当前位置:文档之家› 年产8万吨合成氨合成工段设计_毕业设计

年产8万吨合成氨合成工段设计_毕业设计

年产8万吨合成氨合成工段设计_毕业设计
年产8万吨合成氨合成工段设计_毕业设计

毕业论文声明

本人郑重声明:

1.此毕业论文是本人在指导教师指导下独立进行研究取得的成果。除了特别加以标注地方外,本文不包含他人或其它机构已经发表或撰写过的研究成果。对本文研究做出重要贡献的个人与集体均已在文中作了明确标明。本人完全意识到本声明的法律结果由本人承担。

2.本人完全了解学校、学院有关保留、使用学位论文的规定,同意学校与学院保留并向国家有关部门或机构送交此论文的复印件和电子版,允许此文被查阅和借阅。本人授权大学学院可以将此文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本文。

3.若在大学学院毕业论文审查小组复审中,发现本文有抄袭,一切后果均由本人承担,与毕业论文指导老师无关。

4.本人所呈交的毕业论文,是在指导老师的指导下独立进行研究所取得的成果。论文中凡引用他人已经发布或未发表的成果、数据、观点等,均已明确注明出处。论文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究成果做出重要贡献的个人和集体,均已在论文中已明确的方式标明。

学位论文作者(签名):

年月

关于毕业论文使用授权的声明

本人在指导老师的指导下所完成的论文及相关的资料(包括图纸、实验记录、原始数据、实物照片、图片、录音带、设计手稿等),知识产权归属华北电力大学。本人完全了解大学有关保存,使用毕业论文的规定。同意学校保存或向国家有关部门或机构送交论文的纸质版或电子版,允许论文被查阅或借阅。本人授权大学可以将本毕业论文的全部或部分内容编入有关数据库进行检索,可以采用任何复制手段保存或编汇本毕业论文。如果发表相关成果,一定征得指导教师同意,且第一署名单位为大学。本人毕业后使用毕业论文或与该论文直接相关的学术论文或成果时,第一署名单位仍然为大学。本人完全了解大学关于收集、保存、使用学位论文的规定,同意如下各项内容:按照学校要求提交学位论文的印刷本和电子版本;学校有权保存学位论文的印刷本和电子版,并采用影印、缩印、扫描、数字化或其它手段保存或汇编本学位论文;学校有权提供目录检索以及提供本学位论文全文或者部分的阅览服务;学校有权按有关规定向国家有关部门或者机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入学校有关数据

库和收录到《中国学位论文全文数据库》进行信息服务。在不以赢利为目的的前提下,学校可以适当复制论文的部分或全部内容用于学术活动。

论文作者签名:日期:

指导教师签名:日期:

毕业设计

年产8万吨合成氨合成工段设计

1 总论

氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30 %的比例,称之为“工业氨”。

世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发[1]。

(1) 大型化、集成化、自动化, 形成经济规模的生产中心、低能耗与环境更友好将是未来合成氨装置的主流发展方向。以Uhde公司的“双压法氨合成工艺”和Kellogg 公司的“基于钌基催化剂KAAP 工艺”,将会在氨合成工艺的大型化方面发挥重要的作用。氨合成工艺单元主要以增加氨合成转化率(提高氨净值) ,降低合成压力、减小合成回路压降、合理利用能量为主,开发气体分布更加均匀、阻力更小、结构更加合理的合成塔及其内件; 开发低压、高活性合成催化剂, 实现“等压合成”。

(2) 以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和再加工”为核心的产品结构调整,是合成氨装置“改善经济性、增强竞争力”的有效途径。

实施与环境友好的清洁生产是未来合成氨装置的必然和惟一的选择。生产过程中不生成或很少生成副产物、废物,实现或接近“零排放”的清洁生产技术将日趋成熟和不断完善。

提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。有利于“提高装置生产运转率、延长运行周期”的技术,包括工艺优化技术、先进控制技术等将越来越受到重视。

1.1设计任务的依据

设计任务书是项目设计的目的和依据:

产量:80 kt/a 液氨

放空气(惰性气Ar +CH4):17%

原料:新鲜补充气N

2 24%,H

2

74.5 %,Ar 0.3%,CH

4

1.2%

合成塔进出口氨浓度:2.5%,13.2%

放空气:(惰性气Ar +CH

4

)~17%

合成塔操作压力 32 MPa(绝压)

精练气温度 40℃

水冷器出口气体温度35 ℃

循环机进出口压差 1.47MPa

年工作日310 d

计算基准生产1t氨

1.2概述

1.2.1设计题目:年产8万吨合成氨合成工段设计

1.2.2 设计具体内容范围及设计阶段

本次设计的内容为合成氨合成工段的设计,具体包括以下几个设计阶段:

1. 进行方案设计,确定生产方法和生产工艺流程。

2. 进行化工计算,包括物料衡算、能量衡算以及设备选型和计算。

3. 绘制带控制点的工艺流程图(PID)。

4. 进行车间布置设计,并绘制设备平立面布置图。

5. 进行管路配置设计,并绘制管路布置图。

6. 撰写设计说明书。

1.2.3设计的产品的性能、用途及市场需要

(1) 氨的物化性能

合成氨的化学名称为氨,氮含量为82.3%。氨是一种无色具有强烈刺激性、催泪性和特殊臭气的无色气体,比空气轻,相对密度0.596,熔点-77.7℃;沸点-33.4℃。标准状况下,1米3气氨重0.771公斤;1米3液氨重638.6公斤。极易溶于水,常温(20℃)常压下,一个体积的水能溶解600个体积的氨;标准状况下,一个体积水能溶解1300个体积的氨氨的水溶液称为氨水,呈强碱性。因此,用水喷淋处理跑氨事故,能收到较好的效果[2]。

氨与酸或酸酐可以直接作用,生成各种铵盐;氨与二氧化碳作用可生成氨基甲铵,脱水成尿素;在铂催化剂存在的条件下,氨与氧作用生成一氧化氮,一氧化氮继续氧化并与水作用,便能得到硝酸。氨在高温下(800℃以上)分解成氮和氢;

氨具有易燃易爆和有毒的性质。氨的自燃点为630℃,氨在氧中易燃烧,燃烧时生成蓝色火焰。氨与空气或氧按一定比例混合后,遇明火能引起爆炸。常温

下氨在空气中的爆炸范围为15.5~28%,在氧气中为13.5~82%。液氨或干燥的气氨,对大部分物质没有腐蚀性,但在有水的条件下,对铜、银、锌等有腐蚀作用[3]。

(2) 氨的用途

氨是基本化工产品之一,用途很广。化肥是农业的主要肥料,而其中的氮肥又是农业上应用最广泛的一种化学肥料,其生产规模、技术装备水平、产品数量,都居于化肥工业之首,在国民经济中占有极其重要的地位。各种氮肥生产是以合成氨为主要原料的,因此,合成氨工业的发展标志着氮肥工业的水平。以氨为主要原料可以制造尿素、硝酸铵、碳酸氢铵、硫酸铵、氯化铵等氮素肥料。还可以将氨加工制成各种含氮复合肥料。此外,液氨本身就是一种高效氮素肥料,可以直接施用,一些国家已大量使用液氨。可见,合成氨工业是氮肥工业的基础,对农业增产起着重要的作用。

氨也是重要的工业原料,广泛用于制药、炼油、纯碱、合成纤维、合成树脂、含氮无机盐等工业部门。将氨氧化可以制成硝酸,而硝酸又是生产炸药、染料等产品的重要原料。现代国防工业和尖端技术也都与氨合成工业有密切关系,如生产火箭的推进剂和氧化剂,同样也离不开氨。此外,氨还是常用的冷冻剂。

合成氨工业的迅速发展,也促进和带动了许多科学技术部门的发展,如高压技术、低温技术、催化技术、特殊金属材料、固体燃料气化、烃类燃料的合理利用等。同时,尿素和甲醇的合成、石油加氢、高压聚合等工业,也是在合成氨工业的基础上发展起来的。所以合成氨工业在国民经济中占有十分重要的地位,氨及氨加工工业已成为现代化学工业的一个重要部门[4]。

(3)市场需要

据资料统计:1997 年世界合成氨年产量达103.9Mt。预计2000 年产量将达111.8Mt。其化肥用氨分别占氨产量的81.7%和82.6%。我国1996 年合成氨产量已达30.64Mt,专家预测2000 年将达36Mt,2020 年将增加至45Mt。即今后20 年间将增加到现在的1.5 倍。因而合成氨的持续健康发展还有相当长的路要走。未来我国合成氨氮肥的实物产量将会超过石油和钢铁。合成氨工业在国民经济中举足轻重。农业生产,“有收无收在于水,收多收少在于肥”。所以,合成氨工业是农业的基础。它的发展将对国民经济的发展产生重大影响。因此,我国现有众多的化肥生产装置应成为改造扩建增产的基础。我国七十至九十年代先后重复引进30 多套大化肥装置,耗费巨额资金,在提高了化肥生产技术水平的同时,也受到国外的制约。今后应利用国内开发和消化吸收引进的工艺技术,自力更生,立足国内,走出一条具有中国特色的社会主义民族工业的发展道路。过去引进建设一套大型化肥装置,耗资数十亿元。当今走老厂改造扩建的道路,可使投资节省1/2—2/3。节省的巨额资金,用作农田水利建设和农产品深加工,将在加速农村经济发展,提高农民

生活水平,缩小城乡差距起着重要用。

1.2.4简述产品的几种生产方法及特点

氨的合成是合成氨生产的最后一道工序,其任务是将经过精制的氢氮混合气在催化剂的作用下多快好省地合成为氨。对于合成系统来说,液体氨即是它的产品。工业上合成氨的各种工艺流程一般以压力的高低来分类[3]。

(1)高压法

操作压力70~100MPa,温度为550~650℃。这种方法的主要优点是氨合成效率高,混合气中的氨易被分离。故流程、设备都比较紧凑。但因为合成效率高,放出的热量多,催化剂温度高,易过热而失去活性,所以催化剂的使用寿命较短。又因为是高温高压操作,对设备制造、材质要求都较高,投资费用大。目前工业上很少采用此法生产。

(2)中压法

操作压力为20~60MPa,温度450~550℃,其优缺点介于高压法与低压法之间,目前此法技术比较成熟,经济性比较好。因为合成压力的确定,不外乎从设备投资和压缩功耗这两方面来考虑。从动力消耗看,合成系统的功耗占全厂总功耗的比重最大。但功耗决不但取决于压力一项,还要看其它工艺指标和流程的布置情况。总的来看,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。因此,本次设计选用32MPa压力的合成氨流程。

(3)低压法

操作压力10MPa左右,温度400~450℃。由于操作压力和温度都比较低,故对设备要求低,容易管理,且催化剂的活性较高,这是此法的优点。但此法所用催化剂对毒物很敏感,易中毒,使用寿命短,因此对原料气的精制纯度要求严格。又因操作压力低,氨的合成效率低,分离较困难,流程复杂。实际工业生产上此法已不采用了。

1.3 产品方案

产品的名称:氨(NH3);

产品的质量规格:液体纯氨;

产品的规模:80 kt/a 液氨;

产品的包装方式:氨为高压低温液体,合成后直接送到下一工段作为原料继续生产,多余部分设立氨储槽储存起来。

1.4设计产品所需的主要原料规格、来源

1.4.1主要原料来源

生产合成氨,首先必须制备氢、氮原料气。

氮气来源于空气,可以在低温下将空气液化、分离而得,或者在制氢过程中直接加入空气来解决。

氢气来源于水或含有烃类的各种燃料,它取决于用什么方法制取。最简便的方法是将水电解,但此法由于电能消耗大、成本高而受到限制。现在工业上普遍采用以焦炭、煤、天然气、重油等原料与水蒸汽作用的气化方法。

1.4.2 主要原料规格

(1) 合成塔进口气体组成

合成塔进口气体组成包括氢氮比、惰性气体含量与初始氨含量。当氢氢比为3时,对于氨合成反应,可得最大平衡氨含量,但从动力学角度分析,最适宜氢氨比随氨含量的不同而变化。如果略去氢及氨在液氨中溶解损失的少量差异,氨合成反应氢与氮总是按3:1消耗,新鲜气氢氮比应控制为3,否则循环系统中多余的氢或氮就会积累起来,造成循环气中氢氮比的失调。

惰性气体(CH4、Ar)来源于新鲜原料气,它们不参与反应因而在系统中积累。惰性气体的存在,无论从化学平衡还是动力学上考虑均属有弊。但是,维持过低的惰气含量又需大量排放循环气导致原料气消耗量增加。如果循环气中惰性气体含量一定,新鲜气中惰性气体含量增加,根据物料平衡关系,新鲜气消耗随之增大。因此,循环气中惰性气体含量应根据新鲜气惰性气体含量、操作压力、催化剂活性等条件而定。由于原料气制备与净化方法不同,新鲜气中惰性气体含量也各个相同,循环气中所控制的惰性气体含量也有差异。

当其它条件一定时,进塔气体中氨含量越高,氨净值越小,生产能力越低。初始氨含量的高低取决于氨分离的方法。对于冷冻法分离氨,初始氨含量与冷凝温度和系统压力有关。为过分降低冷凝温度而过多地增加氨冷负荷在经济上也并不可取。操作压力300atm时,一般进塔氨含量控制在3.2~3.8%;150atm时,为2.0~3.2%。

(2) 硫化物和碳氧化物含量

无论那一种原料所得原料气,都含有一定数量的硫化物。虽然原料气中硫化物含量不高,但对合成氨生产危害却很大。硫化物是各种催化剂的毒物,硫化氢能腐蚀设备管道。以烃类为原料的蒸汽转化法制取原料气,镍催化剂对硫含量限制十分严格,要求烃原料中总硫含量为0.5PPm(重量)以下。

为防止CO和CO2对催化剂的毒害,规定CO和CO2总含量不得多余20ppm[5]。

1.5生产中产生有害物质和处理措施

中小型合成氨厂在生产过程中,常见的有毒有害物质种类很多,多以气体、蒸气、雾、粉尘等状态存在,其中有毒有害气体是合成氨生产中最常见的。

1.5.1 氨气和液氨

氨气是一种具有强烈刺激臭味的无色气体, 易被液化成蓝色液体。车间空气中氨的最高容许浓度为30 毫克/米3。它对人的眼睛和呼吸器官有较大的伤害作用。氨中毒的症状首先是服粘膜和呼吸道粘膜受到刺激、胸感抑郁、胃痛、打喷嚏、流口水、周身有不舒服感。如在氨气浓度不大的环境中,停留时间不长,而且能及时离开环境,到空气新鲜的地方去,上述的症状可渐渐消失。中毒严重时,会引起肺部肿胀导致死亡。氨气刺激眼睛能引起角膜炎。因氨有气味,故较好预防。

合成氨生产中合成工段经常接触的液体毒物有液氨、氨水等。液氨或氨水溅入眼内,可造成眼睛严重损伤,出现眼睑水肿,眼结膜迅速充血水肿,眼剧痛,角膜混浊,甚至因角膜溃疡、穿孔而失明。接触液氨和高浓度气氨,可使皮肤引起类似强碱的严重灼伤,出现红斑、水泡,甚至因吸收水分,使皮肤脂肪皂化而坏死。

在正常生产过程中,有很少一部份气态NH3无法回收,通过放空火炬燃烧掉就不会对环境造成影响。对于成品氨罐放空的气态NH3可引入冰机中进行加压冷凝,不仅回收了NH3,同时也不会造成环境的污染[3]。

1.5.2 合成氨废水

合成氨生产过程中产生的废水是COD的主要来源。比如,隔油池中废水就含有COD。如果含有COD的废水排放出去就会繁衍菌类、藻类,污染水源和土壤,更严重的是会造成污染滋生源,对环境造成更大的破坏。

要减少废水和工艺冷凝液中的COD的排放,可改进生产工艺,使废水排放减少,建设特生化处理装置,进行废水处理,使废水中的COD含量达到国家控制标准[6]。

2 生产流程及生产方法的确定

2.1合成氨生产的特点

氨的合成工段,其主要任务是在适宜的温度、压力和有触媒催化的条件下,将经过精制的氢氮混合气体,在合成塔内直接合成为氨。然后将所得的气氨,从氢氮混合气中经冷却冷凝成为液态氨分离出来。液氨由氨罐进入氨冷器蒸发为气氨,送碳化岗位制取碳酸氢铵;或送硝酸车间制取硝酸和硝铵;或送硫铵车间制取硫酸铵;或将液氨送尿素车间制取尿素等。未合成为氨的氢氮混合气体继续在合成系统内循环使用。

合成氨生产的特点,概括起来有如下几方面[7]:

(1)工艺流程长、设备管道多;(2)生产过程有高度的连续性;(3)各工序生产操作相互影响;(4)生产是在高温、高压、易燃、易爆、易中毒、易灼伤的情况下进行的。

在整个合成氨生产过程中,合成氨生产比较复杂,始终存在着高温、高压、易燃、易爆、易中毒等危险因素,各种控制条件比较严格,稍有疏忽就可能发生事故。同时,因生产工艺流程长、连续性强,设备长期承受高温和高压,还有内部介质的冲刷、渗透和外部环境的腐蚀等,各类事故发生率比较高,尤其是火灾、爆炸和重大设备事故经常发生。但是,只要我们能充分认识这一客观规律并掌握这一客观规律就能做到安全生产,实现稳产、高产。

因此,合成氨生产必须满足高温、高压、高纯度要求。在生产过程中有一系列化学反应、传热、燃烧、分离等过程,温度、压力、浓度等因素都影响反应的进行,这些因素又受到设备质量、水质、煤质、季节、气候、操作水平、调度与管理的影响,这样就形成了合成氨生产工艺过程、设备结构、操作管理与生产技术的复杂性。

2.2 氨合成过程的基本工艺步骤

实现氨合成的循环,必须包括如下几个步骤[4]:氮氢原料气的压缩并补入循环系统;循环气的预热与氨的合成;氨的分离;热能的回收利用;对未反应气体补充压力并循环使用,排放部分循环气以维持循环气中惰性气体的平衡等。

由于采用压缩机的型式、氨分冷凝级数、热能回收形式以及各部分相对位置的差异,而形成不同的工业生产流程,但实现氨合成过程的基本工艺步骤是相同的。

(1)气体的压缩和除油

为了将新鲜原料气和循环气压缩到氨合成所要求的操作压力,就需要在流程中设置压缩机。当使用往复式压缩机时,在压缩过程中气体夹带的润滑油和水蒸汽混合在一起,呈细雾状悬浮在气流中。气体中所含的油不仅会使氨合成催化剂中毒、而且附着在热交换器壁上,降低传热效率,因此必须清除干净。除油的方法是压缩机每段出口处设置油分离器,并在氨合成系统设置滤油器。若采用离心式压缩机或采用无油润滑的往复式压缩机,气体中不含油水,可以取消滤油设备,简化了流程。

(2)气体的预热和合成

压缩后的氢氮混合气需加热到催化剂的起始活性温度,才能送入催化剂层进行氨合成反应。在正常操作的情况下,加热气体的热源主要是利用氨合成时放出的反应热,即在换热器中反应前的氢氮混合气被反应后的高温气体预热到反应温度。在开工或反应不能自热时,可利用塔内电加热炉或塔外加热炉供给热量。

(3)氨的分离

进入氨合成塔催化层的氢氮混合气,只有少部分起反应生成氨,合成塔出口气体氨含量一般为10~20%,因此需要将氨分离出来。氨分离的方法有两种,一是水吸收法;二是冷凝法,将合成后气体降温,使其中的气氮冷凝成液氨,然后在氨分离器中,从不凝气体中分离出来。

目前工业上主要采用冷凝法分离循环气中的氨。以水和氨冷却气体的过程是在水冷器和氨冷器中进行的。在水冷器和氨冷器之后设置氨分离器,把冷凝下来的液氨从气相中分离出来,经减压后送至液氮贮槽。在氨冷凝过程,部分氢氮气及惰性气体溶解在液氨中。当液氨在贮槽内减压后,溶解的气体大部分释放出来,通常称为“贮罐气”。

(4)气体的循环

氢氮混合气经过氨合成塔以后,只有一小部分合成为氨。分离氨后剩余的氢氮气,除为降低情性气体含量而少量放空以外,与新鲜原料气混合后,重新返回合成塔,再进行氨的合成,从而构成了循环法生产流程。由于气体在设备、管道中流动时,产生了压力损失。为补偿这一损失,流程中必须设置循环压缩机。循环机进出口压差约为20~30大气压,它表示了整个合成循环系统阻力降的大小。

(5)惰性气体的排除

氨合成循环系统的情性气体通过以下三个途径带出:(1)一小部分从系统中漏损;(2)一小部分溶解在液氨中被带走;(3)大部分采用放空的办法,即间断或连续地从系统中排放。

在氨合成循环系统中,流程中各部位的惰性气体含量是不同的,放空位置应该选择在惰性气体含量最大而氨含量最小的地方,这样放空的损失最小。由此可见,放空的位置应该在氨已大部分分离之后,而又在新鲜气加入之前。放空气中的氨可用水吸收法或冷凝法加以回收,其余的气体一股可用作燃料。也可采用冷凝法将放空气中的甲烷分离出来,得到氢、氮气,然后将甲烷转化为氢,回收利用,从而降低原料气的消耗。

有些工厂设置二循环合成系统,合成系统放空气进入二循环系统的合成塔,继续进行合成反应,分离氨后部分情性气体放空,其余部分在二循环系统继续循环。这样,提高了放空气中惰性气体含量,从而减少了氢氮气损失。

(6)反应热的回收利用

氨的合成反应是放热反应,必须回收利用这部分反应热。目前回收利用反应热的方法主要有以下几种:

(1) 预热反应前的氢氮混合气。在塔内设置换热器,用反应后的高温气体预热反应前的氢氮混合气,使其达到催化剂的活性温度。这种方法简单,但热量回收不完全。目前小型氨厂及部分中型氨厂采用此法回收利用反应热。

(2) 预热反应前的氢氮混合气和副产蒸汽。既在塔内设置换热器预热反应前

的氢氮混合气,又利用余热副产蒸汽。按副产蒸汽锅炉安装位置的不同,可分为塔内副产蒸汽合成塔(内置式)和塔外副产蒸汽合成塔(外置式)两类。目前一般采用外置式,该法热量回收比较完全,同时得到了副产蒸汽,目前中型氮厂应用较多。

(3)预热反应前的氢氮混合气和预热高压锅炉给水。反应后的高温气体首先通过塔内则换热器预热反应前的氢氮混合气,然后再通过塔外的换热器预热高压锅炉给水。此法的优点是减少了塔内换器的面积,从而减小了塔的体积,同时热能回收完全。目前大型合成氨厂一般采用这种方法回收热量。用副产蒸汽及预热高压锅炉给水方式回收反应热时,生产一吨氨一般可回收0.5~0.9吨蒸汽。2.3氨合产工艺的选择

考虑氨合成工段的工艺和设备问题时,必须遵循三个原则:一是有利于氨的合成和分离;二是有利于保护催化剂,尽量延长使用寿命;三是有利于余热回收降低能耗。

氨合成工艺选择主要考虑合成压力、合成塔结构型式及热回收方法。氨合成压力高对合成反应有利, 但能耗高。中压法技术比较成熟,经济性比较好,在15~30Pa的范围内,功耗的差别是不大的,因此世界上采用此法的很多。一般中小氮肥厂多为32MPa , 大型厂压力较低,为10~20MPa。由于近来低温氨催化剂的出现, 可使合成压力降低。

合成反应热回收是必需的, 是节能的主要方式之一。除尽可能提高热回收率,多产蒸汽外, 应考虑提高回收热的位能, 即提高回收蒸汽的压力及过热度。高压过热蒸汽的价值较高, 当然投资要多, 根据整体流程统一考虑。

本次设计选用中压法(压力为32MPa)合成氨流程,采用预热反应前的氢氮混合气和副产蒸汽的方法回收反应热,塔型选择见设备选型部分。

3 生产流程简述

气体从冷交换器出口分二路、一路作为近路、一路进入合成塔一次入口,气体沿内件与外筒环隙向下冷却塔壁后从一次出口出塔,出塔后与合成塔近路的冷气体混合,进入气气换热器冷气入口,通过管间并与壳内热气体换热。升温后从冷气出口出来分五路进入合成塔、其中三路作为冷激线分别调节合成塔。二、三、四层(触媒)温度,一路作为塔底副线调节一层温度,另一路为二入主线气体,通过下部换热器管间与反应后的热气体换热、预热后沿中心管进入触媒层顶端,经过四层触媒的反应后进入下部换热器管内,从二次出口出塔、出塔后进入废热锅炉进口,在废热锅炉中副产25MPa 蒸气送去管网,从废热锅炉出来后分成二股,一股进入气气换热器管内与管间的冷气体换热,另一股气体进入锅炉给水预热器在管内与管间的脱盐,脱氧水换热,换热后与气气换热器出口气体会合,一起进

入水冷器。在水冷器内管被管外的循环水冷却后出水冷器,进入氨分离器,部分液氨被分离出来,气体出氨分离器,进入透平循环机入口,经加压后进入循环气滤油器出来后进入冷交换器热气进口。在冷交换器管内被管间的冷气体换热,冷却后出冷交换器与压缩送来经过新鲜气滤油器的新鲜气氢气、氮气会合进入氨冷器,被液氨蒸发冷凝到-5~-10℃,被冷凝的气体再次进入冷交,在冷交下部气液分离,液氨送往氨库气体与热气体换热后再次出塔,进入合成塔再次循环。

图3-1 工艺流程图

4 工艺计算

4.1 原始条件

(1)年产量80kt,年生产时间扣除检修时间后按360天计,则产量为:10.7527t/h

(2)新鲜补充气组成

表4-1 新鲜补充气组成

组分H2N2CH4Ar 总计含量(%)74.5 24 1. 2 0.3 100

(3)合成塔入口中氨含量:NH3

入=2.5%

(4)合成塔出口中氨含量:NH3

出=13.2%

(5)合成塔入口惰性气体含量:CH4 +Ar=17%

(6)合成塔操作压力:32Mpa

(7)精练气温度:35℃

1.2.3.4.5.——精炼气 6.7.8.9.10.11.12.14.17.18.——合成气;

13——放空气 20——弛放气 15.16.19.21——液氨

图4-1 计算物料点流程

4.2 物料衡算

4.2.1 合成塔物料衡算

(1)合成塔入口气组分:

入塔氨含量: y5NH3=2.5%;

入塔甲烷含量:y5CH4=17.00%×1.2/(1.2+0.3)×100%=13.6%;

入塔氢含量:y5H2=[100-(2.5+17)]×3/4×100%=60.375%;

入塔氩含量:y5Ar=17%-13.6%=3.4%;

入塔氮含量:y5N2=[100-(2.5+17)]×1/4×100%=20.125%

表4-2 入塔气组分含量(%)

NH3CH4Ar H2N2小计

2.5 1

3.6 3.4 60.375 20.125 100

(2)合成塔出口气组分:

以1000kmol入塔气作为基准求出塔气组分,

由下式计算塔内生成氨含量:M NH3=M5(y8NH3-y5NH3)/(1+y8NH3)=1000(0.132- 0.025)/(1+0.132)=94.523kmol

出塔气量: M8=入塔气量—生成氨含量=1000-94.523=905.477kmol 出塔氨含量:y8NH3=13.2%

出塔甲烷含量:y8CH4=(M5/M8)×y5CH4=(1000/905.477)×13.6%=15.2%

出塔氨含量:y8Ar=(M5/M8)×y5Ar=1000/905.477×3.4%=3.754%

出塔氢含量:y8H2=3/4(1-y8NH3-y8CH4-y8Ar)×100%

=3/4(1-0.132-0.152-0.03754)×100%=50.8845%出塔氮含量:y8N2=1/4(1-0.132-0.152-0.03754)×100%=16.9615%

表4-3 出塔气体组分含量(%)

NH

3CH

4

Ar H

2

N

2

小计

13.2 15.2 3.754 50.8845 16.9615 100

(3)合成率:

合成率=2M NH3/[M5(1-y5NH3-y5CH4-y5Ar)]×100%

=2×94.523/[1000×(1-0.025-0.17)]×100%=23.484%

4.2.2氨分离器气液平衡计算

表4-5 已知氨分离器入口混合物组分m(i)

NH3CH4Ar H2N2小计

0.132 0.152 0.03754 0.50885 0.16961 1.00000

查t=35℃,P=29.1MPa时各组分平衡常数:

表4-6 各组分平衡常数

K NH3K CH4K Ar K H2K N2

0.098 8.2 28.200 27.500 34.500

设(V/L)=11.1时,带入L×(i)=m(i)/[1+(V/L)×K(i)]=L(i):

L

NH3

=m NH3/[1+(V/L)×K NH3]=0.07903Kmol

L

CH4

= m CH4/[1+(V/L)×K CH4]=0.00143 Kmol

L

Ar

=m Ar/[1+(V/L)×K Ar]=0.00013 Kmol

L

H2

=m H2/[1+(V/L)×K H2]=0.0163Kmol

L

H2

=m N2)/[1+(V/L)×K N2]=0.00043 Kmol

L

= L(NH3)+ L(CH4)+ L(Ar)+ L(Ar)+ L(H2)+ L(N2)=0.08264 Kmol 分离气体量:V=1-L=1-0.08264=0.91736 Kmol

计算气液比:(V/L)'=0.91739/0.08261=11.1005

误差[(V/L)-(V/L)']/(V/L)=(11.10-11.1005)/11.10×100%=0.0047%,结果合理。

从而可计算出液体中各组分含量:

液体中氨含量:x NH3=L NH3/L=0.07899/0.08261×100%=95.631%

液体中氩含量:x Ar=L Ar/L=0.000013/0.08261×IOO%=0.152%

液体中甲烷含量:x CH4=L CH4/L=0.00143/0.08261×100%=1.725%

液体中氢含量: x H2=L H2/L=0.00163/0.08261×100%=1.969%

液体中氮含量:x N2=L H2/L=0.00043/0.08261×100%=0.524%

表4-7 氨分离器出口液体含量

NH3CH4Ar H2N2小计

95.631 1.725 0.152 1.969 0.524 100.00

分离气体组分含量:

气体氨含量:y NH3=[m NH3-L NH3]/V=8.23%

气体甲烷含量:y CH4=[m CH4-L CH4]/V=15.86%

气体氩含量:y Ar=[m Ar-L Ar]/V=3.93%

气体氢含量:y H2=[m H2-L H2]/V=53.93%

气体氮含量:y N2=[m N2-L N2]/V=18.06%

表4-8 氨分离器出口气体含量(%)

NH3CH4Ar H2N2小计

8.23 15.86 3.93 53.93 18.06 100.00

4.2.3冷交换器气液平衡计算

查t=-10℃,p=28.3MPa的平衡常数:

表4-9 各组分的平衡常数

K NH3K CH4K Ar K H2K N2

0.0254 27 51 75 80

冷交换器出口液体组分含量:

出口液体甲烷含量:x CH4=y CH4/ K CH4=0.427%

出口液体氨含量:x NH3=y NH3/ K NH3=98.425%

出口液体氩含量: x Ar=y Ar/ K Ar=0.068%

出口液体氢含量: x H2=y H2/ K H2=0.825%

出口液体氮含量: x N2=y N2/ K N2=0.258%

表4-10 冷交换器出口液体组分含量(%)

NH3CH4Ar H2N2小计

98.425 0.427 0.0679 0.825 0.258 100.00

4.2.4液氨贮槽气液平衡计算

由于氨分离器液体和冷交换器出口分离液体汇合后进入液氨贮槽经减压后

溶解在液氨中的气体会解吸,即弛放气;两种液体百分比估算值,即水冷后分离液氨占总量的白分数。

G%=(1+y5NH3)×(y8NH3-y NH3)/(( y8NH3- y5NH3)×(1- y NH3))

=[(1+0.025)×(0.132-0.09371)]/ [(0.132-0.025)×(1-0.13741)] =57.588%

水冷后分离液氨占总量的57.588%冷交,氨冷后分离液氨占总量的

42.412%。

液氨贮槽入口1Kmol液体计算为准,即L0=1Kmol,入口液体混合后组分含量:m(

)=L(15)X15i+L16X16i

0i

= G%L0X15i+(1- G%)X16i

=0.57588X15i+0.42412X16i

混合后入口氨含量:m0NH3=0.57588×0.9563+0.42412×0.9842=0.96816

混合后入口甲烷含量: m0CH4=0.57588×0.01724+0.42412×0.004274=0.01174 混合后入口氩含量: m0Ar=0.57588×0.001516+0.42412×0.0006787=0.00116 混合后入口氢含量:m0H2=0.57588×0.01969+0.42412×0.00825=0.01484

混合后入口氮含量:m0N2=0.57588×0.005237+0.42412×0.002578=0.00411

表4-11 液氨贮槽入口液体含量

m0NH3m0CH4m0Ar m0H2m0N2小计

0.96816 0.01174 0.00116 0.01484 0.00411 1.0000

当t=17℃,P=1.568MPa时,计算得热平衡常数:

表4-12 各组分的平衡常数

K NH3K CH4K Ar K H2K N2

0.598 170 540 575 620

根据气液平衡L(i)=m(0i)/[1+(V/L)k(i)],设(V/L)=0.05,代入上式得:

出口液体氨含量:L NH3=m0NH3/[(1+(V/L)×k NH3]

=0.968161/(1+0.05×0.598)=0.94005 K m ol 出口液体甲烷含量:L CH4=m0CH4/[ 1+(V/L)×k CH4]

=0.011744/(1+0.005×170)=0.00124 K m ol 出口液体氩含量:L Ar=m0Ar/[ 1+(V/L)×k Ar]

=0.001161/(1+0.05×540)=0.00004 K m ol

=m0H2/[ 1+(V/L)×k H2]

出口液体氢气含量:L

H2

=0.014839/(1+0.05×575)=0.0005 K m ol 出口液体氮气含量:L N2=m0N2/[ 1+(V/L)×k N2]

=0.004109/(1+0.05×620)=0.00013 K m ol

L(总)=0.94196,V=1-0.94196=0.058K m ol,(V/L) '=V/L=0.062,误差

=(0.062-0.05)/0.05=-0.232%,假定正确。

出口液体组分含量:

出口液体氨含量:x NH3=L NH3/L=0.94/0.942×100%=99.798%

出口液体甲烷含量:x CH4=L CH4/L=0.00124/0.942×100%=0.131%

出口液体氩含量:x Ar=L Ar/L=0.00004/0.942×100%=0.004%

出口液体氢气含量:x H2=L H2/L=0.0005/0.942×100%=0.053%

出口液体氮气含量:x N2=L N2/L=0.00013/0.942×100%=0.014%

表4-13 液氨贮槽出口液氨组分(%)

NH3CH4Ar H2N2小计

99.798 0.131 0.004 0.053 0.014 1.0000

出口弛放气组分含量:

弛放气氨含量:y NH3=(M0NH3-L NH3)/V=(0.96816-0.94)/0.058×100%=48.427%

弛放气甲烷含量:y CH4=(M0CH4-L CH4)/V=(0.01174-0.00124)/0.058×100%

=18.104%

弛放气氩含量:y Ar=(M0 Ar-L Ar)/V=(0.00116-0.00004)/0.058×100%=1.929%弛放气氢气含量:y H2=(M0H2-L H2)/V=(0.01484-0.0005)/0.058×100%=24.707%弛放气氮气含量:y N2=(M0N2-L N2)/V=(0.00411-0.00013)/0.058×100%=6.857%

表4-14 出口弛放气组分含量(%)

NH3CH4Ar H2N2小计

48.427 18.104 1.929 24.707 6.857 100

4.2.5液氨贮槽物料计算

以液氨贮槽出口一吨纯液氨为基准折标立方米计算液氨贮槽出口液体量 L(19)=1000×22.4/(0.99798×17)=1320.317m3

其中 NH

3 L(19NH

3

)=L(19NH

3

)×X(19NH3)=1320.317×99.798﹪=1317.647 m3

CH

4 L(19CH

4

)=L(19CH

4

)×X(19CH4)=1320.317×0.131﹪=1.733 m3

Ar L(19Ar)=L(19Ar)×X(19Ar)=1320.317×0.004﹪=0.058 m3

H

2 L(19H

2

)=L(19H

2

)×X(19H2)=1320.317×0.053﹪=0.0699 m3

N

2 L(19N

2

)=L(19N

2

)×X(19N2)=1320.317×0.014﹪=0.18 m3

液氨贮槽出口弛放气(V/L)=0.062

V(20)=0.062×L(19)=0.062×1320.317=81.355 m3

其中NH3 V(20NH3)=V(20NH3)×y(20NH3)=81.355×48.427﹪=39.398 m3

CH

4V(

20CH4

)=V(20CH4)×y(20CH4)=81.355×18.104﹪=14.728 m3

Ar V(20Ar)=V(20Ar)×y(20Ar)=81.355×1.929﹪=1.569 m3

H 2V(

20H2

)=V(20H2)×y(20H2)=81.355×24.707﹪=20.101 m3

N 2V(

20N2

)=V(20N2)×y(20N2)=81.355×6.857﹪=5.579 m3

液氨贮槽出口总物料=L(19)+ V(20)=1320.317+81.355=1401.627 m3

液氨贮槽进口液体:

由物料平衡,入槽总物料=出槽总物料,L(21)=L(19)+V(20)=1401.627 m3入口液体各组分含量计算:L(21i)= L(19i) + V(20i)

其中 NH

3 L(21NH

3

)=1317.647+39.398=1357.045 m3

CH

4 L(21CH

4

)=1.733 +14.728 =16.461 m3

Ar L(21Ar)=0.058 +1.569 =1.627 m3

H

2 L(21H

2

)=0.699 +20.101= 20.8 m3

N

2 L(21N

2

)=0.180+ 5.579 =5.579 m3

入口液体中组分含量核算,由 m′(0i)=L(21i)/L(21):

入口液体中氨含量 m′(0NH

3

)=1357.045/1401.672×100﹪=96.816﹪

入口液体中甲烷含量 m′(0CH

4

)=16.461/1401.672×100﹪=1.174﹪入口液体中氩含量 m′(0Ar)= 1.627/1401.672×100﹪=0.116﹪

入口液体中氢气含量 m′(0H

2

)= 20.8/1401.672×100﹪=1.484%

入口液体中氮气含量 m′(0N

2

)= 5.759/1401.672×100﹪=0.411% 入口液体中组分含量 m′(0i)≈ M′(0i)

4.2.6合成系统物料计算

将整个合成看着一个系统,进入该系统的物料有新鲜

补充气补V补,离开该系统的物料有放空气V放,液氨贮

槽弛放气V弛,产平液氨L氨。

图4-2 系统示意图

由前计算数据如下表:

表4-15 各组分的含量

名称NH3CH4Ar H2N2气量

补充气-- 0.011 0.0033 0.7445 0.2412 V补

放空气0.09371 0.1414 0.04275 0.54151 0.18062 V放

弛放气0.48427 0.18104 0.01929 0.24707 0.06857 81.355 液氨0.99798 0.00131 0.00004 0.00053 0.00014 1320.317 入塔气 2.5 13.6 3.4 60.375 20.125 V入

出塔气0.132 0.152 0.03754 0.50885 0.16961 V出

根据物料平衡和元素组分平衡求V补,V放,V入,V出:

循环回路中氢平衡:

V

补y

H2补

=V放y H2放+V弛y H2弛+3/2V放y NH3放+3/2V弛y NH3弛+3/2L NH3 ┉┉┉┉┉┉①

循环回路中氮平衡:

V

补y

N2补

=V放y N2放+V弛y N2弛+1/2V放y NH3放+1/2V弛y NH3弛+1/2L NH3 ┉┉┉┉┉┉②

循环回路中惰性气体平衡: V补(y CH4放+y Ar放)=V弛(y CH4放+y Ar放)+V弛(y CH4弛+y Ar弛) V

(0.011+0.0033)=V放(0.1414+0.04275)+81.355(0.18104+0.01929)

V

=12.878V放+1139.673 ┉┉┉┉┉┉③

循环回路中惰性气体平衡:V出y NH3-V入y NH3入=V放y放+V弛y NH3弛+L NH3

0.165V出-0.025V入=0.09736V放+ 1325.896 ┉┉┉┉┉┉④

循环回路中总物料体平衡: V入=V出+ V补- V放- V弛- L NH3= V出+ V补-V放

-32.974-1317.647= V出+ V补-V放- 1401.627 ┉┉┉┉┉┉⑤联立①②③④⑤各式解得:

V

=137.618 m3; V补=2199.921 m3; V出=10049.48 m3; V入=11422.11 m3

4.2.7合成塔物料计算

入塔物料:V5=11364.610 m3

NH

3V

5NH3

=11422×2.5﹪=284.115m3

CH

4 V

5CH4

=11364.61×13.6﹪=1265.563m3

Ar V5Ar=11364.61×3.4﹪=439.129m3

H 2 V

5H2

=11364.61×60.375﹪=7031.852m3

N 2 V

5N2

=11364.61×20.125﹪=2343.951m3

合成塔一出,二进物料,热交换器,冷气进出物料等于合成塔入塔物料即V5=V6=V7=10049.48 m3

出塔物料V8=10049.48 m3

NH

3V

8NH3

=10049.48×13.2﹪=1658.164 m3

CH

4 V

8CH4

=10049.48×15.2﹪=1317.934 m3

Ar V8Ar=10049.48×3.745﹪=395.380 m3

H 2 V

8H2

=10049.48×50.8845﹪=5008.501 m3

N 2 V

8N2

=10049.48×16.9615﹪=1669.500 m3

合成塔生成氨含量:ΔV NH3=V8NH3-V5NH3

=1658.164 -285.553=1372.611m3=1041.714Kg

沸热锅炉进出口物料,热交换器进出口物料等于合成塔出塔物料。

即V8=V9=V10=10049.48 m3

4.2.8水冷器物料计算

进器物料:水冷器进气物料等于热交换器出口物料,即V10入=10049.48 m3 出器物料:在水冷器中部分气氨被冷凝;由氨分离器气液平衡计算得气液比(V/L)=11.1,有如下方程:

V

11出

/L11出=(V/L)=11.1 ┉┉┉┉┉┉①

V

11出

+L11出=L10入=10049.48 ┉┉┉┉┉┉②

将V11出=11.1L11出带入②得:

L

11出

=830.5 m3V11出=9218.98 m3

出口气体组分由V11i=V11出y11i得:

粗苯工段

粗苯工段 1、粗苯的主要组成? 粗苯的主要组成是苯及其同系物甲苯、二甲苯和三甲苯等。此外,粗笨中还有一些不饱和化合物,硫酸物及少量的酚类和吡啶碱类。在用洗油回收煤气中的苯族烃,则尚含有少量洗油的轻质馏份。 2、粗苯爆炸同空气混合后的爆炸范围? 粗笨蒸汽在空气中的浓度在1.4-7.5%(体积)范围内时,能形成爆炸混合物,粗笨易燃。 3、粗苯质量鉴别: 180℃前馏出量越多,粗苯的质量就越好,一般要求粗笨的180℃前馏出量为93-95%。 4、用洗油回收苯族烃,回收苯族烃的基本原理? 当煤气中苯族烃的分压PG大于洗油液面上的粗苯的蒸汽PL时,煤气中的苯族烃就被汽油吸收,PG和PL之间的压力差是吸收苯族烃过程的推动力,差值愈大,则吸收过程进行得愈容易,吸收速率液愈快。吸收苯族烃过程的极限为气、液两相间达成平衡,此时为PG=PL. 5、生产粗笨的工艺流程 按流程图讲解(部包括抱起流程) 6、洗油流程操作参数 贫油流程线 脱苯塔底185℃贫油自流→一段贫富油换热器→143℃→二段(螺旋)贫富油换热器78℃→一段贫油冷却器35℃→二段贫富油冷却器25℃→洗苯塔吸收煤气中的苯变为富油→富油槽。 富油线 富油槽→富油泵→油气换热器同苯蒸汽换热60℃→二段贫富油换热器→125℃→一段贫富油换热器160℃→管式炉185-195℃→脱苯塔→至下到脱苯塔底。变为贫油180℃形式 再生器再生 1-1.5% 洗油循环系统 7、为了降低脱苯蒸馏温度采取什么方法? 可采取两种方法:(1)水蒸汽蒸馏;(2)真空蒸馏;我国均采用水蒸汽蒸馏法。 8、粗苯蒸馏过程中影响直接蒸馏量的因素? (1)提高富油的予热温度可减少直接蒸汽量的耗量; (2)反之减低富油予热温度,就得增加直接蒸汽量; (3)提高过热蒸汽的温度,也可降低直接蒸汽的耗量; (4)当富油中的粗苯含量高时,在一定预热温度下由于粗苯的蒸汽分压较大,对蒸出煤吨180℃前粗苯,也可减少直接蒸汽的耗量。 9、循环洗油量是根据什么确定的? (1)每吨干装入煤需循环洗油量0.5-0.55公斤/时; (2)每标立方米干煤气需循环洗油量约为1.5-1.7公斤/时;

合成氨毕业设计任务书

本科毕业设计 任务书 题目年产20万吨合成氨变换工段及换热器的设计 学院化学与材料工程专业化学工程与工艺班级06化工学号0611401110学生姓名范重泰指导教师乔迁 温州大学教务处制

温州大学本科毕业设计任务书 一、设计的主要任务与目标: 主要任务: 1.阅读资料,了解国内外合成气和CO变换工艺 2.根据实习地—巨化集团合成氨厂的资料,确定CO变换工艺 3.完成设计说明书及相应的图纸 主要目标: 年产20万吨合成氨变换工段工艺以及换热器的设计 1.完成带控制点的工艺流程图 2.完成换热器的设备图 二、设计的主要内容与基本要求: 主要内容: 1.确定合成氨变换工段的工艺路线,生产方法的论证 2.根据规定的年产量准确的进行车间的物料和热量衡算。 3.根据确定的生产工艺条件并结合物料横算对换热器进行衡算。 4.计算换热器设备的体积、主要尺寸和进出口管径及材质规格。在设计中,记录各个过程的详细计算过程。 5.设计图纸的绘制,工段工艺流程图和设备图.

基本要求: 1.完成对生产工艺的设计及工艺流程图 2.完成换热器的设计及相应的设备图 三、计划进度: 1、2010.2.14-2010.2.19 查阅相关资料、确定论文的题目、资料收集并整 理。 2、2010.2.20-2010.2.27 确定设计方案,并做开题报告、任务书。 3、2010.2.28-2010.5.10 进行设计 4、2010.5.11-2010.5.19 进行总结、撰写论文并上交 5、2010.5.20-2010.5.27 导师审阅论文及修改 6、2010.5.28 准备论文答辩

四、主要参考文献: [1] 陈声宗. 化工设计[M] .北京: 化学工业出版社, 2001: 15-81. [2] 胡建生,江会保. 化工制图[M].北京:化学工业出版社 [3] 贺匡国.化工容器及设备简明设计手册[M].北京:化学工艺出版社. [4] 赵军,张有忱,段成红.化工设备机械基础[M].北京:化学工业出版社. [5] 陈英南,刘玉兰. 常用化工单元设备的设计[M].上海:华东理工大学出版社. [6] 董大勤. 化工设备机械基础[M].北京: 化学工业出版社, 2002: 164-202, 247-308. [7] 贾绍义, 柴诚敬. 化工原理课程设计[M].天津: 天津大学出版社, 2002(2007.重印): 101-134. [8] 谢端绶, 苏元复. 化工工艺算图(第一册)[M].北京: 化学工业出版社, 1982(1985.重印): 1-158. [9] 胡建生,江会保. 化工制图[M].北京:化学工业出版社. [10] 陈声宗.化工过程开发与设计[M].北京:化学工业出版社,2005 [11] 茅晓东,李建伟.典型化工设备机械设计知道[M].上海:华东理工大学出版社. [12] 崔小明. 国外聚丙烯生产工艺及催化剂技术进展[J].科技经纬.2005年第一期. [13] 崔小明聚丙烯的供需现状及发展前景[J].化学工业.2008年5月第26卷第5期. [14] 孙涛,张宝森,刘田库. 聚丙烯生产工艺进展[J].辽宁化工.2007年6月第36卷第6期 指导教师(签名): 年月日学院审核意见: 签名: 年月日注:任务书必须由指导教师和学生互相交流后,由指导老师下达并交学院本科毕业设计领导小组审核后发给学生,最后同学生毕业论文等其它材料一起存档。

化产车间粗苯工段系统停车维修安全技术方案(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 化产车间粗苯工段系统停车维修安全技术方案(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

化产车间粗苯工段系统停车维修安全技术 方案(新版) 一、检修内容及工况 工况:由于苯蒸汽及水蒸气的腐蚀,现冷凝冷却器入口阀门出现漏点,为维持生产,现将漏点塞住;入管式炉蒸汽电动调节阀因长时间运行,现出现故障,调节失灵,需进行更换等。 检修内容: 1、粗苯工段西冷凝冷却器苯气入口阀门(DN200)阀体漏,需进行更换; 2、1#管式炉蒸气入口总阀及电子调节阀(DN100)无法调节,进行更换; 3、二段换热器入口阀门(DN150)进行更换; 4、更换贫油管与二段换热器之间的三通(已经预制完成);

5、检查管式炉富油出口管线阀门(3个DN150阀门,以防阀头脱落)。 二、停工、检修步骤及安全要求 1.粗苯工段停工 ⑴、停运管式炉:循环洗油保持运行正常,逐渐降低管式炉炉膛温度,当炉膛温度降至300℃以下时,关闭火嘴前煤气阀门,然后再关闭进管式炉煤气包的总阀门,打开烟囱翻板; ⑵、停再生器:关闭再生器进油阀门,将再生器内残渣排空,管道吹扫干净后,停进再生器蒸汽。 ⑶、停循环洗油:打开各洗苯塔交通阀,关闭洗苯塔煤气进口阀门,使煤气不再进入洗苯塔,以防煤气中的水分进入塔底槽,造成将来开工困难;观察循环贫油槽液位,不要过高,以防无法容纳停工后的回油;依次停贫油泵,半富油泵、富油泵,同时观察各洗苯塔的塔底液位,使其保持在正常运行时的2/3处; ⑷、停循环冷却水: (5)、其它未尽事项按粗苯停工操作规程执行。

毕业设计任务书及范本

2008级毕业设计任务书 专业名称:模具设计与制造 指导老师: 班级名称: 教研室:模具教研室 系(部):机械制造工程系 二O 一O 年十月日

一、目的与要求: 毕业设计是在模具设计与制造专业理论教学之后进行的实践性教学环节。是对所学知识的综合应用能力检验: 1.培养学生认真负责、实事求是的科学态度和严谨求实作风。 2.培养学生综合运用所学职业基础知识、职业专业知识和职业技能,提高解决实际问题的能力,从而达到巩固、深化所学的知识与技能。 3.培养学生调查研究,收集资料,熟悉有关技术文件,运用国家标准、手册、资料等工具书进行模具相关设计计算的能力、编写技术文件等独立工作能力。 4.培养学生熟悉工厂设计流程,为从事相关工作奠定基础。 二、选题: 1.选题要求 设计题目一般由指导老师根据教学计划、教学大纲和专业培养目标确定。机械制造与自动化专业选题原则: (1)课题要具有真实性; (2)围绕模具设计与制造的培养,可以选择典型零件模具设计。 (3)对已从事专业相关岗位的学生,设计的题目可结合从事的工作考虑。 (4)每1-2人为一课题组,每人课题设计的内容不允许雷同。允许一大课题下分若干小课题,但必须说明每人所承担的部分。多人合写一份论文应为不合格; (8)毕业设计课题一经确认,不得更改。 2.自主选题 根据学生本人实践实习所在单位的具体情况,尽可能结合生产实际,学生可自主选题,自主选题必须通过指导教师审查认可。 3、参考选题 根据企业生产实际情况、专业培养目标和专业教学计划特点,拟定以下课题作为毕业设计参考课题: 冲压模具设计课题如下: (1)压线卡冲压模具设计(2)保护罩冲压模具设计 (3)支架冲压模具设计(4)电极板冲压模具设计 (5)托架冲压模具设计(6)靠板冲压模具设计

粗苯蒸馏工段工艺流程

粗苯蒸馏工段工艺流程 来自硫铵工段的粗煤气,经终冷塔冷却后从洗苯塔底部入塔,由下而上经过洗苯塔填料层,与塔顶喷淋的循环洗油逆流接触,煤气中的苯被循环洗油吸收,再经过塔内捕雾段脱除雾滴后离开洗苯塔,其中一部分送焦炉做回炉煤气、一部分送粗苯管式炉作燃料,剩余部分外送作城市煤气。 洗苯塔底富油经富油泵加压后送至粗苯冷凝冷却器,与脱苯塔顶出来的粗苯汽换热,将富油预热至60℃左右,然后至油油换热器与脱苯塔底出来的热贫油换热,由60℃升到110℃左右,最后进入粗苯管式炉被加热至180℃左右,进入脱苯塔。从脱苯塔顶蒸出的粗苯油水混和汽进入粗苯冷凝冷却器分别被从洗苯塔底来的富油和16℃制冷水冷却至30℃左右。然后进入粗苯油水分离器,分离的粗苯至粗苯回流槽,部分粗苯经粗苯回流泵送至脱苯塔顶作回流,其余部分入粗苯贮槽,需外售时由粗苯输送泵送装车台装车外售。 由粗苯油水分离器分离的油水混合液去控制分离器,在此分离出的油去地下放空槽,分离出的水去苯工段终冷冷凝液槽,与终冷冷凝液一并送冷鼓、电捕工段的机械化氨水澄清槽。 脱苯后的热贫油从脱苯塔底流出,自流入油油换热器与富油换热,使其温度降至120℃左右入贫油槽,并由贫油泵加压送至贫油冷却器分别被循环水和制冷水冷却至约30℃,送洗苯塔喷淋洗涤煤气。 0.5MPa(表)蒸汽被粗苯管式炉过热至400℃左右,作为洗油再生器和脱苯塔的热源。管式炉所需燃料由洗苯后的煤气经煤气过滤器过滤后供给。 为保证洗脱苯过程中洗油质量,采用洗油再生器将部分洗油再生,洗油再生量为循环洗油量的1~1.5%,用过热蒸汽加热,蒸出的油汽进入脱苯塔,残渣入残油池定期送煤场掺烧。 外购新洗油入新洗油地下槽,用泵送新洗油槽,由贫油泵补入系统中。 为降低洗油中的含萘量,脱苯塔设侧线采萘,萘油入萘扬液槽,然后送冷鼓、电捕工段的机械化氨水澄清槽。

粗苯工段操作问答

粗苯工段 一、洗油用量与哪些有关?怎样合理控制洗油质量? 1、与洗油喷淋量和煤气流速有关。 2、与再生器排渣量有关。 3、与脱苯xx温度有关。 4、与脱苯塔进气量有关。 合理控制洗油量: 1、掌握适宜的排渣温度和排渣量。 2、及时调整脱苯塔进气量和脱苯塔顶温度以防洗油随苯汽蒸出。 3、洗油喷淋量不能过大,以防煤气失常。 二、怎样确定再生器排渣量?排渣时应注意哪些问题? 1、再生器排渣主要是根据: ○1、循环洗油质量和增减再生器次数。 ○2、根据洗苯塔阻力来增减排渣量。 2、○ 1、再生器底部温度不能过高。 ○2、残渣排泄管路要预热。 ○3、注意残渣槽满后防止溢出。 ○4、排渣蒸汽不能过猛,防止再生器承受不住压力爆炸发生其它事故。 三、过热蒸汽温度以什么为依据进行调节? 过热蒸汽温度主要以贫油含苯量大小调节。

怎样控制洗油质量: 1、及时调整洗油再生器排渣量及时补充新洗油。 2、合理控制脱苯塔顶温度,防止转组分被蒸出。 怎样降低富油含苯: 1、合理提高过热蒸气温度和脱苯塔进汽量。 2、根据粗苯流程合理调整脱苯塔顶回流量。 粗苯工段 1、管式炉作用是什么? 答:○1、加热富油和过热蒸汽。○ 2、提高粗苯回收率。 ○3、降低蒸汽消耗、减少酚水量。○ 4、减少蒸汽压力,波动影响稳定操作。 洗苯塔阻力增大,超技术规定 原因: 填料被油渣,苯堵塞,油粘度过大。 处理方法: 停塔用60℃—90℃热贫油冲洗,严重时更换填料进行吹扫,如因洗油粘度过大引起,加强排渣,适当加新洗油。 2、脱苯塔的作用是什么?怎样将洗油中的苯脱出来? 答:

用过热的蒸汽将180℃中富油中的苯蒸馏出来,并利用回流柱控制产出质量,要使富油中的苯脱出来。用适量(350℃—400℃)的过热蒸汽。 富油温度最好达到180℃左右。 3、如何保证贫油温度? 答: 在贫油一段冷却器出口达到45℃以下,二段用适量低温水冷却。 4、如何调节富油温度? 答: 在洗油循环量一定的条件下,调节管式炉火焰。 5、贫油含苯与什么因素有关?粗苯质量与什么因素有关? 答: 贫油含苯与○1富油温度○2过热蒸汽温度○3循环油量○4过热蒸汽量○5洗油质量有关。 粗苯质量与脱苯xx温度和回流量有关。 6、贫富油泵如何保养? 答: ○1定期加油○2卫生要达到“三见”○3底角螺丝不能振动○4泵不能振动○5常查电机、电流是否过栽。 7、再生器的作用是什么?如何才能正确使用再生器? 答: 作用: 使洗油中的高沸点组分及油渣分离出来以保证洗油质量,达到标准。

年产10万吨合成氨合成工段设计_毕业设计

年产10万吨合成氨合成工段设计毕业设计 年产10万吨合成氨合成工段设计 1引言 氮是植物营养的重要成分之一,大多数的植物不能直接吸收存在于空气中的游离氮,只有当氮与其他元素化合以后,才能被植物吸收利用。将空气中的游离氮转变为化合态氮的过程称为“固定氮”。 20世纪初,经过人们的不懈探索,终于成功的开发了三种固定氮的方法:电弧法、氰氨法、和合成氨法。其中合成氨法的能耗最低。1913年工业上实现了氨合成以后,合成氨法发展迅速,30年代以后,合成氨法已成为人工固氮的主要方法。 1.1氨的性质 氨化学式为NH3常温下为无色有刺激性辛辣味的恶臭气体,会灼伤皮肤、眼睛,刺激呼吸道器官粘膜,空气中氨的质量分数占0.5% ~ 1.0%就会使人在几分钟内窒息。氨的主要物理性质见表0-1。氨在常温加压易液化,称为液氨。氨易溶于水,与水反应形成水合氨(NH3 + H2O=NH3·H2O)简称氨水,呈弱碱性,氨水极不稳定,受热分解为氨气和水,氨含量为1%的水溶液PH为11.7。浓氨水氨含量为28% ~ 29%。氨的化学性质比较活泼,能与酸反应生成盐,如与盐酸反应生成氯化铵;与磷酸反应生成磷酸铵;与硝酸反应生成硝酸铵;与二氧化碳反应生成甲基甲酸铵,脱水后生成尿素等等。 表1-1氨的主要物理性质[1]

年产10万吨合成氨合成工段设计 1.2氨的用途 氨主要用于制造化学肥料,如农业上使用的所有氮肥、含氮混合肥和复合肥等;也作为生产其他化工产品的原料,如基本化学工业中的硝酸、纯碱、含氮无机盐,有机化学工业的含氮中间体,制药工业中磺胺类药物、维生素,化纤和塑料工业中的己酰胺、己二胺、甲苯二异氰酸酯、人造丝、丙烯腈、酚醛树脂等都需要直接或间接地以氨为原料。另外在国防工业尖端技术中,作为制造三硝基甲苯、三硝基苯酚、硝化甘油、硝化纤维等多种炸药的原料。氨还可以做冷冻,冷藏系统的制冷剂。 1.3合成氨的发展历史 1.3.1氨气的发现 十七世纪30年代末英国的牧师、化学家S.哈尔斯(HaLes,1677~1761),用氯化铵与石灰的混合物在以水封闭的曲颈瓶中加热,只见水被吸入瓶中而不见气体放出,1774年化学家普利斯德里重做该实验,用汞代替水来密封,制得了碱空气(氨),并且他还研究发现了氨的性质,发现氨极易溶于水、可以燃烧,还发现该气体通以电火花时其容积增加,而且分解为两种气体:H2和N2,其后H.戴维(Davy,1778~1829)等化学家继续研究,进一步证明了2体积的氨通过电火花放电后,分解为1体积的氮气和3体积的氢气[2]。 1.3.2合成氨的发现及其发展 19世纪以前农业上所需的氮肥来源主要来自于有机物的副产物和动植物的废物,如粪便、腐烂动植物等等,随着农业和军工生产的发展的需要,迫切的需要建立规模巨大的探索性的研究,化学家们设想,能不能把空气中大量的氮气固定下来,从而开始设计以氮和氢为原料的合成氨流程。19世纪,大量的化学家开始试图合成氨,他们试图利用高温、高压、电弧、催化剂等手段试验直接合成氨,均未成功。19世纪末,随着化学热力学、动力学和催化剂等领域取得一定进展后,对合成氨反应的研究有了新的进展。1901年法国物理化学家吕·查得利开创性地提出氨合成的条件是高温、高压,催化剂存在。1912

本科毕业设计任务书(范本)

(说明:请把红色字体部分根据个人题目的不同进行更改) 广州大学华软软件学院 本科毕业设计任务书 设计题目浅析计算机病 毒的免杀技术 系别网络技术系 专业网络工程 班级10网络设计与管理(1)班 学号1040217901 学生姓名郑天骄 指导教师田宏政 下发时间:2014年10月28日

毕业设计须知 1、认真学习和执行广州大学华软软件学院学生毕业论文(设计)工作管理规程; 2、努力学习、勤于实践、勇于创新,保质保量地完成任务书规定的任务; 3、遵守纪律,保证出勤,因事、因病离岗,应事先向指导教师请假,否则作为缺席处理。凡随机抽查三次不到,总分降低10分。累计缺席时间达到全过程l/4者,取消答辩资格,成绩按不及格处理; 4、独立完成规定的工作任务,不弄虚作假,不抄袭和拷贝别人的工作内容。否则毕业设计成绩按不及格处理; 5、毕业设计必须符合《广州大学华软软件学院普通本科生毕业论文(设计)规范化要求》,否则不能取得参加答辩的资格; 6、实验时,爱护仪器设备,节约材料,严格遵守操作规程及实验室有关制度。 7、妥善保存《广州大学华软软件学院本科毕业设计任务书》。 8、定期打扫卫生,保持良好的学习和工作环境。 9、毕业设计成果、资料按规定要求装订好后交指导教师。凡涉及到国家机密、知识产权、技术专利、商业利益的成果,学生不得擅自带离学校。如需发表,必须在保守国家秘密的前提下,经指导教师推荐和院领导批准。

课题名称浅析计算机病毒的免杀技术 完成日期:2015年4月30日 一、题目来源及原始数据资料: 随着计算机技术的飞速发展,信息网络已经成为社会发展的重要保证。有很多是敏感信息,甚至是国家机密。所以难免会吸引来自世界各地的各种人为攻击,窃取、篡改、删添等。随着时代的发展,网络已经成为了一个我们生活的必需品。而Web站点已经随处可见,其应用也是遍及各个领域,并已和我们日常生活息息相关。但是针对站点的渗透攻击也是缕缕出现,给我们带来了很大的危胁。因此我们必须展开对Web站点渗透技术的研究。 教师根据学生对站点的内部结构研究结果,分析可能成功的渗透技术,通过模拟攻击过程展示渗透成功之后的效果并寻求解决办法,进而提出一套行之有效的防护措施,顺利完成本次毕业设计任务。 二、毕业设计要求: 要求:详细的Web站点渗透技术的研究。大致可分为以下七部分: 1、网络安全现状的分析; 2、常见的站点结构组成; 3、常见的渗透技术分析; 4、模拟主要的攻击技术; 5、提出防范思路并设计解决方案; 6、必要的实现过程展示; 7、总结与未来工作的展望; 具体要求如下: 1、分析国内、国外的网络安全现状,了解网络安全方面主要存在的问题。 2、了解常见的Web站点结构、机制和原理。 3、了解针对站点的渗透技术。 4、分析主流的渗透攻击技术; a、文件与内存特征码定位; b、压缩整容,加壳免杀;

产万吨焦化厂粗苯工段的设计方案

////////// 中国矿业大学 本科生毕业设计 姓名:学号: 学院: 专业: 设计题目:年产120万吨焦化厂粗苯工段的设计 专题: 指导教师:职称:教授 2009年 5月徐州 中国矿业大学毕业设计任务书 学院专业年级姓名 任务下达日期: 毕业设计日期: 毕业设计题目:年产120万吨焦化厂粗苯工段的设计

毕业设计专题题目: 毕业设计主要内容和要求: 要求: <1)回收工艺论证;<2)主要设备计算和选型;<3)绘制带控制点工艺流程图、设备平面布置图、管道平面和立面布置图、绘制一张主要设备图<必须与自己的设备计算一致),用AutoCAD绘制;<4)编制设计说明书; <5)按2×60孔TJL5550D焦炉配套规模进行计算。 计算条件: 苯回收率:1.0% 硫铵工段来煤气温度/饱和温度℃: 58/53 终冷温度:22℃ 毕业设计工作计划 <1)3.1~3.8 设计基本知识培训 <2)3.9~3.22现场实习收集资料 <3)3.23~4.17工艺论证和计算 <5)4.18~5.31绘制图纸 <6)6.1~6.15提交设计说明书和图纸 院长签字:指导教师签字: 中国矿业大学毕业设计指导教师评阅书 指导教师评语<①基础理论及基本技能的掌握;②独立解决实际问题的能力;③研究内容的理论依据和技术方法;④取得的主要成果及创新点;⑤工作态度及工作量;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等):

成绩:指导教师签字: 年月日 中国矿业大学毕业设计评阅教师评阅书 评阅教师评语<①选题的意义;②基础理论及基本技能的掌握;③综合运用所学知识解决实际问题的能力;③工作量的大小;④取得的主要成果及创新点;⑤写作的规范程度;⑥总体评价及建议成绩;⑦存在问题;⑧是否同意答辩等): 成绩:评阅教师签字: 年月日 中国矿业大学毕业设计答辩及综合成绩

万吨年合成氨合成工段工艺设计毕业设计

万吨年合成氨合成工段工艺设计毕业设计

四川理工学院毕业设计 9万吨/年合成氨合成工段工艺设计 四川理工学院材料与化学工程学院

摘要 氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位。氨主要用于农业,合成氨是氮肥工业的基础。氨的合成主要有脱硫、转化、净化、合成几个工段。合成氨合成工段的设计,原料采用氮气和氢气,以合成塔为主要设备,在氨冷器、水冷器、气—气交换器、循环机、分离器、冷凝塔等辅助设备的作用下制得液氨,工艺条件为:A201为催化剂,480℃,31Mpa。本设计进行了物料衡算,热量衡算,设备选型计算。 关键词:合成工艺参数衡算设备计算

-Ⅰ- ABSTR Ammonia is one of the most important basic chemical products in the world,Its output of various kinds of chemicals rank first in the world. Ammonia mainly used in agriculture and synthetic ammonia is the basis of nitrogen fertilizer industry. Ammonia synthesis is mainly from the four sections of desulphurization, conversion, decontamination, and synthesis. With using nitrogen and hydrogen as materials and synthesis converter as main equipment, under the action of the auxiliary equipments of ammonia air conditioning, water-cooling device, gas to gas exchanger, circulator, separator, and condenser and so on, in the end, the design of the ammonia synthesis section makes ammoniacalliquor, The process conditions are determined as following:A201 as catalyst, 480℃,31Mpa .The design is be designed to material balance, heat balance and calculation of Devices type. KEY WORDS:synthesis process parameter balance calculation of Devices

粗苯工段技术操作规程(正式)

编订:__________________ 单位:__________________ 时间:__________________ 粗苯工段技术操作规程 (正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-8721-47 粗苯工段技术操作规程(正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、岗位职责 1.1负责所属设备的开、停工及正常操作。 1.2负责终冷、洗苯、蒸馏系统各部位温度、压力的调节。 1.3按时进行岗位巡查,根据生产情况及时调节各主要测控点温度、压力、洗油量和油位等,使之符合工艺要求。 1.4经常检查油水分离器的分离情况,使之保证水不带油,油不含水。 1.5经常检查管式炉温度和燃烧情况,保证富油温度和过热蒸汽温度。 1.6负责所属设备的维护、保养和区域环境卫生。 1.7经常检查设备、阀门、管道,发现泄漏及时处理。

1.8经常检查各泵电机运转情况,发现异常及时处理。 1.9根据生产状况,控制再生器排渣量,保证循环洗油质量。 1.10经常检查冷凝贮槽液位,确保冷凝液不溢槽。 1.11经常检查贫油槽、新洗油槽油位,保证满足生产需要。 2、基本操作参数 2.1终冷煤气出口温度:25~30℃。 2.2入洗苯塔洗油温度应高于煤气湿度:夏季2~3℃,冬季3~5℃。 2.3终冷塔、洗苯塔阻力:不大于1000Pa 2.4循环洗油量:1.8~2.0L/Nm3煤气 2.5洗苯塔后煤气含苯:2~4g/Nm3 2.6贫油含苯≤0.2%,富油含苯≥2%。 2.7富油预热温度:(180±2)℃。 2.8脱苯塔顶温度:90~95℃。 2.9脱苯塔底温度:165~170℃。

年产30万吨合成氨工艺设计毕业论文

年产30万吨合成氨工艺设计毕业论文 目录 摘要........................................................................ I Abstract................................................................... II ...................................................................... IV 1 综述.................................................................. - 1 - 1.1 氨的性质、用途及重要性.......................................... - 1 - 1.1.1 氨的性质................................................... - 1 - 1.1.2 氨的用途及在国民生产中的作用............................... - 1 - 1.2 合成氨生产技术的发展............................................ - 2 - 1.2.1世界合成氨技术的发展....................................... - 2 - 1.2.2中国合成氨工业的发展概况................................... - 4 - 1.3合成氨转变工序的工艺原理......................................... - 6 - 1.3.1 合成氨的典型工艺流程介绍................................... - 6 - 1.3.2 合成氨转化工序的工艺原理................................... - 8 - 1.3.3合成氨变换工序的工艺原理................................... - 8 - 1.4 设计方案的确定.................................................. - 9 - 1.4.1 原料的选择................................................. - 9 - 1.4.2 工艺流程的选择............................................. - 9 - 1.4.3 工艺参数的确定............................................ - 10 - 1.4.4 工厂的选址................................................ - 11 - 2 设计工艺计算......................................................... - 1 3 -

焦化厂粗笨工段工艺流程简述

一、工艺流程 本设计是在氨的回收采用硫铵生产工艺基础上进行的。整体上包括终冷洗萘,洗苯和蒸馏脱苯三个部分。 1、横管终冷洗萘工艺 进入粗苯回收工段的煤气,温度为55℃左右,从终冷塔顶进入,在横管终冷器内冷却水冷却到25℃左右的同时,煤气中的萘也被从轻质焦油循环槽来的连续喷洒的轻焦油溶解吸收。脱萘至0.45g/Nm3以下,然后从塔底排出,经旋风捕雾器除去大部分夹带的焦油,凝结水雾,在进入煤气总管,去洗苯塔。 吸收萘后的轻焦油,经U型管自流入塔底循环油槽,再用轻质焦油泵从塔底抽出,到塔顶和塔中分两段喷洒,循环至一定含萘量后,用焦油泵从槽底抽出送到焦油工段处理,同时补充新焦油。 18℃的低温水自下而上经过串联的各管箱中横管,与煤气逆流间接接触,与煤气塔内循环油间接换热升温后,从塔上部排出,各横管均有一定的斜度(纵向错开半个管箱高度)便于含萘焦油下流,避免粘附于管壁上形成热阻。 2、洗苯工艺 从终冷器来的均为25℃的煤气,含苯族烃为25~40g/Nm3从洗苯塔进去出塔煤气含苯低于2g/Nm3. 从脱苯工序来的30℃左右,含苯0.2~0.4%的贫油被贫油泵送至洗苯塔顶喷洒,含苯量增至2.5%左右,从塔底经U型管导入塔下油槽,再用富油泵从中抽送到脱苯工序去脱苯,脱苯后的贫油循环使用。 当贫油中间槽液位降低时,用贫油泵抽取新洗油槽内之新洗油补充,以确保塔下贫油槽内一定的液位。 3、脱苯工艺 从洗涤工序来的富油经分缩器与从脱苯塔顶来的油气混合物换热升温至70~80℃进入贫富油换热器,被从脱苯塔底来的热贫油加热至130~140℃然后到管式炉加热升温至180~190℃从第14块塔板进入脱苯塔,在过热蒸气的蒸吹作用下脱苯。 与富油换热后的贫油入脱苯塔下热贫油槽,再用贫油泵抽至贫油冷却器 冷却后到洗苯塔去洗苯。 从脱苯塔顶出来的油气混合气进分缩器,冷凝出轻重分缩油后进入冷凝冷却器,粗苯蒸气冷凝冷却为粗苯液体,粗苯进入粗苯油水分离器,与水分离后进入粗苯贮槽。 轻、重分缩油分别进入轻、重分缩油水分离器,与水分离后送入地下槽,与富油混合后送去脱苯。 将分离出的水送入控制分离器进一步分离,油进地下槽,水送去酚水架。 再生器底部温度应保持在190~200℃,脱苯用蒸气应过热到400℃以保证再生器出口气体温度高于脱苯塔底部温度,再生器的油渣定期排入残渣槽。 二、洗油吸收苯族烃的基本原理: 用洗油吸收煤气中的粗苯烃是物理吸收过程,服从亨利定律和道尔顿定律,当煤气中苯族烃的分压大于洗油液面上苯族烃的平衡蒸气压时,煤气中的苯族烃即被洗油吸收,二者差值越大,则洗收过程进行的越容易,吸收速率也越快。

年产10万吨合成氨合成工艺设计毕业设计论文

年产10万吨合成氨工艺设计 摘要:合成氨是化学工业的基础,也是我国化学工业发展的重要先驱,其中氨合成工段是合成氨工艺的中心环节。本设计目的在于对年产10万吨合成氨进行设计,并简要介绍了氨的用途、现状和未来发展趋势。 在中压法和催化剂的条件下,设计合成氨合成工段的生产工艺流程,将精制的氢氮混合气直接合成为氨,然后将所得的气氨从未合成为氨的混合气中冷凝分离出来,最后在未反应的混合气中补充一定量的新鲜气继续循环反应。 在物料衡算中出塔气氨含量达到16.50%,合成氨27.778t/h,合成率为29.133%,由热量衡算得到合成塔、中置锅炉和塔外换热器的热量变化。并根据设计任务及操作温度、压力按相关标准对换热器的尺寸和材质进行选择。塔外换热器采用换热面积为546.97m2的立式列管式换热器。 关键词:氨合成物料衡算能量衡算

The Process Design of 200kt/a Synthetic Ammonia Synthesis Abstract: Ammonia is the basis of the chemical industry, but also an important pioneer of China chemical industry,in which ammonia synthesis section is the central part of the synthetic ammonia process. is to optimize outputting 200,000 t/a of synthetic ammonia synthesis is as the purpose of the design,and the use of ammonia, current situation and future development trend is briefly introduced. The production process of synthetic ammonia synthesis is designed in the medium pressure and catalyst.The refined hydrogen and nitrogen mixture is made into synthesis ammonia by the design,then took the synthesis ammonia gas out of the mixture that has not been become ammonia.At last,the mixture of not reacting is supplied a certain amount of fresh gas to continue to cyclic response. The design of raw material of gas refining section in production process the synthetic ammonia content that gets out from synthetic ammonia tower is made rich to 16.50% in material balance calculations,synthetic ammonia 27.778 t /h,synthetic rate 29.133% in this design of raw material of gas refining section in production process.The heat change of the synthesis tower,the boiler and the heat exchanger is attained by the heat balance,also we selected piping size and material according to the design operation of temperature,pressure and relevant standards.The heat exchanging area of 546.97m2 of vertical tube type exchanger is used as external heat exchanger of tower. Keywords: ammonia synthesis section;material balance accounting;energy balance accounting

粗苯工段安全技术操作规程

粗苯工段安全技术操作规程 第一节技术规程 一、工艺简介 来自硫铵工段的粗煤气,经终冷塔与上段的循环水和下段的制冷水换热后,将煤气由55℃冷却至25℃左右,由洗苯塔底部入塔,自下而上与塔顶喷淋的循环洗油逆流接触,煤气中的苯被循环洗油吸收,再经过塔的补雾段除去雾滴后离开洗苯塔;经旋风捕雾器进一步捕集雾滴后,去外管送往后续工序。 洗苯塔底富油由富油泵加压后送至粗苯冷凝冷却器,与脱苯塔塔顶出来的苯蒸汽换热,将富油预热至60℃左右,经油油换热器与脱苯塔塔底出来的贫油换热,由60℃升到约130℃,富油经管式加热炉,加热至180℃左右,进入脱苯塔,脱苯塔塔顶蒸出的苯水混合汽进入粗苯冷凝冷却器,被富油、制冷水冷却至30℃左右,然后进入油水分离器进行分离。分离出的粗苯入回流槽,部分回流槽粗苯通过回流泵回流至脱苯塔,其余部分流入粗苯贮槽,由粗苯输送泵送往罐区外售。分离出的油水混合物入控制分离器,在此分离出的洗油自流至地下放空槽,并由地下放空槽液下泵输送入贫油槽;分离出的粗苯分离水送至终冷器水封储槽。 脱苯后的热贫油从脱苯塔底流出,自流入油油换热器与富油换热,温度降至90℃左右,流入贫油槽,并由贫油泵加压送至贫油冷却器,分别被32℃循环水和18℃制冷水冷却至30℃左右,入洗苯塔喷淋洗涤煤气。 外购的新洗油卸入洗油地下槽,然后由新洗油地下槽液下泵送入新洗油槽。也可通过罐区送入新洗油槽,作循环洗油的补充。 外供0.5MPa蒸汽被管式加热炉加热至400℃左右,一部分作为洗油再

生器的热源,另一部分直接进入脱苯塔底作为热源,管式加热炉所需燃料由洗苯后的回炉煤气供给。 在洗脱苯操作过程中,循环洗油的质量逐渐恶化,为保证洗油质量,洗油再生器将部分洗油再生。用过热蒸汽加热,蒸出的油气进入脱苯塔;残渣排入残油槽,用蒸汽压送至综合罐区焦油槽,亦可排和入残油池定期送往煤场。 为了降低洗油中的含萘量,脱苯塔上部设3块泡罩板进行侧线采萘,萘油流入萘扬液槽用蒸汽压出送综合罐区焦油槽。 经终冷器冷凝下的煤气冷凝液进入水封槽,然后溢流至冷凝液贮槽,由冷凝液泵循环至终冷器上下段喷淋;多余部分送至冷鼓工段气液分离器前荒煤气管。上下段喷淋亦可用冷鼓来的热氨水进行喷淋清洗。 二、工艺技术指标 一)温度控制指标 1、终冷后煤气温度:23~25℃ 2、冷贫油温度:夏季控制比煤气温度高2℃,冬季高3~4℃ 3、管式炉后富油温度:180℃±5℃ 4、脱苯塔顶温度:92~95℃ 5、萘油侧线温度:125~135℃ 6、脱塔塔底温度:170~178℃ 7、管式炉炉膛温度:400~600℃ 8、管式炉对流段温度:300~400℃ 9、管式炉烟囱废气温度:200~300℃ 10、再生器顶部油气温度:185~190℃

合成氨合成工段工艺12

毕业论文(设计) 2012 届 题目合成氨合成工段工艺 专业 学生 学号 小组成员 指导教师 完成日期 2012-04-10

毕业论文(设计)任务书班级日期2012-04-10 1、论文(设计)题目:合成氨合成工段工艺 2、论文(设计)要求: (1)学生应在教师指导下按时完成所规定的容和工作量,最好是独立完成。(2)选题有一定的理论意义与实践价值,必须与所学专业相关。 (3)主题明确,思路清晰。 (4)文献工作扎实,能够较为全面地反映论文研究领域的成果及其最新进展。(5)格式规,严格按系部制定的论文格式模板调整格式。 (6)所有学生必须在月日之前交论文初稿。 3、论文(设计)日期:任务下达日期2011年12月10日 完成日期 2012 年 4 月 10日 4、指导教师签字:

毕业论文(设计)成绩评定 报告

毕业论文答辩及综合成绩

合成氨合成工段工艺 摘要:在氨是最为重要的基础化工产品之一,其产量居各种化工产品的首位; 同时也是能源消耗的大户,世界上大约有10 %的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨、再加工成尿素或各种铵盐肥料,这部分约占70 %的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,这部分约占30 %的比例,称之为“工业氨”。 世界合成氨技术的发展经历了传统型蒸汽转化制氨工艺、低能耗制氨工艺、装置单系列产量最大化三个阶段。根据合成氨技术发展的情况分析, 未来合成氨的基本生产原理将不会出现原则性的改变, 其技术发展将会继续紧密围绕“降低生产成本、提高运行周期, 改善经济性”的基本目标, 进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。 合成氨生产过程中,换热器应用十分广泛,主要用于热量的交换和回收。变换工段中主要涉及一氧化碳的转化和能量的回收利用,列管换热器在传热效率,紧凑性和金属耗量不及某些换热器,但它具有结构简单,坚固耐用,适用性强,制造材料广泛等独特优点,因而,在合成氨变换工段选择列管式换热器,而本设计主要对该换热器进行相关选计算。 关键词:氨,合成氨,反应热,氢气

粗苯工段讲义

目录 1.粗苯产品及其用途 2.粗苯的组成、性质和质量 2.1粗苯的组成 2.2粗苯的性质 2,3粗苯的质量及其指标 3、粗苯生产产量的估算 3.1粗苯的产率 3.2粗苯产量的估算 4、粗苯生产消耗洗油、蒸汽、焦炉煤气的指标 5、洗油吸收粗苯的基本原理 6、从焦炉煤气中回收生产粗苯的方法 7、从富油中蒸出粗苯的原理 8、粗苯工段工艺简介及流程图 9、粗苯工段主要生产设备概况 10、影响洗油吸收粗苯的主要因素 11、洗油的性能要求及质量指标 11.1洗油的性能 11.2洗油的质量指标 12、粗苯生产中常见的故障机其处理方法 13、洗苯工序对焦炉煤气质量的要求

14、洗涤工标准化作业规程 15、蒸馏工标准化作业规程 16、管式炉工标准化作业规程 17、洗涤工岗位职责 18、蒸馏工岗位职责 19、管式炉工岗位职责 20、粗泵工段岗位安全操作规程 21、练习题 1、粗苯产品及其用途 粗苯是黄色的透明液体,是多种有机化合物的混合物。粗苯本身用途不大,但将粗苯精制加工可得纯苯(C6H6)、甲苯(C6H5CH3)和二甲苯{C6H4(CH3)2等产品。纯苯用于人造纤维、塑料、药物及燃料,甲苯用于制造炸药、合成纤维,二甲苯由于橡胶、油漆的溶剂和航空及内燃机燃料的添加剂。总之,粗苯是一种非常宝贵的化工基本原料。 2、粗苯的组成、性质和质量 2.1粗苯的组成 粗苯的组成波动较大,主要取决于炼焦配煤的组成及炼焦产物在炭化室内热解的程度(及焦炉的炭化温度)粗苯主要组分的平均

含量如下: 苯55—80%:甲苯11—22%:二甲苯2—6%:不饱和化合物(如环戊二烯(C5H6)苯乙烯(C6H5CHCH2)等7—12%:硫化物(如二硫化碳(CS2)噻吩(C4H4S)等0.3—1.8%. 2.2粗苯的性质 粗苯比水轻,微溶于水,且易与水分离。在储存较长时间时,由于含有不饱和化合物的氧化和聚合所形成的树脂状物质又溶解于 粗苯中,能使粗苯着色变为暗褐色(或淡红色)。粗苯易燃,闪点为12℃.粗苯蒸汽在空气中的体积浓度为1.4%-7.5%时,能形成爆炸性混合物。若粗苯着火时,应使用泡沫剂或蒸汽灭火。粗苯在管道内流动时极易产生静电,为防止引起静电火花的危险,所以粗苯生产及产品运输和储存设备与管道应 安装有可靠接地导电装置。 2.3粗苯的质量及其指标 粗苯的各主要组分均在180℃前馏出,180℃后的流出量当作100%来计算,故以其180℃前的馏出量作为鉴别粗苯质量的指标之一。粗苯在180℃前的馏出量取决于粗苯工段的

相关主题
文本预览
相关文档 最新文档