)
闭区间连续函数的性质
最大,最小值定理 有界性
介值定理
零点定理
,
6
例 求 f ( x) 1 x 的间断点, 并指出其类型. 1 e1 x
解 当x 0, x 1时,函数无定义, 是函数的间断点.
x 0, 由于 lim f ( x) lim
1 x ,
x0
1 e x0
1 x
所以 x 0是函数的第二类间断点, 且是无穷型.
1 的间断点, x1
2x 1
并判断其类型.
解 : 可知 x 0,x 1是可能的间断点. (1) 在x 0处,
lim y 1 sin2(1),lim y 1 sin2(1)
x0
x0
因在x 0处的左右极限都存在, 但不相等, 所以x 0为函数的第一类间断点,且是跳跃间断点.
9
(2) 在x 1处,
x( , )
则函数 f ( x)的曲线有水平渐近线 y a. (b) 垂直渐近线 若函数 f ( x)满足
lim f ( x) ,
x x0 ( x0 , x0 )
则函数 f ( x)的曲线有垂直渐近线 x x0.
25
计算题
1. 设
y
f
(
x
)
1
2 x
2
ax b
x 1处可导, 确定 a, b.
x)
a 2
f (0 ) lim ln (b x2 ) ln b x0
a 1 ln b 2
1 cos x ~ 1 x2 2
11
例
讨论
f (x)
x2 sin
1, x
x0
0,
x0
在x 0处的连续性与可导性 .