力发电困难得多。
总之,风电的最大缺点是不稳定,风电系统所发出的电能若直接并入电网将影响局部电网运行的稳定性。
二、大型风力发电场并网运行引起的问题分析风电场接入电网一般有两种方式,一种是传统的并网方式,单个风电场容量均比较小,作为一种分布式电源,分散接入地区配电网络,以就地消纳为主;另一种是在风能资源丰富区域集中开发风电基地,通过输电通道集中外送,如欧美国家规划中的海上风电和我国正在开发的内蒙古、张家口、酒泉和江苏沿海千万千瓦级风电基地。
风电机组单机容量和并网运行的风电装机规模越来越大,对系统的影响也越来越明显。
与小型风电场不同,大型风电场接入电网后,风电场对电网的影响已从简单的局部电压波动等问题发展到对电网调节控制(调频调峰、经济调度)、电能质量、电网稳定等诸多方面。
1、对电网调节控制的影响电网传统的调度(发电)计划的编制及实施,完全基于电源的可靠性、负荷的可预测性。
当系统风电容量达到一定的规模后,风电的随机性和不可预测性会给传统的调度(发电)划的安排和实施带来问题。
我国东南沿海地区风力资源丰富,随大规模风电场接入其所属电网,首先将带来电网的调节控制问题。
风电场的输出功率曲线很重要,与风的大小、方向都相关。
各地区风电场的输出功率曲线会有差异,但对电网调节有利的特性情况较少见到,如输出功率曲线与电网负荷特曲线性相近;而较多的情况是对电网不利的特性,如:①午夜时段输出功率较高,而此时电网处在低谷时段。
午后时段输出功率很低,而此时电网处在高峰时段。
②最高、最低出输出功率差一般较大,可能在50%以上。
③基本无调节能力,且其功率呈频繁波动状态。
这样,其输出功率特性对电网负荷曲线在非高峰时段成为“反调节”性质,即增加了电网的峰谷差,加大了对电网调峰调频能力的要求,从而增加了电网调节控制的难度。
电网状况也不乐观。
①沿海各大区域电网(如华东、南方等)均属千万kW级或亿kW级,按理接纳目前规模的风电应无问题,但实际电网虽名为“统一调度”、而从调节控制角度而言更多的是“互联”性质,即属分块(地区)控制性质:系统的调峰及频率调节控制按统一规则将任务分配到块(地区)、考核到块(地区);考核一般又与经济利益挂钩。
这样,具有地区性质的风电场的接入将由该块(地区)电网承接、消化。
②地区电网的承接能力决定于该电网的具体情况,对以火电比重较大的电网如上海、山东等,调节能力差,承接能力就较小。
对大受端的上海电网而言,因多种原因今后接受区外来电的比重将越来越大,如25%及以上;一般区外来电的调节性能又较差;更增加了电网调节控制的难度。
③大城市国际化的步伐加快使地区负荷特性向负荷率更低、峰谷差更扩大发展。
作为“反调节”的风电场更增加了对电网的调节控制的压力。
风电场高峰输出功率替代了电网常规能源机组,但因其“反调节”性质而使非高峰时段特别是低谷时段增加了对电网调节能力的要求。
于是,电网原有调峰能力的余额,即调峰能力扣除负荷峰谷差后的裕量部分(特别在夏季)、其非高峰时段的电网调节能力余额,成为约束,决定了电网允许接入的最大“综合风电场容量”。
2、风电接入对电网电压的影响由于风速为随机变化的量,使得风电场的输出功率具有波动性,风电机组的频繁启停、切换,产生电压的波动、闪变,从而将影响局部电网的电能质量;风电场大量采用电子器件,给电网带来谐波,如并联电容与电抗元件发生谐振会放大谐波效应。
必须重视和计算分析风电场造成局部电网的电压波动、闪变和谐波污染问题。
目前,由于风电场的规模较小,如上海、南澳电网等,大都在3%及以下,还不能构成重大影响。
但随规模的扩大,如在10%及以上时,通过对风电场在不同运行工况下的系统仿真计算,表明电压波动和闪变等可能超出国家有关标准。
风力发电机如采用异步发电机,在运行时需要从系统吸收无功功率来建立磁场,从而使局部电网的电压水平有明显的下降。
风电场的无功需求使负荷特性的极限功率减少,降低了静态电压稳定性。
由于风电场大多采用异步发电机,变速恒频风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率,风电场的无功仍可看作是一个正的无功负荷,因此风电场可能引起电压稳定性降低或电压崩溃现象。
但只要系统的无功供给足够多,则整体上可以认为风电场的并网增强了系统的静态电压稳定性。
随着接入风电容量的增大,风电场从系统中吸收的无功功率逐渐增大,如果系统不能提供充足的无功,网内相关节点电压会逐渐降低。
在电网规划没有与风电规划协调发展时,往往电网接纳风电的能力不能适应风电规划的发展,接入的风电场容量受到电网自身条件的限制。
3、风电接入对电网稳定性的影响风力发电系统通常接入电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。
当风电注入功率增大时,风电场附近局部电网的电压和联络线功率可能会超出安全范围,严重时会导致电压崩溃。
在异步发电机并网系统中,风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率。
因此,为了补偿风电场的无功功率,每台风力发电机都配有功率因数校正装置,目前常用的是分组投切的并联电容器。
电容器的无功补偿量的大小与接人点电压的平方成正比,当系统电压水平较低时,并联电容器的无功补偿量迅速下降,导致风电场对电网的无功需求上升,进一步恶化电压水平,严重时会造成电压崩溃。
由于异步发电机的功率恢复特性,当电网发生短路故障时,若故障排除不及时,也将容易导致暂态电压失稳。
另外,随着风电场规模的不断扩大,风电场在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加显著,严重情况下将会使系统失去动态稳定性,导致整个系统的瓦解。
4、对电能质量的影响随着越来越多的风电机组并网运行,风力发电对电网电能质量的影响引起了广泛关注。
风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率呈波动性,可能会影响电网的电能质量,如电压偏差、电压波动和闪变、谐波等。
风力发电机组大多采用软并网方式,但是在启动时仍然会产生较大的冲击电流。
当风速超过切出风速时,风机会从额定出力状态自动退出运行。
如果整个风电场所有风机几乎同时动作,这种冲击对配电网的影响十分明显。
不但如此,风速的变化和风机的塔影效应都会导致风机出力的波动,而其波动正好处在能够产生电压闪变的频率范围内,因此风机在正常运行时也会给电网带来闪变问题。
目前,电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。
风电给系统带来谐波的途径主要有两种:一种是风力发电机本身配备的电力电子装置,可能带来谐波问题。
另一种是风力发电机的并联补偿电容器可能和线路电抗发生谐振,在实际运行中,曾经观测到在风电场出口变压器的低压侧产生大量谐波的现象。
5、风电接入对继电保护的影响为了减少风电机组的频繁投切对接触器的损害,在有风期间风电机组都保持与电网相连,当风速在起动风速附近变化时,允许风电机组短时间电动机运行,因此风电场与电网之间联络线的功率流向有时是双向的。
所以,风电场继电保护装置的配置和整定应充分考虑到这种运行方式。
尽管风力发电提供的故障电流非常有限,但有可能影响现有配电网络保护装置的正确运行,这在最初的配电网保护配置和整定时是没有考虑到的。
6、风电接入对电力系统运行成本的影响风力发电的运行成本很低,与火电机组相比可以忽略不计。
但是,风力发电是一种间歇性能源,风电场的功率输出具有很强的随机性,目前的预报水平还不能满足电力系统实际运行的需要,在做运行计划时风电是作为未知因素考虑的。
为了保证风电并网以后系统运行的可靠性,因此需要在原来运行方式的基础上,额外安排一定容量的旋转备用以响应风电场发电功率的随机波动,维持电力系统的功率平衡与稳定。
可见风电并网对整个电力系统具有双重影响:一方面分担了传统机组的部分负荷,降低了电力系统的燃料成本;另一方面又增加了电力系统的可靠性成本。
三、小结根据风电场的运行经验,大规模风电并网带来的主要问题:一是风速的波动性和随机性引起风电场出力随时间变化而导致的安全隐患;二是薄弱系统的稳定性与电能质量问题。
由于风能资源有着间歇性和随机性的特点,因此大规模的风电并入电网将对电网的规划建设、运行调度、分析控制、经济运行和电能质量等产生一定的影响。
为保证电网、风电场的安全,必要时应该控制风电场接入系统的容量。
国内外学者和工程技术人员通常采用以下2个指标来表征电网可承受的风电场并网容量:(1)风电穿透功率极限;(2)风电场短路容量比。
适当提高电容器的补偿容量,有助于提高风电系统短路故障后的稳定性,进一步可以选择安装动态无功补偿装置来提供动态的电压支撑,改善系统的电压稳定性。
限制接入一个点的风电容量,这样就可以在该点发生故障时,尽量降低其对其它风电场的影响,即采取“分散接入”的原则。
在做好风电规划的基础上引入合适的新技术,如轻型直流输电,储能装置来减少对日益增长的风电规模给电网带来的影响。
另外,为了降低风电接入对电网调度的影响及对备用容量的要求,进行风电功率预测十分必要和迫切。