锚杆支护技术讲解
- 格式:doc
- 大小:432.00 KB
- 文档页数:23
预应力锚杆支护技术在现代工程建设领域,尤其是在岩土工程中,预应力锚杆支护技术正发挥着越来越重要的作用。
这一技术不仅能够有效地保障工程的稳定性和安全性,还能够提高工程的质量和效益。
预应力锚杆支护技术,简单来说,就是通过在岩土体中设置锚杆,并对其施加一定的预应力,从而增强岩土体的稳定性。
它的工作原理就像是给岩土体穿上了一件坚固的“铠甲”,让其能够抵御外部的各种作用力。
预应力锚杆通常由锚杆体、锚具和垫板等组成。
锚杆体一般采用高强度的钢材,如螺纹钢,其表面通常会经过特殊处理,以增加与岩土体之间的摩擦力和粘结力。
锚具则用于将锚杆固定在岩土体中,并传递预应力。
垫板的作用是将预应力均匀地分布在岩土体表面,避免局部应力集中。
在实际应用中,预应力锚杆支护技术具有诸多优点。
首先,它能够显著提高岩土体的承载能力。
通过施加预应力,锚杆可以主动地约束岩土体的变形,使其在受到外部荷载作用时,能够保持较好的稳定性。
其次,它能够有效地控制岩土体的位移。
在一些对位移要求较高的工程中,如临近既有建筑物的基坑工程,预应力锚杆支护技术可以有效地减少岩土体的变形,从而保护周边建筑物的安全。
此外,该技术还具有施工方便、成本较低等优点。
然而,要想充分发挥预应力锚杆支护技术的优势,在设计和施工过程中需要注意许多问题。
在设计阶段,需要对工程地质条件进行详细的勘察和分析,以确定锚杆的长度、间距、预应力大小等参数。
这些参数的确定需要综合考虑岩土体的性质、工程的要求以及周边环境等因素。
如果设计不合理,可能会导致支护效果不佳,甚至引发工程事故。
在施工过程中,锚杆的制作和安装质量至关重要。
锚杆的制作需要严格按照设计要求进行,确保其强度和尺寸符合标准。
安装过程中,需要保证锚杆的垂直度和深度,以及预应力的施加精度。
同时,施工过程中的质量检测也是必不可少的。
通过对锚杆的拉拔试验等检测手段,可以及时发现施工中存在的问题,并采取相应的措施进行处理。
预应力锚杆支护技术在众多工程领域都有着广泛的应用。
锚杆支护方案1. 引言锚杆支护是一种常用的岩土工程支护方法,用于增加岩石或土层的稳定性,减少变形和破坏。
本文档旨在介绍锚杆支护的基本原理、设计要点以及施工过程。
2. 锚杆支护原理锚杆支护依靠预埋或喷射钢筋等材料形成的锚杆,将地下结构与锚杆连接。
通过锚杆的张拉和固结,增加地下结构的稳定性。
锚杆的受力来源于地下结构自身的重力以及外部荷载,锚杆吸力抵抗土体的相互作用力,从而达到支护的目的。
3. 锚杆支护的设计要点锚杆支护的设计应考虑以下几个要点:3.1 锚杆的材料选择常用的锚杆材料包括钢筋和预应力钢筋。
在选择材料时,需要考虑工程的具体情况,如承载能力要求、耐腐蚀性能等。
3.2 锚杆的布置方式锚杆的布置方式有水平布置和垂直布置两种。
水平布置适用于需要增加地下结构的整体稳定性和刚度的情况,而垂直布置适用于需要增加支护墙稳定性的情况。
3.3 锚杆的布置密度锚杆的布置密度直接影响锚杆支护的效果。
一般情况下,锚杆的布置密度应根据地下结构的稳定性要求和工程经济性综合考虑。
3.4 锚杆的受力状态分析锚杆受力主要包括拉力和剪力。
设计时需要对锚杆的受力状态进行分析,确定合适的拉力和剪力大小,以确保锚杆的使用安全。
4. 锚杆支护的施工过程锚杆支护的施工过程一般包括以下几个步骤:4.1 钻孔首先根据设计要求,在地下结构周围钻孔,钻孔位置和间距要根据具体情况确定。
4.2 安装锚杆在钻孔中安装锚杆,锚杆需要固定住以保证稳定性。
根据设计要求,可以使用锚固剂或钢套等材料进行固定。
4.3 锚杆张拉锚杆安装后,进行张拉作业。
张拉力的大小需要根据设计要求进行控制,以保证锚杆的受力状态满足设计要求。
4.4 锚杆固结完成锚杆张拉后,对锚杆进行固结。
可以使用灌注材料填充钻孔,以增加锚杆与周围土体的粘结力。
5. 锚杆支护的质量控制为了确保锚杆支护的施工质量,需进行以下质量控制措施:•对材料的选择进行检验,确保符合设计要求;•对钻孔的质量进行检测,包括孔径、孔深等;•对锚杆的安装质量进行检查,确保固定牢固;•对锚杆的张拉力进行监测,保证张拉力符合设计要求。
预应力锚杆支护技术在现代工程建设领域,预应力锚杆支护技术作为一种重要的岩土工程加固手段,发挥着至关重要的作用。
它广泛应用于隧道、边坡、基坑等工程中,有效地保障了工程的稳定性和安全性。
预应力锚杆支护技术的原理其实并不复杂。
简单来说,就是通过在岩土体中设置锚杆,并对锚杆施加一定的预应力,使锚杆与岩土体共同作用,形成一个稳定的支护体系。
锚杆就像是打入岩土体中的“定海神针”,而预应力则赋予了它更强的约束力,从而提高岩土体的整体稳定性。
这种技术的优点是显而易见的。
首先,它能够显著提高岩土体的承载能力。
通过施加预应力,锚杆可以预先对岩土体产生挤压作用,增强其内部的摩擦力和粘结力,使得岩土体能够承受更大的荷载。
其次,预应力锚杆支护技术可以有效地控制岩土体的变形。
在工程施工过程中,岩土体往往会因为开挖等操作而产生变形,如果不加以控制,可能会导致工程事故的发生。
而预应力锚杆可以限制岩土体的变形,保证工程的正常进行。
此外,该技术还具有施工方便、成本较低等优点。
在实际应用中,预应力锚杆支护技术需要根据具体的工程情况进行合理的设计和施工。
设计时,需要考虑岩土体的性质、工程的荷载条件、锚杆的布置方式和预应力的大小等因素。
比如,对于软弱岩土体,需要增加锚杆的数量和预应力的大小,以保证支护效果。
而在锚杆的布置方面,需要根据岩土体的受力情况,采用合理的间距和排距,使锚杆能够均匀地分担荷载。
施工过程也是至关重要的。
施工前,需要对施工现场进行详细的勘察,了解岩土体的情况,为施工方案的制定提供依据。
在施工过程中,要严格按照设计要求进行锚杆的钻孔、安装、注浆和预应力施加等操作。
钻孔的精度和深度直接影响着锚杆的支护效果,因此需要采用先进的钻孔设备和技术,确保钻孔的质量。
锚杆的安装要保证其位置准确、垂直度符合要求。
注浆则是为了使锚杆与岩土体更好地结合,需要控制好注浆的压力和浆液的配比。
预应力的施加要均匀、稳定,避免出现预应力损失过大的情况。
煤矿锚杆支护技术参数资料讲解锚杆支护技术是在地下工程中广泛应用的一种地层控制技术,它通过将钢筋锚杆嵌入岩体中,形成一个稳定的支撑体系,以增强地层的承载能力和防止地层的变形破裂。
煤矿锚杆支护技术是一种特殊的锚杆支护技术,针对煤层地质条件和工作面开采环境而设计。
本文将对煤矿锚杆支护技术的参数资料进行详细讲解。
1. 锚杆直径和长度:锚杆的直径和长度是决定其承载能力的重要参数,也是根据地质条件进行设计的重要依据。
一般来说,煤矿锚杆的直径一般在25mm到50mm之间,长度一般在1.5m到4m之间。
直径较大的锚杆承载能力较高,但成本相对较高,需要根据具体情况进行选择。
2.锚杆间距:锚杆的间距是指相邻锚杆之间的距离。
煤矿锚杆的间距一般在0.8m到1.5m之间,根据岩体条件和支护要求进行设计。
间距较小可以增加锚杆的整体承载能力,但也会增加施工难度和成本。
3.锚杆的材质:煤矿锚杆一般采用高强度合金钢制作,具有优异的抗拉强度和抗腐蚀性能。
常用的材质有45号钢、40Cr钢和20Mn2钢等。
材质的选择应考虑到锚杆的承载能力、抗腐蚀性和经济性等因素。
4.锚杆的安装方式:煤矿锚杆的安装方式有多种,常见的有直插式和锚固式。
直插式安装方式适用于岩体条件较好的地方,锚杆直接插入岩体中,形成支撑体系。
而锚固式安装方式适用于岩体条件较差的地方,锚杆通过化学锚固剂固化在岩体中。
5.锚杆的预应力力量:预应力力量是通过对锚杆施加预拉力来产生的,它是增强锚杆承载能力的重要参数。
锚杆的预应力力量一般在20kN到100kN之间,具体数值根据地质条件和锚杆直径进行确定。
预应力力量的大小应根据具体工程要求和安全性进行选择。
总之,煤矿锚杆支护技术是一种重要的地层控制技术,合理选择和设计锚杆的参数是保证支护效果和安全性的关键。
通过对锚杆直径、长度、间距、材质、安装方式和预应力力量等参数的合理选择,可以提高锚杆的承载能力和稳定性,保证煤矿工作面的安全开采。
锚杆支护的原理
锚杆支护是一种常用的岩土工程技术,旨在增强岩石或土体的稳定性。
其原理是通过将钢筋或钢管等材料固定在岩石或土体中,形成一个有效的支撑系统,从而控制地层的位移和变形,提高地质体的承载能力。
锚杆支护的具体原理可以概括为以下几个方面:
1. 加固地层:通过在地层中钻孔并注入高强度胶结材料,将锚杆牢固地固定在岩石或土体中。
这样可以增加地层的整体强度和刚度,阻止岩石或土体破坏和滑动。
2. 分散荷载:锚杆支护在地层中形成锚杆网,并通过承受荷载的方式来分散地层的力量。
锚杆通过与地层内的固有力反作用,将部分荷载传递到其他岩体或地下结构上,减轻了地层的载荷,保护了地下工程的安全。
3. 控制和消散位移:锚杆支护可控制地层的位移和变形,通过与地层结构相互作用,改变地层内力和应变的分布。
这种互动能够消散地层内产生的应力、变形和位移,防止发生地层破坏,维护地下工程的稳定性。
4. 增加地质体的承载能力:锚杆支护可以提高地质体的承载能力,通过加固和固定地层结构,使得地质体能够承受更大的荷载。
这对于需要建设地下洞室、隧道、坑道等工程项目的地质体来说是非常重要的。
总而言之,锚杆支护的原理是通过加固地层、分散荷载、控制和消散位移以及增加地质体的承载能力,来提高地下工程的稳定性和安全性。
它是一种有效的支护技术,被广泛应用于岩土工程领域。
锚杆支护技术一、概述锚杆支护技术是一种常用的地下工程支护方式,它通过在围岩中钻孔并注浆固化,然后将锚杆牢固地固定在注浆体内,以达到加强和稳定地下工程的目的。
该技术具有施工方便、支护效果好、适用范围广等优点,在城市建设、矿山开采、隧道建设等领域得到了广泛应用。
二、锚杆支护的分类1.按照材料分:钢筋锚杆、预应力锚杆、玻璃钢锚杆等。
2.按照结构形式分:单股锚杆、双股锚杆、多股锚杆等。
3.按照施工方式分:预制式锚杆和现场制作式锚杆。
三、设计原则1.根据不同的地质条件和施工要求,选择合适的锚杆类型和规格。
2.根据需要确定合理的间距和排列方式。
3.考虑到荷载特性和变形特性,合理设置预应力值或者张拉力大小,并严格控制张拉过程中的变形量。
4.对于需要进行锚杆加固的区域,需要进行详细的勘探和分析,确定锚杆的数量和位置。
5.在施工过程中,需要严格按照设计要求进行施工,并对施工质量进行严格把关。
四、施工流程1.勘探与设计:根据现场情况进行勘探,并根据勘探结果进行设计。
2.孔钻:在围岩中钻孔并清理孔口。
3.注浆:将注浆泥浆充分搅拌后通过管道注入孔内,使其充满整个孔洞并与围岩形成牢固的结合体。
4.安装锚杆:在注浆体凝固后,将锚杆插入孔内并张拉或预应力。
5.加固处理:根据需要,在锚杆周边进行补强处理。
五、质量控制1.孔钻质量:确保钻孔直径、深度和位置符合设计要求,并清理好孔口。
2.注浆质量:确保注浆泥浆配比合理、搅拌均匀,并充分填满整个孔洞并与围岩形成牢固的结合体。
3.锚杆质量:确保锚杆质量符合设计要求,并严格控制张拉或预应力过程中的变形量。
4.加固处理质量:根据需要进行加固处理,并确保加固材料的质量符合要求。
六、应用案例1.北京地铁10号线:该线路采用了双股锚杆支护技术,在施工过程中取得了良好的效果。
2.山东矿井:在矿井开采过程中,采用了预应力锚杆支护技术,成功地解决了地压等问题。
3.长江隧道:在长江隧道施工过程中,采用了玻璃钢锚杆支护技术,有效地保证了隧道的安全和稳定。
锚杆支护施工方案引言概述:锚杆支护是一种常用的地下工程支护技术,它通过使用钢筋锚杆将地下结构与岩土体连接起来,增强其稳定性和承载能力。
本文将详细介绍锚杆支护施工方案的五个部份,包括锚杆的选择与设计、锚杆的预处理、锚杆的施工方法、锚杆的质量控制以及施工后的监测与维护。
一、锚杆的选择与设计:1.1 锚杆的材料选择:根据工程的具体要求和岩土体的特性,选择合适的锚杆材料,常见的有钢筋锚杆、玻璃钢锚杆和碳纤维锚杆等。
1.2 锚杆的直径与长度设计:根据地下工程的要求和岩土体的承载能力,确定锚杆的直径和长度。
普通情况下,直径越大、长度越长的锚杆能够提供更好的支护效果。
1.3 锚杆的布置方式设计:根据地下工程的结构特点和岩土体的力学性质,设计合理的锚杆布置方式,包括锚杆的间距、罗列方式和角度等。
二、锚杆的预处理:2.1 岩土体的处理:在进行锚杆支护之前,需要对岩土体进行必要的处理,包括清理松散物、修整表面和加固裂缝等,以提高锚杆的粘结强度。
2.2 钻孔的施工:根据锚杆的设计要求,进行钻孔施工,包括钻孔的位置、直径和深度等,确保钻孔的准确性和质量。
2.3 锚固剂的注入:在完成钻孔后,将锚固剂注入钻孔中,填充整个孔道,使其与岩土体形成坚固的结合,增强锚杆的支护效果。
三、锚杆的施工方法:3.1 锚杆的安装:根据设计要求,将预制好的锚杆插入钻孔中,确保其正确的位置和方向,并保证与锚固剂的充分接触。
3.2 锚杆的张拉:通过专用的张拉设备对锚杆进行张拉,使其产生预压力,增加岩土体的抗拉强度,提高支护效果。
3.3 锚杆的锚固:在完成锚杆的张拉后,对锚固部位进行固定,确保锚杆与岩土体之间的连接坚固可靠。
四、锚杆的质量控制:4.1 锚杆的质量检测:对锚杆进行必要的质量检测,包括锚杆的直径、长度和张拉力等参数的检测,以确保其符合设计要求和施工规范。
4.2 锚杆的质量验收:在锚杆施工完成后,进行质量验收,包括对锚杆的外观质量、锚固效果和张拉力的检测,以确保施工质量达到要求。
锚杆支护参数的确定一、锚杆长度L≥L1+L2+L3------------------------- ①=0.1+1.5+0.3=1.9m式中:L——锚杆总长度,m;L1 ——锚杆外露长度(包括钢带+托板+螺母厚度),取0.1m;L2 ——锚杆有效长度或软弱岩层厚度,m;L3——锚入岩(煤)层内深度(锚固长度),按经验L3≥300mm。
(一)锚杆外露长度L1L1=(0.1~0.15)m,[钢带+托板+螺母厚度+(0.02~0.03)](二)锚入岩(煤)层内深度(锚固长度)L31.经验取值法《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节锚杆支护设计”中、第3.3.3条第四款规定:第3.3.3条端头锚固型锚杆的设计应遵守下列规定:一、杆体材料宜用20锰硅钢筋或3号钢钢筋;二、杆体直径按表3.3.3选用;三、树脂锚固剂的固化时间不应大于10分钟,快硬水泥的终凝时间不应大于12分钟;四、树脂锚杆锚头的锚固长度宜为200~250毫米,快硬水泥卷锚杆锚头的锚固长度宜为300~400毫米;五、托板可用3号钢,厚度不宜小于6毫米,尺寸不宜小于150×150毫米;六、锚头的设计锚固力不应低于50千牛顿;七、服务年限大于5年的工程,应在杆体与孔壁间注满水泥砂浆。
一般取300mm ~400mm2. 理论估算法《在锚杆喷射混凝土支护技术规范》GBJ86-85“第三节 锚杆支护设计”中规定:第3.3.11条 局部锚杆或锚索应锚入稳定岩体。
水泥砂浆锚杆或预应力锚索的水泥砂浆胶结式内锚头锚入稳定岩体的长度,应同时满足下列公式:公式(3.3.11-1)、(3.3.11-2)见图形所示。
cs st f f d k l 412≥ (3.3.11-1)crst a f d f d k l 2214≥ (3.3.11-2) 式中la ——锚杆杆体或锚索体锚入稳定岩体的长度(cm ); d1——锚杆钢筋直径走丝或锚索体直径(cm );d2——锚杆孔直径(cm );f st ——锚杆钢筋或锚索体的设计抗拉强度(N/cm 2);f cs ——水泥砂浆与钢筋或水泥砂浆与锚索的设计粘结强度(N/cm 2);圆钢为2.5MPa ,螺纹钢为5MPa 。
fcr ——水泥砂浆与孔壁岩石的设计粘结强度(N/cm 2);砂浆与石灰岩粘结强度为2.5MPa ,砂浆与粘土岩粘结强度为1.8MPa ,K ——安全系数,取1.2。
(三) 锚杆有效长度或软弱岩层厚度L21. 根据“悬吊理论”确定L 2L2=KH式中:K --- 安全系数,一般取2;H ---软弱岩层厚度,m ;2. 根据“普氏自然平衡供理论”确定L2顶板锚杆有效长度L 2顶当f ≥3时,fB K b L 22==顶 ---------------②-1 当f <3时,顶顶f H B b L ⎪⎭⎫ ⎝⎛-︒+==245tan 212ω --------------- ②-2 式中:K --- 安全系数,一般取1.5~2;b 或b1 --- (普氏免压拱高)围岩松动圈冒落高度,m ;B --- 巷道开掘宽度,此处取B=5.3m ;f --- 巷道顶板的岩石普氏坚固性系数,(煤取2.5);H --- 巷道掘进高度,取3.3m ;顶f --- 顶板岩石普氏系数;(煤取2.5);ω--- 两帮围岩的似内摩擦角,取顶f 反算;= arctan(2.5)=68.2°帮锚杆有效长度L 2帮的确定⎪⎭⎫ ⎝⎛-︒==245tan 2ωH c L 帮 --------------- ②-3 =0.64 m 或112112+-+++=B B f f L 帮 --------------- ②-4 =1.27 m式中:c --- 帮破碎深度(m );H --- 巷道掘进高度,取3.3m ;ω ---两帮围岩的内摩擦角,取40°;)arctan(f =ωB --- 巷道开掘宽度,5.3m ;f ---岩石普氏系数;(煤取2.5);将以上L 1、L 2、L 3的值代入①式得:L 顶≥L 1+L 2顶+L 3L 帮≥L 1+L 2帮+L 33. 根据“组合拱理论”计算L2组合拱理论设计锚杆的支护参数,一般适用于围岩破碎,巷道断面为拱顶的巷道 Ⅰ、两帮煤体受挤压深度C)245tan()12cos 1000(ϕαγ-︒⨯⨯-=h K f HB K C cc --------------- ① )arctan(顶f =ω=(2.8×24×100×1/(1000×2.5×1)×Cos1.5°-1)×3.3×tan(45°-68.2°/2)=2.05(m)式中:K ——自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8r ---上覆岩层平均容重(KN/m 3),取24KN/m 3;H --- 巷道埋深(m),取100m ;B ---固定支撑力压力系数,按实体煤取1;fc ---煤层普氏系数,取2.5;Kc ---煤体完整性系数(取0.9-1.0),取1;α ---煤层倾角,取3°;h ---巷道掘进高度m ,取3.3m ;ϕ ---煤体内摩擦角,可按fc 反算,取68.2°;()顶f arctan =ϕ=arctan(2.5)=68.2°Ⅱ、潜在冒落高度b)cos()(αyy f K C a b += -------------------- ② =(2.65+1.26)×cos3°/(0.45×3)=2.89(m)式中:a ——顶板有效跨度之半(m),取2.65m ;C ——两帮煤体受挤压深度(m),由①式计算得1.05m ;K y ——直接顶煤岩类型性系数; 取0.45当岩石f=3-4时,取0.45;f=4-6 时,取0.6;f=6-9时,取0.75;Fy ——直接顶普氏系数,取3;α——煤层倾角,取5°; Ⅲ、两煤帮侧压值Qs)]245tan(2cos sin [ϕααγ-︒⨯⨯+⨯=b h KnC Q s 煤 ------- ③ =2.8×3×1.26×13×[3.3×sin3°+2.89×cos1.5°×tg(45-68.2/2)]=185(kN/m 2)式中:K --- 自然平衡拱角应力集中系数,与巷道断面形状有关;矩形断面,取2.8; n --- 采动影响系数(取2-5),取3C --- 两帮煤体受挤压深度(m),由①式计算得1.26m ;r 煤--- 煤体容重(KN/m 3),取24 KN/m 3;h --- 巷道掘进高度m ,取3.3m ;a --- 煤层倾角,取3°;b --- 潜在冒落高度,由②式计算得2.89m ;ϕ --- 煤体内摩擦角,可按fc 反算得68.2°L 2帮=CL 2顶=b将以上L 1、L 2、L 3的值代入①式得:L 顶≥L 1+L 2顶+L 3L 帮≥L 1+L 2帮+L 34. 根据“组合梁原理”计算L2组合梁理论只适合层状顶板锚杆支护的设计,对于巷道的帮、底不适用,组合梁厚度越大,梁的最大应变值越小。
组合梁充分考虑了锚杆对离层和滑动的约束作用,原理上对锚杆作用分析的比较全面,但是它存在以下明显缺点。
a.组合梁有效组合厚度很难确定。
b.没有考虑水平应力对组合梁强度、稳定性及锚杆荷载的作用。
其实,在水平应力较大的巷道中,水平应力是顶板破坏、失稳的主要原因。
)(x P K B L σσϕ+=112935.1 式中:K1 --- 与施工方法有关的安全系数。
掘进机掘进2-3;爆破法掘进3-5;巷道受动压影响5-6P ---组合梁自重均布载荷(MPa),取0.06MPa ;ϕ --- 与组合梁层数有关的系数组合层数: 1 2 3 ≥4ϕ值: 1.0 0.75 0.7 0.65B --- 巷道跨度(m),取5.3m ;σ1 --- 最上一层岩层抗拉计算强度(MPa),可取试验强度的0.3-0.4倍,(没有参数)?σx --- 原岩水平应力HH x γϕϕλγσ⋅-==1σx=λrz =0.4×24×10-9×100×103=0.000960MPa式中:λ—侧压力系数,一般为0.25-0.4,γ ——上覆岩层平均容重,取24KN/m 3; Z —巷道埋深(m),取100m ;将以上L 1、L 2、L 3的值代入①式得:L ≥L 1+L 2+L 35. 按经验公式计算锚杆长度L(加固拱理论)L= N (1.1+B/10) ---------- ①=1.0×(1.1+5.3/10)=1.63(m );式中:L —锚杆长度(m );N —围岩稳定影响系数,Ⅴ类围岩取系数1.2;B —巷道跨度(m ),取5.3m 。
二、 锚杆间、排距(一) 经验公式根据《锚杆喷射混凝土支护技术规范》GBJ86-85规定: 第3.3.7条 系统锚杆的布置应遵守下列规定:一、在隧洞横断面上,锚杆应与岩体主结构面成较大角度布置;当主结构面不明显时,可与隧洞周边轮廓垂直布置;二、在岩面上,锚杆宜成菱形排列;三、锚杆间距不宜大于锚杆长度的二分之一;Ⅳ、Ⅴ类围岩中的锚杆间距宜为0.5 ~1.0米,并不得大于1.25米。
D ≤1/2L --------------- ①D ≤0.5×2200=1100mm(二) 根据锚杆支护的原理计算锚杆间/排距1. 根据“悬吊理论”计算锚杆间、排距2. 锚杆间距D ≤1/2L锚杆排距当复合顶板厚度小于1.15 m, 即在巷道上方1.15m 范围内有关键层存在条件下, 关键层下面复合顶岩层可悬吊在稳定的关键层岩层上,支护设计按悬吊理论计算, 且不需锚索补强(4)。
锚杆的有效长度L2 大于或等于关键层下位复合顶板厚度,锚杆的间排距则有:γγγKb Q KL Q KH QD =≤2 或 γ2887.0KL Q d D ≤式中:D — 锚杆间、排距,m ;Q — 锚杆设计锚固力, 105 KN/根K — 安全系数,一般取1.5~2;L 2—软弱岩层厚度或冒落拱高度b ,取 m ;H —软弱岩层厚度或冒落拱高度b ,取 m ;fB H 2= 式中 B ——巷道开挖宽度,m ;f ——岩石坚固性系数,取3。
γ — 被悬吊岩石的容重,取24 KN/m 3; d — 锚杆最小直径,mm ;3. 根据“组合拱理论”计算锚杆间、排距 ● (顶)锚杆间排距abk Nn aL k Nn L γγ2220== 式中:L 0 --- 锚杆间、排距,m ;N --- 锚杆设计锚固力, 105 KN/根 n --- 每排锚杆根数,根;K --- 安全系数,一般取2~3;γ --- 被悬吊岩石的容重,取24KN/m 3; a --- 1/2巷道掘进宽度,m ;L 2 --- 锚杆有效长度(顶锚杆取b 冒落拱高度),取1.31 m ; ● (帮)锚杆间排距L KQ Nh D s = 式中:D --- 锚杆间、排距,m ;N --- 锚杆设计锚固力, 105 KN/根 h --- 巷道掘进高度,m ;K --- 安全系数,一般取2~3;γ --- 被悬吊岩石的容重,取24KN/m 3; a --- 1/2巷道掘进宽度,m ;L 0 --- 帮锚杆排拒(同顶锚杆排拒),取 m ;4. 根据“组合梁原理”计算锚杆间、排距KP m D 263.111σ≥式中:D --- 锚杆间、排距,m ;m 1 --- 最上一层岩石厚度, m ;σ1 ---最上一层岩石抗拉强度(MPa),可取实验强度的0.3~0.4倍;K --- 安全系数,一般取2~3;P --- 本层自重均布载荷,P=m1×r1MPa ;r1 --- 最下面一层岩层的容重,取24kN/m 3;经计算选择锚杆间距×排距=900mm ×900mm 符合要求。