人教版七年级数学《有理数专题》
- 格式:doc
- 大小:160.05 KB
- 文档页数:5
人教版七年级数学上册《有理数的混合运算》专题训练-附参考答案【解题技巧】主要是要注意混合运算的运算顺序。
一级运算:加减法;二级运算:乘除法;三级运算:乘方运算。
规定:先算高级运算再算低级运算同级运算从左到右依次进行。
(1)有括号先算括号里面的运算按小括号、中括号、大括号依次进行;(2)先乘方、再乘除、最后加减;(3)同级运算按从左往右依次进行。
当然在准守上述计算原则的前提下也需要灵活使用运算律以简化运算。
1.(2022·广西崇左·七年级期末)计算:(1)3312424⎛⎫⎛⎫-⨯÷-⎪ ⎪⎝⎭⎝⎭;(2)2014281|5|(4)(8)5⎛⎫-+-⨯---÷-⎪⎝⎭.【答案】(1)12(2)-7【分析】(1)原式从左到右依次计算即可求出值;(2)原式先算乘方及绝对值再算乘除最后算加减即可求出值.(1)原式9489⎛⎫⎛⎫=-⨯-⎪ ⎪⎝⎭⎝⎭12 =;(2)原式=﹣1+5×(85-)﹣16÷(﹣8)=﹣1﹣8+2=﹣7.【点睛】本题考查了有理数的混合运算熟练掌握运算法则是解本题的关键.2.(2022·内蒙古·七年级期末)计算:(1)31125(25)25424⎛⎫⨯--⨯+⨯-⎪⎝⎭(2)4211(1)3[2(3)]2---÷⨯--【答案】(1)25(2)1 6【分析】(1)根据乘法分配律、有理数乘法法则、减法法则和加法法则计算即可;(2)根据有理数的运算顺序和各个运算法则计算即可.(1)解:原式311252525424⎛⎫=⨯+⨯++- ⎪⎝⎭31125424⎛⎫=⨯+- ⎪⎝⎭251=⨯25=;(2)解:原式111(29)23=--⨯⨯- 11(7)6=--⨯- 761=-+ 16=. 【点睛】此题考查了有理数的混合运算.解题的关键是掌握有理数的混合运算的运算顺序和每一步的运算法则.3.(2022·山东东营·期末)计算: (1)11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭; (2)42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 【答案】(1)34- (2)5 【分析】(1)原式先算括号内的 再算乘除;(2)原式先乘方 再中计算括号内及绝对值内的减法 再计算乘法 最后计算加减即可求出值.(1)解:11311338⎛⎫⎛⎫+÷-⨯ ⎪ ⎪⎝⎭⎝⎭ 433328⎛⎫=⨯-⨯ ⎪⎝⎭ 34=- (2)解:42111(2)|25|623⎛⎫-+-+--⨯- ⎪⎝⎭ 111436623=-++-⨯+⨯ 14332=-++-+5=【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.4.(2022·安徽阜阳·七年级期末)计算:(1)()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭. (2)2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 【答案】(1)16(2)-2312 【分析】先计算乘方及小括号内的运算 再计算乘法 最后计算加减法.【详解】(1)解:()221113232⎛⎫⎡⎤---÷⨯-- ⎪⎣⎦⎝⎭=()111723--⨯⨯- =716-+ =16. (2)解:2221132() 1.532⎡⎤-⨯-+÷--⎢⎥⎣⎦ 19(924)34=-⨯-+⨯- 19(1)34=-⨯-- 1934=- =-2312. 【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数的运算法则及运算顺序是解题的关键. 5.(2022·湖南娄底·七年级期末)计算:(1)()()220211110.5233⎡⎤---⨯⨯--⎣⎦; (2)()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦【答案】(1)16(2)6 【分析】(1)原式先计算乘方运算 再计算乘除运算 最后算加减运算即可得到结果.(2)先算乘方 再算乘除 最后算减法;同级运算 应按从左到右的顺序进行计算.【详解】(1)解:原式()117112912366⎛⎫=--⨯⨯-=---= ⎪⎝⎭ (2)解:()224212512432⎡⎤⎛⎫⎡⎤-÷--+-⨯⎢⎥ ⎪⎣⎦⎝⎭⎢⎥⎣⎦ ()2116512434⎛⎫=-÷-+-⨯ ⎪⎝⎭ 21164242434⎛⎫=-÷+⨯-⨯ ⎪⎝⎭410=-+6=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键 运算顺序为:先乘方 再乘除 最后算加减 有括号先计算括号内的运算.6.(2022·天津北辰·七年级期末)(1)24(3)5(2)6⨯--⨯-+;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭. 【答案】(1)52;(2)-52. 【分析】(1)先算乘方 然后计算乘除 最后算加减即可;(2)先算乘方 然后计算乘除 最后算加减即可.【详解】解:(1)24(3)5(2)6⨯--⨯-+=4×9+10+6=52;(2)()31162(4)8⎛⎫÷---⨯- ⎪⎝⎭=-16÷8-12=-2-12=-52. 【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算.7.(2022·广西百色·七年级期末)计算:(1)()()22241322⎡⎤---⨯÷⎣⎦.(2)33(2)30(5)34⎛⎫-⨯-+÷--- ⎪⎝⎭. 【答案】(1)8(2)-2【分析】根据有理数的混合运算法则计算即可;含乘方的有理数混合运算法则:1、先乘方 再乘除 最后加减;2、同级运算 从左往右进行;3、如果有括号 先做括号内的运算 按小括号、中括号、大括号依次进行.【详解】(2)解:原式()161924=--⨯÷⎡⎤⎣⎦()16824=--⨯÷⎡⎤⎣⎦8=.解:原式()()51411=÷--+⨯-()551=÷--11=--2=-.【点睛】本题考查了有理数的混合运算 熟练掌握运算法则是解题的关键.8.(2022·河南周口·七年级期末)计算: (1)2022211(1)(1)(32)23-+-⨯+-+ (2)23220213(4)(2)(2)(1)-⨯-+-÷--- 【答案】(1)556- (2)35 【分析】(1)原式先计算乘方运算及括号内的运算 再计算乘除运算 最后计算加减运算即可求出值;(2)先计算乘方运算 再计算乘除运算 最后计算加减运算即可求出值.(1)解:原式=111(92)23+⨯+-+ =1176+- =556-; (2)解:原式=9(4)(8)4(1)-⨯-+-÷--=3621-+=35【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键.9.(2022·江苏扬州·七年级期末)计算: (1)3(6)( 1.55) 3.25(15.45)4---+++-; (2)()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 【答案】(1)-7 (2)98- 【分析】(1)先算同分母分数 再算加减法即可求解;(2)先算乘方 再算乘除 最后算加法;同级运算 应按从左到右的顺序进行计算.(1)解:3(6)( 1.55) 3.25(15.45)4---+++-(6.75 3.25)( 1.5515.45)=++--1017=-7=-;(2)解:()()22351222125⎛⎫⎛⎫-÷-⨯-+- ⎪ ⎪⎝⎭⎝⎭ 254(8)1425=÷-⨯- 2514()14825=⨯-⨯- 118=-- 98=-. 【点睛】本题考查了有理数的混合运算 解题的关键是掌握有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算.进行有理数的混合运算时 注意各个运算律的运用 使运算过程得到简化.19.(2022·河南南阳·七年级期末)计算(1)243(6)()94-⨯-+; (2)33116(2)()(4) 3.52÷---⨯-+.【答案】(1)11 (2)1【分析】(1)先计算乘方 再利用乘法分配律计算即可;(2)先计算乘方 再计算乘除 最后计算加减即可.(1)解:原式4336()94=⨯-+4336()3694=⨯-+⨯ 1627=-+11=;(2)解:原式116(8)()(4) 3.58=÷---⨯-+20.5 3.5=--+ 1=.【点睛】本题主要考查有理数的混合运算 解题的关键是掌握有理数的混合运算顺序和运算法则.11.(2022·河北邯郸·七年级期末)计算:()()20212132311234⎛⎫-+⨯---⨯- ⎪⎝⎭. 【答案】12-【详解】解:原式()44311213123=-⨯-++⨯⨯- 434912=--+-=-.【点睛】本题考查了有理数的混合运算 熟练掌握混合运算的顺序是解答本题的关键.混合运算的顺序是先算乘方 再算乘除 最后算加减;同级运算 按从左到右的顺序计算.如果有括号 先算括号里面的 并按小括号、中括号、大括号的顺序进行.有时也可以根据运算定律改变运算的顺序.12.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= ==; (3) = 71(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭= = =; (4) = = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.13.(2022·浙江杭州市·七年级期末)计算:(1). (2). (3) (4) 【答案】(1);(2);(3);(4) 【分析】(1)直接约分计算即可;(2)将除法转化为乘法 再约分计算;(3)先算乘方和括号 再算乘除 最后算加减;(4)先算乘方 再算乘除 最后算加减.【详解】解:(1) =; (2)= 14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭12489459-⨯⨯+⨯445-+16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭15(0.25)63⎛⎫÷-÷- ⎪⎝⎭231213(2)5⎛⎫---⨯÷- ⎪⎝⎭223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭52257920-16571(5)27⎛⎫-⨯-⨯ ⎪⎝⎭5215(0.25)63⎛⎫÷-÷- ⎪⎝⎭131654⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭==; (3) = = = =; (4) = =12489459-⨯⨯+⨯ =445-+ =165 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序.14.(2022·浙江七年级期末)计算:(1). (2). (3). (4). 【答案】(1)3;(2)1;(3)927;(4)1【分析】(1)先化简符号和括号 再计算加减法;(2)将除法转化为乘法 再约分计算;(3)先算括号内的 再算乘除 最后算加减;(4)先算乘方和括号 再算乘除 最后算加减. ()13465⎛⎫⨯-⨯- ⎪⎝⎭25231213(2)5⎛⎫---⨯÷- ⎪⎝⎭31(8)45⎛⎫---÷- ⎪⎝⎭14258⎛⎫--⨯- ⎪⎝⎭2410-+7920-223(0.25)(8)952⎛⎫⎛⎫-⨯-⨯-+÷- ⎪ ⎪⎝⎭⎝⎭129(8)9454⎛⎫-⨯-⨯-+÷ ⎪⎝⎭11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦94(81)(16)49-÷⨯÷-11304(3)1556⎛⎫÷--⨯-+ ⎪⎝⎭422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭【详解】解:(1) = = ==3;(2) = =1;(3) = ==927;(4) = ==1 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序. 28.(2021·湖北恩施·七年级期末)计算下列各题:(1)2(35)(3)(13)--+-⨯-; (2)32422()93-÷⨯-. 【答案】(1)-16 (2)-8【分析】(1)先算括号中的减法 再算乘方 乘法 以及加减即可得到结果; (2)先算乘方 再算乘除即可得到结果.(1)解:原式=359(2)-++⨯-11552( 4.8)4566⎡⎤⎛⎫-+--- ⎪⎢⎥⎝⎭⎣⎦11552 4.84566⎛⎫--+ ⎪⎝⎭145154425566+--107-94(81)(16)49-÷⨯÷-441819916⨯⨯⨯11304(3)1556⎛⎫÷--⨯-+⎪⎝⎭301215301÷++9001215++422321(3)(15)35⎛⎫⎡⎤-÷--+-⨯- ⎪⎣⎦⎝⎭()23168(15)(15)35-÷-+⨯--⨯-2109-+218=- =16-;(2)解:原式=94849-⨯⨯=8-.【点睛】此题考查了有理数的混合运算 熟练掌握运算法则是解本题的关键. 15.(2022·河南驻马店·七年级期末)计算:(1)()22112 2.25554⎛⎫---+-- ⎪⎝⎭; (2)2220212111132322⎛⎫--⨯--+÷⨯ ⎪⎝⎭.【答案】(1)1-;(2)54-【分析】(1)先化简绝对值、去括号 再计算加减法即可得;(2)先计算乘方、除法 再化简绝对值、乘法 然后计算加减法即可得. 【详解】 解:(1)原式2 2.2275.2555--+=- 7255=- 1=-;(2)原式4143111322=--⨯-+⨯3134344=--⨯+-4331344=--⨯+3114=--+ 54=-.【点睛】本题考查了含乘方的有理数混合运算 熟练掌握运算法则是解题关键. 16.(2022·山东青岛·七年级期末)计算: (1)123()3035--+; (2)431116(2)()48-+÷---⨯. 【答案】(1)110; (2)52-【分析】(1)原式利用减法法则变形 计算即可得到结果; (2)原式先算乘方 再算乘除 最后算加减即可得到结果. (1) 原式=1233035+- =12018303030+- =1201830+- =330=110; (2)原式=()1116848⎛⎫-+÷---⨯ ⎪⎝⎭=1122--+=52-.【点睛】本题考查了有理数的加、减、乘、除、乘方的混合运算 正确理解运算顺序并细心计算是解决本题的关键;运算顺序:先乘方、再乘除、后加减 有括号的先算括号里面的. 17.(2022·福建福州·七年级期末)计算: (1)()()()()2356---++-+; (2)()2202241235⎛⎫-+-÷--- ⎪⎝⎭.【答案】(1)0 (2)9-【分析】(1)根据有理数加减混合运算法则进行计算即可; (2)根据有理数的混合运算法则进行计算即可. (1)解:()()()()2356---++-+2356=-++-88=-+0=(2)解:()2202241235⎛⎫-+-÷--- ⎪⎝⎭51434⎛⎫=-+⨯-- ⎪⎝⎭153=--- 9=-【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则 有乘方的先算乘方 再算乘除 最后算加减 有括号的先算小括号里面的 是解题的关键. 18.(2022·湖北孝感·七年级期末)计算:(1)(-5)×(-6)-40+2. (2)(-3)2-|-8|-(1-2×35)÷25.【答案】(1)8- (2)32【分析】(1)先计算有理数的乘法 然后计算加减即可;(2)先计算乘方及绝对值及小括号内的运算 然后计算除法 最后计算加减即可. (1)原式=30-40+2 =-8; (2)原式=9-8-65152⎛⎫-⨯ ⎪⎝⎭=9-8-1552⎛⎫-⨯ ⎪⎝⎭=9-8+12=32. 【点睛】题目主要考查含乘方的有理数的混合运算 绝对值化简 熟练掌握运算法则是解题关键. 19.(2022·山东枣庄·七年级期末)计算(1)22(2)31(0.2)4-+-⨯-÷-+- (2)222172(3)(6)()3-+⨯---÷-【答案】(1)-1 (2)23【分析】(1)先计算乘方 再计算乘除 最后算加减 可得答案;(2)先计算乘方 再计算乘除 最后计算加减 即可得到答案. (1)解:22(2)31(0.2)4-+-⨯-÷-+-4(6)54=-+-++1=-(2)222172(3)(6)()3-+⨯---÷-4929(6)9=-+⨯--⨯491854=-++ 23=【点睛】本题考查的是含乘方的有理数的混合运算 掌握“含乘方的有理数的混合运算的运算顺序”是解本题的关键.20.(2022·湖北荆州·七年级期末)计算:(1)﹣14﹣5+30﹣2 (2)﹣32÷(﹣3)2+3×(﹣2)+|﹣4| 【答案】(1)9 (2)-3【分析】(1)根据有理数的加减法运算法则计算即可求解; (2)先算乘方 再算乘除 最后算加法求解即可. (1)解:-14-5+30-2 =(-14-5-2)+30 =-21+30 =9; (2)-32÷(-3)2+3×(-2)+|-4| =-9÷9-6+4 =-1-6+4 =-3.【点睛】本题考查了有理数的混合运算 有理数混合运算顺序:先算乘方 再算乘除 最后算加减;同级运算 应按从左到右的顺序进行计算;如果有括号 要先做括号内的运算. 21.(2022·河南驻马店·七年级期末)计算:(1)1|2|4--(34-)+11|1|2--; (2)16+(﹣2)319-⨯(﹣3)2﹣(﹣4)4.【答案】(1)312 (2)-249【分析】(1)先求绝对值 再按有理数加减法法则计算即可; (2)先计算乘方 再计算乘法 最后计算加减即可. (1)解:原式=13121442++-=312; (2)解:原式=16-8-19×9-256=16-8-1-256 =-249.【点睛】本题考查有理数混合运算 求绝对值 熟练掌握有理数运算法则是解题的关键. 22.(2022·四川广元·七年级期末)计算:220221256(4)(1)2⎛⎫---+÷-+-⨯- ⎪⎝⎭.【答案】-6 【详解】解:原式()()41241=--⨯-+-⨯ =()()424---+- =()424-++-6=-.【点睛】此题考查了含乘方的有理数的混合运算 正确掌握有理数混合运算法则是解题的关键. 23.(2022·广西崇左·七年级期末)计算(1)2312130.25343-+-- (2)()22122332⎡⎤-+⨯--÷⎢⎥⎣⎦【答案】(1)-1812 (2)2 (1)解∶原式=-2123-13+334-14= -22+312 =-1812 (2)解:原式=()42932-+⨯-⨯ = -4+2×(9-6) =-4+6 =2【点睛】本题主要考查了有理数的混合运算 熟练掌握有理数混合运算法则是解题的关键. 24.(2022·陕西·西安七年级期中)计算: (1)()()2132----+- (2)22212(32)243⎡⎤⨯+-÷⎣⎦ (3)152(18)369⎛⎫-+⨯- ⎪⎝⎭ (4)3202141(1)(13)82⎛⎫-+-÷⨯ ⎪⎝⎭【答案】(1)6-(2)0(3)5(4)34-【分析】(1)利用有理数加法和减法法则按照从左到右的顺序依次计算;(2)先算乘方 并把带分数化成假分数 再计算乘除 最后计算加减 同时按照先算小括号再算中括号的运算顺序计算即可;(3)利用乘法分配律进行计算即可;(4)先计算乘方 再计算乘除 最后计算加法即可.(1)原式=21326-+--=-; (2)原式=()2934294⎡⎤⨯+-÷⎣⎦ =1122⎛⎫+- ⎪⎝⎭=0;(3)原式=()121829⎛⎫-+⨯- ⎪⎝⎭=()()12181829⎛⎫-⨯-+⨯- ⎪⎝⎭=94- =5;(4)原式=()411288-+-÷⨯=111688-+÷⨯=1128-+⨯=114-+=34-. 【点睛】本题考查有理数的加减乘除及乘方的混合运算 解题关键是牢记运算法则 掌握运算顺序. 25.(2022· 绵阳市·九年级专项)计算:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭;(5)111532⎛⎫÷-- ⎪⎝⎭; (6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦.【答案】(1)218-;(2)9-;(3)712-;(4)177;(5)18-;(6)22-;(7)307;(8)16. 【分析】(1)先计算除法 再计算加法 两个有理数相除 同号得正;(2)乘除法 同级运算 从左到右 依次将除法转化为乘法 先确定符号 再将数值相乘; (3)先将除法转化为乘法 再利用乘法分配律解题 注意符号;(4)先算乘除 再算减法 结合加法结合律解题;(5)先算小括号 再算除法;(6)先算小括号 再算中括号;(7)先将除法转化为乘法 再利用乘法分配律的逆运算解题; (8)先算小括号 再算中括号 结合乘法交换律解题. 【详解】解:(1)211421337⎛⎫⎛⎫⎛⎫-+-÷- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1477833⎛⎫⎛⎫⎛⎫=-+-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2414493=-+24218=-; (2)11(3)(3)33⎛⎫⨯-÷-⨯- ⎪⎝⎭()1=(3)3(3)3⨯-⨯-⨯- =9;(3)11661510155⎛⎫⎛⎫--÷- ⎪ ⎪⎝⎭⎝⎭5165101566⎛⎫⎛⎫=--⨯- ⎪ ⎪⎝⎭⎝⎭111123=-++ 712=-; (4)67324(6) 3.5784⎛⎫⎛⎫-÷--÷⨯- ⎪ ⎪⎝⎭⎝⎭617324()762874⎛⎫⎛⎫=--⨯--⨯⨯- ⎪ ⎪⎝⎭⎝⎭1437=++177=; (5)111532⎛⎫÷-- ⎪⎝⎭6155⎛⎫=÷- ⎪⎝⎭5156⎛⎫=⨯- ⎪⎝⎭18=-;(6)221782 1.52133699⎡⎤⎛⎫-⨯÷-÷ ⎪⎢⎥⎝⎭⎣⎦2378261323998⎡⎤⎛⎫=-⨯⨯-÷ ⎪⎢⎥⎝⎭⎣⎦2782241399⎡⎤⎛⎫=--÷ ⎪⎢⎥⎝⎭⎣⎦282223992⎡⎤⎛⎫=-÷ ⎪⎢⎥⎝⎭⎣⎦ 982094⎛⎫=-+⨯ ⎪⎝⎭22442-=22=-;(7)21112 1.48 1.410 1.4333⎛⎫⎛⎫⎛⎫-÷--÷++÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2115128103337⎡⎤⎛⎫⎛⎫⎛⎫=---++⨯ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2115128103337⎡⎤=-++⨯⎢⎥⎣⎦567=⨯307=; (8)211113170.12511131628⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯-+÷-÷-- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦162113171713388⎡⎤⎛⎫⎛⎫⎛⎫=⨯⨯-⨯-+÷ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦2113(16)33881⎡⎤⎛⎫⎛⎫=⨯-⨯-+⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()332286⎛⎫=-⨯ ⎪⎝⎭863=⨯16=.【点睛】本题考查有理数的四则混合运算 涉及加法结合律、乘法分配律等知识 是重要考点 掌握相关知识是解题关键.26.(2022·娄底市第二中学七年级期中)请你先认真阅读材料: 计算 解:原式的倒数是=12112()()3031065-÷-+-21121-+()3106530⎛⎫-÷- ⎪⎝⎭2112()(30)31065-+-⨯-=×(﹣30)﹣×(﹣30)+×(﹣30)﹣×(﹣30)=﹣20﹣(﹣3)+(﹣5)﹣(﹣12) =﹣20+3﹣5+12 =﹣10 故原式等于﹣再根据你对所提供材料的理解 选择合适的方法计算:. 【答案】. 【分析】根据题意 先计算出的倒数的结果 再算出原式结果即可.【详解】解:原式的倒数是:故原式. 【点睛】本题主要考查了有理数的除法 读懂题意 并能根据题意解答题目是解决问题的关键. 27.(2022·黑龙江绥化·期中)计算:(1)()()()6.5 3.3 2.5 4.7-+----+; (2)()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭; (3)22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(4)()2449525⨯- (5)41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭【答案】(1)12- (2)63 (3)9- (4)24954-(5)99900【分析】根据有理数的加减乘除运算法则求解即可. (1)解:()()()6.5 3.3 2.5 4.7-+----+23110162511011322()()4261437-÷-+-114-113224261437⎛⎫⎛⎫-÷-+- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭132216143742⎛⎫⎛⎫-+-÷-⎪ ⎪⎝⎭⎝⎭()132********⎛⎫=-+-⨯- ⎪⎝⎭13224242424261437⎛⎫=-⨯-⨯+⨯-⨯ ⎪⎝⎭()792812=--+-14=-114=-6.5 3.3 2.5 4.7=--+-()6.5 3.3 4.7 2.5=-+++14.5 2.5=-+12=-;(2)解:()31612146⎛⎫⨯-⨯-⨯ ⎪⎝⎭ 3761246=⨯⨯⨯ 63=;(3)解:22132412⎡⎤⎛⎫-+⨯-÷-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ()9244=-+⨯-9=-;(4)解:()2449525⨯- ()2449525⎛⎫=+⨯- ⎪⎝⎭ 24495525=-⨯-⨯ 242455=-- 42495=-; (5)解:41399911899999918555⎛⎫⨯+⨯--⨯ ⎪⎝⎭ 41399911818555⎛⎫=⨯+--- ⎪⎝⎭ 999100=⨯99900=.【点睛】本题考查有理数的加减乘除混合运算 熟练掌握相关运算法则及运算顺序是解决问题的关键. 28.(2022·河北邯郸·七年级期中)能简算的要简算(1)122 6.6 2.5325⨯+⨯ (2)44444999999999955555++++ (3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦ (4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦【答案】(1)25;(2)11110;(3)16;(4)10 【分析】(1)先把小数化为分数 然后根据乘法的结合律进行计算求解即可;(2)先把分数部分和整数部分分别相加然后得到()()()()19199199919999+++++++由此求解即可;(3)直接根据分数的混合计算法则进行求解即可;(4)先把小数化为分数 然后根据分数的混合计算法则进行求解即可.【详解】解:(1)131226232525⨯+⨯132=263255⎛⎫⨯+ ⎪⎝⎭1=2102⨯=25;(2)44444999999999955555++++()44444=999999999955555⎛⎫++++++++ ⎪⎝⎭=49999999999++++()()()()=19199199919999+++++++=10100100010000+++=11110;(3)16533241787⎡⎤⎛⎫÷⨯-+ ⎪⎢⎥⎝⎭⎣⎦1633=977⎡⎤÷+⎢⎥⎣⎦1696=77÷167=796⨯1=6;(4)513.21 3.62812⎡⎤⎛⎫⨯-+⨯ ⎪⎢⎥⎝⎭⎣⎦1631825=58512⎛⎫⨯+⨯ ⎪⎝⎭61825=5512⎛⎫+⨯ ⎪⎝⎭2425=512⨯ =10.【点睛】本题主要考查了分数与小数的混合计算 分数的混合计算 解题的关键在于能够熟练掌握相关计算法则.29.(2022·浙江七年级期中)计算(1) (2) (3) (4) (5) (6) (7) (8) 【答案】(1);(2);(3)-8;(4);(5)8;(6);(7)161;(8) 【分析】根据有理数的混合运算法则分别计算.【详解】解:(1) = = =; (2) = = 3233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭()22012201121(0.25)4522--⨯+-÷-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦22222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦111112123123100+++++++++++13-174-49613-2001013233(10)43434⎛⎫⎛⎫÷-⨯-÷-- ⎪ ⎪⎝⎭⎝⎭3112123124451034⎛⎫⎛⎫⎛⎫⨯-⨯-÷-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭110441015153-⨯⨯⨯13-()22012201121(0.25)4522--⨯+-÷-()2012220111422554⎛⎫--⨯+-÷- ⎪⎝⎭2012201151424254⎛⎫-⨯-⨯⎪⎝⎭= =; (3) = = ==-8;(4) = = ==; (5) = = = =8;(6) 2011411444⎛⎫-⨯⨯- ⎪⎝⎭174-1111864126⎛⎫-⨯-++÷ ⎪⎝⎭111866412⎛⎫⨯--⨯ ⎪⎝⎭1114848486412⨯-⨯-⨯8124--()2222114(32)333⎡⎤⎛⎫⎛⎫-÷---⨯-+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦()91116(32)349⎡⎤-÷--⨯--⎢⎥⎣⎦111423⎛⎫--- ⎪⎝⎭12323+49622222411.35 1.057.7393⎛⎫⎛⎫⎛⎫⨯-+⨯--⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭44411.35 1.057.7999⨯-⨯+⨯()411.35 1.057.79-+⨯4189⨯2432151|2|(3)(2)62⎛⎫⎡⎤-+⨯-----÷- ⎪⎣⎦⎝⎭= = = =; (7) = = = =160+1=161;(8) == = = = 【点睛】本题考查了有理数的混合运算 解题的关键是掌握运算法则和运算顺序 以及一些常用的简便运算方法.30.(2022·河北邯郸·二模)淇淇在计算:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭时 步骤如下: 解:原式()11=202266623---+÷-÷①=202261218-++-① ()5112246274-+⨯+-⨯14125625-+⨯⨯213-+13-222311513543⎡⎤⎛⎫⎛⎫⎛⎫-⨯÷---÷-+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦3531345254⎛⎫⨯⨯+⨯+ ⎪⎝⎭35141254⎛⎫⨯++⎪⎝⎭511284⨯+111112123123100+++++++++++()()()11111221331100100222+++++⨯+⨯+⨯2222122334100101++++⨯⨯⨯⨯11112122334100101⎛⎫⨯++++ ⎪⨯⨯⨯⨯⎝⎭11111112122334100101⎛⎫⨯-+-+-++- ⎪⎝⎭200101=2048-①(1)淇淇的计算过程中开始出现错误的步骤是________;(填序号)(2)请给出正确的解题过程.【答案】(1)①; (2)见解析.【分析】(1)根据有理数的运算法则可知从①计算错误;(2)根据有理数的运算法则计算即可.(1)解:由题意可知:()20223111(1)(2)6=186236⎛⎫---+÷---+÷ ⎪⎝⎭; 故开始出现错误的步骤是①(2)解:2022311(1)(2)623⎛⎫---+÷- ⎪⎝⎭()1=1866--+÷ =1836++=45.【点睛】本题考查含乘方的有理数的运算 解题的关键是掌握运算法则并能够正确计算.。
有理数专题练习专题一:正、负数概念1.下面各数哪些是正数,哪些是负数正数:;负数:.2. 下列判断:○1带正号的数是正数,带负号的数是负数;○2任何一个正数,前面加上“-”号,就是一个负数;○30是最小的正数;○4大于零的数是正数;○5字母既是正数,又是负数.其中正确的个数是()3.下列数中:.一定是负数的是.》专题二:0的相关性质1.下列说法中错误的是()是最小的自然数既不是正数也不是负数仅仅表示什么都没有可以表示一个确定的量2. 下列关于0的描述中错误的是()A.0可以表示什么都没有表示没有温度可以表示分界线可以占位@3.下列结论正确的是()A.不大于0的数一定是负数B.海拔高度是0米表示没有高度是正数与负数的分界 D.不是正数的数一定是负数专题三:关于取值范围1.如图是加工零件的尺寸要求,现有下列直径尺寸的产品(单位:),其中不合格的是()A.B.C.D.mm|2.超市出售的某品牌面粉的包装袋上标有“质量为()kg”字样,从中任意拿出两袋,它们的质量最多相差kg.专题四:正、负数表示相反意义的量1.下列各对量中,表示具有相反意义的量的是()A.购进50斤苹果与卖出-50斤苹果B.高于海平面786m与低于海平面230mC.向东走-9m和向西走10m·D.飞机上升100m与前进100m2.如果收入100元记作+100元,那么支出100元记作;如果电梯上升了两层记作+2层,那么-3层表示电梯.3.某市一中学进行数学竞赛,满分120分,96分以上为优秀,老师将某一小组五名同学的成绩记为:+10,-3,0,+4,-4,则这五名同学的实际成绩分别是.专题五:有理数的定义1.下列说法中,正确的个数是()○1一个有理数不是整数就是分数;○2一个有理数不是正的,就是负的;○3一个整数不是正的,就是负的;○4一个分数不是正的,就是负的.个个个个】2.在中,有理数有()个.专题六:数轴问题1. (1)已知为有理数,且,将四个数按由小到大的顺序排列是;(2)已知数轴上有、两点,、两点之间的距离为1,点与原点的距离为3,那么点对应的数是.2.数轴上坐标是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2017cm线段AB,则线段AB盖住的整点的个数是( )或2017 或2018`或2018 或2019专题七:相反数1.的相反数是.2.若与互为相反数,则.专题八:倒数1.的相反数的倒数是.2.若互为相反数,互为倒数,为最大的负整数,则的值为().!或-5专题九:绝对值1.绝对值小于4的所有整数的个数为.2.若,则= ;若,则= ;若,则= ;3.如果是有理数,代数式的最小值是.专题十:科学记数法与近似数~1.将数据-2500000用科学记数法表示为.2.用四舍五入法取近似数:(精确到十分位),(精确到个位),(精确到).3.近似数有个有效数字,精确到位.详细答案专题一:正、负数概念1.正数:5,,,;负数:,,.\2. C【分析】○1带正号的数不一定是正数,如,关键是是什么数,同样带负号的数是负数,注意:+0=-0=0,故○1不正确.○2正确,符合负数的定义.○30既不是正数也不是负数,故○3不正确.○4正确,符合正数的定义. ○5字母是数,可以是正数,也可以是负数或0,但不可能既是正数又是负数,这样的数不存在,故○5不正确.综上所述,仅○2○4正确故选C.3. -2,【分析】是正数;0既不是正数也不是负数;字母是数,可以是正数,也可以是负数或0,所以不一定是负数.专题二:0的相关性质1. C【分析】0不仅仅表示什么都没有,还可以表示一个确定的量,如0℃是温度中的一个值.故选C.2. B'【分析】根据对自然数的认识可知:0表示一个物体也没有,0℃是温度中的一个值,也是天气中零上零下的分界点;0可以表示正数和负数的分界线;在数位顺序表上,哪个数位上一个单位也没有,就可以用0占位.故选B.【分析】依据正负数的意义求得零件直径的合格范围,然后找出不符要求的选项即可.【解答】解:∵45+=,45﹣=,∴零件的直径的合格范围是:≤零件的直径≤.∵不在该范围之内,∴不合格的是B.故选B..专题三:关于取值范围【分析】直径的取值范围是~,故不在此范围的产品是不合格品,因此选B.2.【分析】由质量为()kg的字样可以知道:这些面粉最多有45+=,最少也有=,因此它们的质量最多相差专题四:正、负数表示相反意义的量【分析】购进50斤苹果与卖出-50斤苹果具有相同的意义,表示相同的量;同理C 也是错的;飞机上升100m 与前进100m 不具有相反的意义;满足相反意义的量要求意义相反,是同类量,不要求数量一定相等.“-”本身就是意义相反的意思.故选B.2. -100元;下降了三层 -【分析】易错点在于忘记写单位. 分、93分、96分、100分、92分【分析】以96分优秀分为标准线.记为正数就是高于96分,记为负数就是小于96分.专题五:有理数的定义【分析】整数和分数统称有理数,因此○1正确;0既不是正数也不是负数,且有理数包括0,所以 ○2不正确;同理整数也包括0因此○3不正确;分数只包括正分数和负分数,因此○4也正确.故选B. 个 个 个 个<【分析】是负分数,是分数,有理数包括整数和分数,而 是无限不循环小数,因此选A.专题六:数轴问题 1.(1)(2)2或4【分析】(1)画出数轴可知─┸─┸─┸─┸─┸─┸─→(2)点与原点的距离为3,那么是3,由、两点之间的距离为1得,点对应的数是2或 4.@【分析】一条数轴上的单位长度是统一的,线段AB 能盖住的整点的个数,需分情况讨论.若所画的长为2017cm 的线段的两个端点A 、B 均为整点,此时线段AB 盖住的整点个数是2017+1=2018.若A 不是整点,则B 也不是整点,此时线段AB 盖住的整点个数为2017.所以长为2017cm 的线段盖住的整点的个数是2017或2018.故选C.\专题七:相反数1..【分析】若与互为相反数,则,则-1.专题八:倒数【分析】互为相反数,因此;互为倒数,因此,为最大的负整数,即,则=3专题九:绝对值【分析】绝对值小于4的所有整数有0,,共7个.2.【分析】,因此代数式的值大于等于1.专题十:科学记数法与近似数1.2. ;186;3. 3,千。
人教版七年级数学上册《有理数分类、数轴、相反数及绝对值》专题训练-附带答案满分:100分时间:90分钟一、选择题(每小题3分共36分)1.(2022春•沙依巴克区校级期中)下列各数中是负数的为()A.﹣1B.0C.0.2D.【答案】A【解答】解:﹣1是负数;0既不是正数也不是负数;0.2是正数;是正数.故选:A.2.(2022春•明水县期末)一种食品包装袋上标着:净含量200g(±3g)表示这种食品的标准质量是200g这种食品净含量最少()g为合格.A.200B.198C.197D.196【答案】C【解答】解:∵200﹣3=197(g)∴这种食品净含量最少197g为合格故选:C.3.(2022•牡丹区三模)中国人很早开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数学史上首次正式引入负数用正、负数来表示具有相反意义的量.一次数学测试以80分为基准简记90分记作+10分那么70分应记作()A.+10分B.0分C.﹣10分D.﹣20分【答案】C【解答】解:以80分为基准简记90分记作+10分那么70分应记作:70﹣80=﹣10分故选:C.4.(2022春•朝阳区期中)某机器零件的实物图如图所示在数轴上表示该零件长度(L)合格尺寸正确的是()A.B.C.D.【答案】C【解答】解:已知图可知L的取值范围是9.8≤L≤10.2A选项表示的是L≤9.8 不正确;B选项表示的是L≥10.2 不正确;C选项表示的是9.8≤L≤10.2 正确;D选项表示的是L≥10.2或L≤9.8 不正确;故选:C.5.(2022春•杨浦区校级期中)下列说法正确的是()A.有理数都可以化成有限小数B.若a+b=0 则a与b互为相反数C.在数轴上表示数的点离原点越远这个数越大D.两个数中较大的那个数的绝对值较大【答案】B【解答】解:A、有理数是有限小数和无限循环小数所以此选项错误;B、a+b=0 两个数的和为零则这两个数互为相反数此选项正确;C、在数轴上右边的数离原点越远这个数越大左边的数离原点越远这个数越小此选项错误;D、特殊值法2>﹣3 但|2|<|﹣3| 此选项错误.故选:B.6.(2021秋•荷塘区期末)有理数a在数轴上的位置如图所示则|a﹣5|=()A.a﹣5B.5﹣a C.a+5D.﹣a﹣5【答案】B【解答】解:∵a<5∴|a﹣5|=﹣(a﹣5)=5﹣a.故选:B.7.(2022•玉屏县二模)数轴上表示数m和m+2的点到原点的距离相等则m为()A.﹣2B.2C.1D.﹣1【答案】D【解答】解:由题意得:|m|=|m+2|∴m=m+2或m=﹣(m+2)∴m=﹣1.故选:D.8.(2021秋•渑池县期末)若|a﹣1|与|b﹣2|互为相反数则a+b的值为()A.3B.﹣3C.0D.3或﹣3【答案】A【解答】解:∵|a﹣1|与|b﹣2|互为相反数∴|a﹣1|+|b﹣2|=0又∵|a﹣1|≥0 |b﹣2|≥0∴a﹣1=0 b﹣2=0解得a=1 b=2a+b=1+2=3.故选:A.9.(2021秋•房县期末)已知:有理数a b满足ab≠0 则的值为()A.±2B.±1C.±2或0D.±1或0【答案】C【解答】解:∵ab≠0∴a>0 b<0 此时原式=1﹣1=0;a>0 b>0 此时原式=1+1=2;a<0 b<0 此时原式=﹣1﹣1=﹣2;a<0 b>0 此时原式=﹣1+1=0故选:C.10.(2021秋•镇平县校级期末)若|a|=8 |b|=5 且a>0 b<0 a﹣b的值是()A.3B.﹣3C.13D.﹣13【答案】C【解答】解:∵|a|=8 |b|=5 且a>0 b<0∴a=8 b=﹣5∴a﹣b=13故选:C.11.有理数a b在数轴上的对应点的位置如图所示.把﹣a b0按照从小到大的顺序排列正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【答案】A【解答】解:由数轴可知a<0<b|a|<|b|∴0<﹣a<b故选:A.12.(2021秋•勃利县期末)有理数a b在数轴上的对应点如图所示则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【答案】B【解答】解:∵从数轴可知:b<0<a|b|>|a|∴①正确;②错误∵a>0 b<0∴ab<0 ∴③错误;∵b<0<a|b|>|a|∴a﹣b>0 a+b<0∴a﹣b>a+b∴④正确;即正确的有①④故选:B.二、填空题(每小题2分共10分)13.(2022春•南岗区校级期中)如果向东走6米记作+6米那么向西走5米记作米.【答案】-5【解答】解:向东走6米记作+6米则向西走5米记作﹣5米故答案为:﹣5.14.(2022春•崇明区校级期中)小明在小卖部买了一袋洗衣粉发现包装袋上标有这样一段字样:“净重800±5克”请说明这段字样的含义.【答案】一袋洗衣粉的重量在795克与805克之间.【解答】解:“净重800±5克”意思是标准为800克最多为800+5=805克最少为800﹣5=795克.故答案为一袋洗衣粉的重量在795克与805克之间.15.(2022春•嘉定区校级期中)数轴上的A点与表示﹣2的点距离3个单位长度则A点表示的数为.【答案】﹣5或1【解答】解:设A点表示的数为x则|x﹣(﹣2)|=3∴x+2=±3∴x=﹣5或x=1.故答案为:﹣5或1.16.(2021秋•许昌期末)如果a的相反数是2 那么(a+1)2022的值为.【答案】1【解答】解:∵a的相反数是2∴a=﹣2∴(a+1)2022=(﹣2+1)2022=1.故答案为:1.17.(2022•宽城县一模)如图在数轴原点O的右侧一质点P从距原点10个单位的点A处向原点方向跳动第一次跳动到OA的中点A1处则点A1表示的数为;第二次从A1点跳动到OA1的中点A2处第三次从A2点跳动到OA2的中点A3处如此跳动下去则第四次跳动后该质点到原点O的距离为.【答案】5;.【解答】解:根据题意A1是OA的中点而OA=10所以A1表示的数是10×=5;A2表示的数是10××=10×;A3表示的数是10×;A4表示的数是10×=10×=;故答案为:5;.三.解答题(共54分)18.(8分)(2021秋•荣成市期中)把下列各数填在相应的集合中:15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 π﹣1..正数集合{…};负分数集合{…};非负整数集合{…};有理数集合{…}.【解答】解:正数集合{15 0.81 171 3.14 π…};负分数集合{﹣﹣3.1 ﹣1.…};非负整数集合{15 171 0…};有理数集合{15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1.…}.故答案为:15 0.81 171 3.14 π;﹣﹣3.1 ﹣1.;15 171 0;15 ﹣0.81 ﹣3 ﹣3.1 ﹣4 171 0 3.14 ﹣1..19.(8分)(昌平区校级期中)画出数轴并把这四个数﹣2 4 0 在数轴上表示出来.【解答】解:在数轴上表示出来如下:20.(8分)(2021秋•太康县期末)已知|x|=3 |y|=7.(1)若x<y求x+y的值;(2)若xy<0 求x﹣y的值.【解答】解:由题意知:x=±3 y=±7(1)∵x<y∴x=±3 y=7∴x+y=10或4(2)∵xy<0∴x=3 y=﹣7或x=﹣3 y=7∴x﹣y=±1021.(10分)(2021秋•安居区期末)小虫从某点O出发在一直线上来回爬行假定向右爬行路程记为正向左爬行的路程记为负爬过的路程依次为(单位:厘米):+5 ﹣3 +10 ﹣8 ﹣6 +12 ﹣10.问:(1)小虫是否回到原点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中如果每爬行1厘米奖励一粒芝麻则小虫共可得到多少粒芝麻?【解答】解:(1)(+5)+(﹣3)+(+10)+(﹣8)+(﹣6)+(+12)+(﹣10)=27+(﹣27)=0所以小虫最后能回到出发点O;(2)根据记录小虫离开出发点O的距离分别为5cm、2cm、12cm、4cm、2cm、10cm、0cm所以小虫离开出发点的O最远为12cm;(3)根据记录小虫共爬行的距离为:5+3+10+8+6+12+10=54(cm)所以小虫共可得到54粒芝麻.22.(10分)(2021秋•常宁市期末)超市购进8筐白菜以每筐25kg为准超过的千克数记作正数不足的千克数记作负数称后的记录如下:1.5 ﹣3 2 ﹣0.5 1 ﹣2 ﹣2 ﹣2.5.(1)这8筐白菜总计超过或不足多少千克?(2)这8筐白菜一共多少千克?(3)超市计划这8筐白菜按每千克3元销售为促销超市决定打九折销售求这8筐白菜现价比原价便宜了多少钱?【解答】解:(1)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)答:以每筐25千克为标准这8筐白菜总计不足5.5千克;(2)1.5﹣3+2﹣0.5+1﹣2﹣2﹣2.5=﹣5.5(千克)25×8﹣5.5=194.5(千克)答:这8筐白菜一共194.5千克;(3)194.5×3=583.5(元)583.5×(1﹣0.9)=58.35(元).答:这8筐白菜现价比原价便宜了58.35元.23.(10分)(2021秋•高新区校级期末)新华文具用品店最近购进了一批钢笔进价为每支6元为了合理定价在销售前五天试行机动价格卖出时每支以10元为标准超过10元的部分记为正不足10元的部分记为负.文具店记录了这五天该钢笔的售价情况和售出情况如表所示:第1天第2天第3天第4天第5天每支价格相对标准价格(元)+3+2+1﹣1﹣2售出支数(支)712153234(1)这五天中赚钱最多的是第天这天赚钱元.(2)新华文具用品店这五天出售这种钢笔一共赚了多少钱?【解答】解:(1)第1天到第5天的每支钢笔的相对标准价格(元)分别为+3 +2 +1﹣1 ﹣2则每支钢笔的实际价格(元)分别为13 12 11 9 8第1天的利润为:(13﹣6)×7=49(元);第2天的利润为:(12﹣6)×12=72(元);第3天的利润为:(11﹣6)×15=75(元);第4天的利润为:(9﹣6)×32=96(元);第5天的利润为:(8﹣6)×34=68(元);49<68<72<75<96故这五天中赚钱最多的是第4天这天赚钱96元.(2)49+72+75+96+68=360(元)故新华文具用品店这五天出售这种钢笔一共赚了360元钱.。
简单1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是()A.-1 B.1 C.5 D.-5 【分析】根据向右移动用加,向左移动用减进行计算,列式求解即可.【解答】根据题意,0+2-3=-1,∴这个终点表示的数是-1.故选A.2、在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有()A.0个B.1个C.2个D.3个【分析】根据2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,即可求得答案.【解答】∵2.5,0.4是正数,在原点右边,-3是负数,在原点左边,0在在原点,∴不在原点右边的有:-3和0.故选C.3、如图所示,数轴上A、B两点所表示的有理数的和是()A.3 B.2 C.1 D.-1 【分析】根据图示找出点A、B所表示的有理数,然后求它们的和即可.【解答】根据图示知,数轴上A、B两点所表示的有理数是-3和2,所以它们的和为:(-3)+2=-1;故选C.4、已知数轴上的A点到原点的距离是2,那么在数轴上到A点的距离是3的点所表示的数有()A.1个B.2个C.3个D.4个【分析】本题要先对A点所在的位置进行讨论,得出A点表示的数,然后分别讨论所求点在A的左右两边的两种情况,即可得出答案.【解答】∵数轴上的A点到原点的距离是2,∴点A可以表示2或-2.(1)当A表示的数是2时,在数轴上到A点的距离是3的点所表示的数有2-3=-1,2+3=5;(2)当A表示的数是-2时,在数轴上到A点的距离是3的点所表示的数有-2-3=-5,-2+3=1.故选D.5、在数轴上,点M表示的数是-2,将它先向右移动4.5个单位,再向左移5个单位到达点N,则点N表示的数是___________.【分析】根据数轴上左加右减的原则进行解答即可.【解答】数轴上表示-2的点先向右移动4.5个单位的点为:-2+4.5=2.5;再向左移动5个单位的点为:2.5-5=-2.5.故答案为:-2.5.6、如果数轴上点A所对应的有理数是−112,那么数轴上距A点5个单位长度单位的点所对应的有理数是多少?【分析】设距A点5个单位长度单位的点所对应的有理数是x,再根据数轴上两点间的距离公式求出x的值即可.【解答】设距A点5个单位长度单位的点所对应的有理数是x,则1152x+=,解得72x=或132x=-.答:数轴上距A点5个单位长度单位的点所对应的有理数是72或132-.简单题1.如图:下面给出的四条数轴中画得正确的是()A.B.C.D.【分析】根据数轴的三要素来判断数轴是否正确.数轴三要素:原点,正方向,单位长度.【解答】A、没有原点,故错误;B、三要素完整,故正确;C、0的左边应该是负数,右边是正数,故错误;D、单位长度不一致,故错误.故选B.2. 下列说法正确的是()A.有原点、正方向的直线是数轴B.数轴上两个不同的点可以表示同一个有理数C.有些有理数不能在数轴上表示出来D.任何一个有理数都可以用数轴上的点表示【分析】根据数轴的定义及意义,依次分析选项可得答案.【解答】根据题意,依次分析选项可得,A、根据数轴的概念,有原点、正方向且规定了单位的直线是数轴,A错误;又由实数与数轴上的点是一一对应的,故B、C均错误;D、实数与数轴上的点是一一对应的,即任何一个有理数都可以用数轴上的点表示,正确;故选D.3. 在数轴上,原点右边的点表示()A.正数B.负数C.整数D.非负数【分析】在数轴上,原点右边的数是正数,原点左边的数是负数,原点表示0,根据以上内容选出即可.【解答】在数轴上,原点右边的数是正数,故选A.4. 设a是一个负数,则数轴上表示数-a的点在()A.原点的左边B.原点的右边C.原点的左边和原点的右边D.无法确定【分析】根据数轴的相关概念解题.【解答】因为a是一个负数,则-a是一个正数,二者互为相反数,-a在原点的右边.故选B.5.数轴上找不到既不表示正数也不表示负数的点.A.正确B.错误解答:原点既不表示正数,也不表示负数,它表示0.故选B.6.所有的有理数都可以用数轴上的点来表示.A.正确B.错误解答:有理数与数轴上的点是一一对应的.故选A.7.数轴上表示—a的点一定在原点的左边.A.正确B.错误解答:当a为负数时,—a就是正数,这时表示的点就在原点的右边.故选B.难题1. 数轴上,对原点性质表述正确的是()A.表示0的点B.开始的一个点C.数轴中间的一个点D.它是数轴上的一个端点【分析】理解原点是表示0的点,由此分析即可得出正确选项.【解答】在数轴上,我们把原点定义为表示0的点.故选A.2. 下列结论正确的个数是()①规定了原点、正方向和单位长度的直线叫数轴;②同一数轴上的单位长度都必须一致;③有理数都可以表示在数轴上;④数轴上的点都表示有理数.A.0 B.1 C.2 D.3【分析】根据数轴的定义对各小题进行逐一判断即可.【解答】①符合数轴的定义,故本小题正确;②同一数轴上的单位长度都必须一致是数轴的特点,故本小题正确;③有理数都可以表示在数轴上,故本小题正确;④数轴上的点都表示实数,故本小题错误.故选D.3. 数轴上原点及原点左边的点表示的数是()A.负整数B.正整数C.负数D.负数和0 【分析】根据数轴的特点进行解答即可.【解答】∵数轴上右边的数总比左边的大,∴原点左边的点表示的数都小于0,∴原点左边的点表示的数是负数;∴数轴上原点及原点左边的点表示的数是负数和0;故选D.4.下列语句:1.数轴上的点只能表示整数;2.数轴是一条线段;3.数轴上的一个点只能表示一个数;4.数轴上找不到既不表示正数又不表示负数的点。
一、初一数学有理数解答题压轴题精选(难)1.如图,己知点A、B分别为数轴上的两点,点A对应的数是.20,点B对应的数是80.现在有一动点P从A点出发,以每秒3个单位长度的速度向右运动,同时另一动点Q 从点B出发以每秒2个单位长度的速度向左运动.A C B—« -------- 1 ------- 1——>-20 80(1)与4、占两点相等的点C所对应的数是.(2)两动点卢、Q相遇时所用时间为秒:此时两动点所对应的数是.(3)动点P所对应的数是纭时,此时动点Q所对应的数是.(4)当动点P运动刀秒钟时,动点P与动点Q之的距离是单位长度.(5)经过秒钟,两动点P、Q在数轴上相距化个单位长度.【答案】(1)30(2)20; 40(3)52(4)25(5)12 或28-20+80---------- =30【解析】【解答】(1)AB的中点C所对应的数为: 2 . (2)设两动点相遇时间为t秒,(2+3)t=80.(.20)解得:020(秒)80-21=80-2x20=40, ^-20+3x20=40・•・此时两动点所对应的点为40; (3) 22.(.20)=42, 80.42+3妃=52动点,所对应的数是纭时,此时Q所对应的数为52:(4) •.•20秒相遇,.•.(2+3) x25- [80-(-20)]=25(5) P、Q两点相距40个单位长度,分两种情况AB=80-(-20)=100①相遇前,(100-40)+(3+2)=60+5=12(秒)②相遇后,(100+40)+(2+3)=140:5 =28(秒)经过12或28秒钟,两动点,、《在数轴上相距如个单位长度.【分析】(1)根据数轴上A、B两点所表示的数为a、b,则AB的中点所表示的数可以用a + b公式2计算;(2)设两动点相遇时间为t秒,P、Q两点运动的路程之和为总路程,列方程求解即可:用80-2t即可求得此时两动点对应的数:(3)先求出动点P对应的点是22 时运动的时间,再根据Q和P运动时间相等计算Q点运动路程,进而求得点Q对应的数:(4)根据题意P、Q两点25秒运动的路程和减去总路程就是PQ两点间的距离;(5)根据题意,分两种情况进行解答,即:①相遇前相距40个单位长度,②相遇后相距40个单位长度,分别列方程求解即可.2.认真阅读下而的材料,完成有关问题:材料:在学习绝对值时,我们已了解绝对值的几何意义,如|5-3|表示5、3在数轴上对应的两点之间的距离;又如|5+3| = |5- (-3) |,所以|5+3|表示5、-3在数轴上对应的两点之间的距离。
有理数专题总结一 选择题1、下列说法正确的是 ( )A 、整数就是正整数和负整数B 、分数包括正分数、负分数C 、正有理数和负有理数组成全体有理数D 、一个数不是正数就是负数。
2、下列一定是有理数的是( )A 、πB 、aC 、a+2D 、3、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对4、下列说法中,错误的有( )①是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数. A 、1个 B 、2个 C 、3个 D 、4个5.若a 是有理数,则4a 与3a 的大小关系是( )A.4a>3aB.4a=3aC.4a<3aD.不能确定二 填空题6. 、 和 统称为整数; 和 统称为分数;、 、 、 和 统称为有理数; 和 统称为非负数; 和 统称为非正数; 和 统称为非正整数; ________和 统称为非负整数;有限小数和无限循环小数可看作 .凡是能写成两个整数比的数都是 .7.按规律填数:(1)1,5,9,_______,_______;(2)1,4,9,16,_______,_______;(3)3,5,9,_______,23. ; (4)1111,,,,______261220-- 8.对正有理数a 、b 定义运算⊗如下:ab a b a b ⊗=+,则3⊗4= . 9.若0<x <1,则把x ,x 2,x1从小到大排列为: . 三、判断10、自然数是整数。
﹝ ﹞72742-11、有理数包括正数,零和负数。
﹝ ﹞12、有理数只有正数和负数。
﹝ ﹞13、零是自然数。
﹝ ﹞14、自然数包括零和正整数。
﹝ ﹞15、正整数是自然数, ﹝ ﹞16、任何分数都是有理数。
﹝ ﹞17、没有最大的有理数。
﹝ ﹞18、有最小的有理数。
有理数1. 掌握有理数有关分类、数轴、相反数、近似数、有效数字和科学计数法等有关概念 2. 熟练去括号法则,以及有理数的有关运算模块一 正负数与有理数的分类1. 对于正负数的理解不能简单理解为带“+”号的数就是正数,带“-”号的数就是负数。
2. 相反意义的两个量是相互的,也是相对的。
3. 掌握有理数的两种分类:按“定义”分类与按“性质符号”分类☞有理数的分类【例1】 下列说法:①0是整数;②负分数一定是负有理数;③一个数不是整数就是负数;④π-为有理数;⑤最大的负有理数是1-,正确的序号是【难度】2星【解析】考察有理数的分类 【答案】①②【巩固】下列说法:①存在最小的自然数;②存在最小的正有理数;③不存在最大的正有理数;④存在最大的负有理数;⑤不是正整数就不是整数,错误的序号是【难度】2星【解析】考察有理数的分类 【答案】②④⑤模块二 数轴、相反数、倒数1. 数形结合思想是一种重要的数学思想。
数轴就是数形结合的工具。
2. 数轴是条直线,可以向两方无限延伸。
3. 数轴的三要素:原点、正方向、单位长度、三者缺一不可。
4. 所有有理数都可以用数轴上点表示,反过来,不能说数轴上所有的点都表示有理数5. 相反数是成对出现的,不能单独存在。
相反数和为零。
☞数轴例题精讲重难点【例2】 如图所示,小明在写作业时,不慎将两滴墨水滴在数轴上,根据图中的数值,试定墨迹盖住的整数共有几个【难度】1星【解析】考察数轴的有关概念【答案】如图,盖住数中的整数有4-、3-、2-、2、3、4,共有6个【巩固】 数轴上表示整数的点称为整点,某条数轴的单位长度为1cm ,若在数轴上任意画出一条长2006cm 的线段,则线段盖住的整数点共有 个【难度】2星【解析】考察数轴的有关概念 【答案】2006或2007☞相反数与倒数【例3】 已知a 、b 互为相反数,c 、d 互为倒数,1x =±,求2a b x cdx ++-的值 【难度】3星【解析】考察相反数与倒数的有关概念 【答案】解:由相反数、倒数的定义可得 0a b +=,1cd =则当1x =时,原式=01110+-⨯= 当1x =-时,原式=20(1)1(1)2+--⨯-=【巩固】已知a 和b 互为相反数,m 和n 互为倒数,(2)c =-+,求22mna b c++的值 【难度】3星【解析】考察相反数与倒数有关概念 【答案】解:由相反数和倒数的定义可得 0a b +=,1mn =∵(2)c =-+ ∴原式112()022mn a b c =++=+=--【巩固】已知数轴上点A 和点B 分别表示互为相反数的两个数,a 和b ()a b <并且A 、B 两点间的距离是144,求a 、b 【难度】3星【解析】考察相反数有关概念【答案】解:∵a 、b 两数互为相反数 ∴0a b += ∴a b =-∵A 、B 两点间距离有144b a -= ∴1()44b b --=∴178b =,178a =-模块三 有理数的运算1. 在进行有理数加法运算时,优先确定符号,然后在计算绝对值,这样就不容易出错。
人教版七年级数学上册《有理数》专题练习-附带答案一、单选题1.中国人很早就开始使用负数中国古代数学著作《九章算术》的“方程”一章在世界数+元表示()学史上首次正式引入负数.如果支出100元记作100-元那么80A.支出80元B.收入80元C.支出20元D.收入20元2.若123a=-则实数a在数轴上对应的点的位置是()A.B.C.D.3.在数023-112-中是负整数的是()A.0B.2C.3-D. 1.2-4.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作根据规划“一带一路”地区覆盖总人口为4400000000人这个数用科学记数法表示为()A.4.4×108B.4.40×108C.4.4×109D.4.4×10105.一个光点沿数轴从点A向右移动了3个单位长度到达点B若点B表示的数是2 则点A所表示的数是()A.5-B.5C.1-D.16.杨梅开始采摘啦!每筐杨梅以5千克为基准超过的千克数记为正数不足的千克数记为负数记录如图则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克7.下列各组数中互为相反数的是()A.2与0.5B.()21-与1C.1-与()21-D.2与2-8.如图是一个计算程序若输入a的值为﹣1 则输出的结果应为()A.7B.﹣5C.1D.59.实数a b c在数轴上对应的点如下图所示则下列式子中正确的是()A.ac > bc B.|a–b| = a–bC.–a <–b < c D.–a–c >–b–c10.下列各组数中互为相反数的是( )与1D.-12与1 A.-(-1)与1B.(-1)2与1C.|1|二、填空题11.−2的相反数是_______ −3的倒数是_______ 绝对值等于5的数是___________.12.用四舍五入法取近似数:2.7982≈ __________(精确到0.01).13.若︱x+3︱+︱y-4︱= 0 则x + y =__________.14.比较大小:23-______34-.15.如图小明写作业时不慎将墨水滴在数轴上墨迹盖住部分对应的整数共有_____个.16.对于有理数a 、b 定义一种新运算 规定a ☆2b a b =- 则3☆(2)-=__.17.规定图形表示运算a b c -- 图形表示运算x z y w --+.则 +=________________(直接写出答案).18.当n 为正整数时 (﹣1)2n+1+(﹣1)2n 的值是_________.19.规定一种运算:a☆b =1a b ab+-如(﹣3)☆(2)=3211(3)27-+=---⨯ 则5☆(﹣15)的值等于_____.20.某品牌汽车经过两次连续的调价 先降价10% 后又提价10% 原价10万元的汽车 现售价________万元.三、解答题21.把下列各数填在相应的集合里:24,3.5,0,,10%,,2019 2.03003000333π---,… 正分数集合:{_____________________…}负有理数集合:{____________________…} 无理数集合:{_____________________…}非负整数集合:{____________________…}22.在数轴上表示下列各数并用“>”连接起来.31 2-4 1220 -1 1.23.计算: (1)(2)(9)--- (2)011- (3)5.6( 4.8)-- (4)13(4)524--24.综合计算(1)12-(-18)+(-7)-15 (2)()127.5222.5633⎛⎫⎛⎫+-++- ⎪ ⎪⎝⎭⎝⎭(3)(-8)-(-15)+(-9)-(-12)(4)12112323⎛⎫⎛⎫⎛⎫+-+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭25.某检修小组乘一辆汽车沿东西走向的公路检修线路约定向东走为正某天从A地出发到收工时行走记录如下(单位:km)+3-2-12+2-5+1-1015+4+5-6+(1)收工时检修小组在A地的哪一边距A地多远?(2)若汽车每千米耗油3升已知汽车出发时邮箱里有180升汽油问收工前是否需要中途加油?若加应加多少升?若不加还剩多少升汽油?26.已知|x|=5 |y|=3.(1)若x﹣y>0 求x+y的值;(2)若xy<0 求|x﹣y|的值;27.阅读:因为一个非负数的绝对值等于它本身 负数的绝对值等于它的相反数 所以当0a ≥时a a = 当0a <时a a =- 根据以上阅读完成:()13.14π-=________.()2计算:111111111-+-+-+-+-.1...232439810928.小明早晨跑步他从自己家出发向东跑了2km到达小彬家继续向东跑了1.5km到达小红家然后又向西跑了4.5km到达学校最后又向东跑回到自己家(1)以小明家为原点向东为正方向用1个单位长度表示1km 在图中的数轴上分别用点A表示出小彬家用点B表示出小红家用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟那么小明跑步一共用了多长时间?参考答案1.B【分析】根据负数的意义结合相反意义的量即可得到答案.+元表示:收入80元解:如果支出100元记作100-元那么80故选B.【点拨】本题主要考查相反意义的量熟练掌握负数的意义是解题的关键.2.A【分析】首先根据a的值确定a的范围再根据a的范围确定a在数轴上的位置.解:☆123 a=-☆ 2.3a≈☆ 2.52a☆点A在数轴上的可能位置是:故选:A.【点拨】本题考查有理数与数轴解题关键是确定负数的大致范围.3.C【分析】按照负整数的概念即可选取答案.解:负整数有:-3故选:C.【点拨】本题考查有理数的分类属于基础题型4.C【分析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10 n为整数.确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同.当原数绝对值>1时n是正数;当原数的绝对值<1时n是负数.解:4 400 000 000=4.4×109故选C.5.A【分析】根据向右移动用加法向左移动用减法解答即可.解:点A所表示的数是-2-3=-5.故选A.【点拨】本题主要考查了数轴上的点的移动、掌握“右移动用加法向左移动用减法”成为解答本题的关键.6.C试题分析:有理数的加法:-0.1-0.3+0.2+0.3=0.1 0.1+5×4=20.1考点:有理数的加法7.C【分析】先把题目中的各数化简然后根据互为相反数的两个数的和等于零依次对各项进行判断即可.A、2+0.5=2.5≠0 不互为相反数错误B、()21120-+=≠不互为相反数错误C、()2-+-=正确110+-=≠不互为相反数错误D、2240故答案为:C.【点拨】本题主要考查相反数的概念及性质熟知其性质是解题的关键.8.B试题分析:将a=-1代入可得:×(-3)+4=-9+4=-5.考点:有理数的计算9.D【分析】先根据各点在数轴上的位置比较出其大小再对各选项进行分析即可.解:☆由图可知a<b<0<c☆A、ac<bc 故本选项错误;B、☆a<b☆a-b<0。
有理数的概念总结
1. 有理数的分类
⑴按有理数的意义分类 ⑵按正、负来分
正整数 正整数
整数 0 正有理数 负整数 正分数 有理数 有理数 0 (0不能忽视) 正分数 负整数
分数 负有理数
负分数 负分数
总结:①正整数、0统称为非负整数(也叫自然数) ②负整数、0统称为非正整数 ③正有理数、0统称为非负有理数 ④非负数(正数和零)
1、把下列各数填在相应的大括号中
⋯⋯+--+-12112111236100000307
22
82838.,,,,.,,,.,,π
正数集合{ …}
负数集合{ …}
自然数集合{ …}
非负有理数集合{ …}
非负整数集合{ …}
2、数轴
(1)数轴上点的移动规律(点的移动左减右加)
【试卷p24,3题】例1、在数轴上,一点从原点开始,先向右移动2个单位,再向左移动3个单位后到达终点,这个终点表示的数是( )
变式1、试卷P9 9,10题
变式2、 将数轴上的点A 先向左移2个单位 ,再向右移5,此时A 点位于原点,则A开始时表示的数是_______
(2)数轴上两点间的距离公式 |AB| = |a-b| (或大叔减小数)
例 2 数轴上表示数3.5与 – 1.5 的 两点之间的距离为______, 与数2的距离为3个单位的数是________,
①|x|的绝对值表示_______, | x-2 | 表示_______, | x + 2 | 表示______,
② 若 | x -2 | = 3 则 x =______
③ 满足 | x – 2 | + | x+2 | = 4 的整数 x 有__________.
④ | x – 2 | + | x -2 | 的 最小值为_______
⑤|x-3|+|x-1|+|x+2|的最小值为________
变式1、试卷p11 14(3)
3、相反数
(1)只有符号不同的两个数叫做互为相反数。
0的相反数是0。
性质 a ,b 互为相反数,则a+b=0 (2).相反数的几何意义
互为相反数的两个数,在数轴上的对应点(0除外)在原点两旁,与原点的距离相等。
例3 .若某点表示的数 a = -a , 这个点位于何处______
例4.已知a,b 互为相反数,|a-b|=6,求b-1的值
(3).相反数的求法
⑴求一个数的相反数,只要在它的前面添上负号“-” 如;5a+b 的相反数是 -(5a+b );a-b 的相反数等于_________
5.多重符号的化简
“-”号的个数决定最后结果;即:个数是奇数,结果为负,个数是偶数时,结果为正。
例4. )2
1
3(-- )]5([--- )]}2([{+-+-
6绝对值
(1)绝对值的几何定义
一般地,数轴上表示数a 的点与原点的距离叫做a 的绝对值,记作|a|。
2.绝对值的代数定义
⑴一个正数的绝对值是它本身; ⑵一个负数的绝对值是它的相反数; ⑶0的绝对值是0. 可归纳为①:|a|=a <═> a ≥0(绝对值等于本身的数是非负数。
)
② |a|=-a <═> a ≤0(绝对值等于其相反数的数是非正数。
)
3.绝对值的性质
任何一个有理数的绝对值都是非负数 即 |a|≥0。
绝对值相等的两数相等或互为相反数。
即:|a|=|b|,则a=b 或a=-b ; 非负数的常用性质:若几个非负数的和为0,则这几个非负数同时为0
例5.已知︱a ︱= 5,︱b ︱= 4,且︱a+b ︱= -(a+b),试求a+b 的值 例6、若
x x -= 0 则x 必是 ( )
A 、非正数
B 、非负数
C 、0
D 、正数 例8.
++-41-313121 (100)
1991- 例9 . 绝对值小于3的整数有_______________________比—4大的负整数有____________ 不大于2
1
5
的非负整数有_______________________不小于—5的负整数有______________ 绝对值大于3且不大于6的整数之和_______,2<|x|≤5,整数x 有_______.
例10、若1a <<3,则化简||||a a 1-+3-的结果为________.
变式1、化简:1111
112004200320032002
10031002
-+-++
-=___________.
变式2:若2015
2
2016
x =,则|||1||2||3||4||5|x x x x x x +-+-+-+-+-= .
变式4.有理数a 、b 、c 在数轴上的位置如图,化简∣a ∣+∣b ∣+∣a +b ∣+∣ b −c ∣
例11、代数式∣3x −7∣+2的最小值是________,此时x =________。
例12、若x 、y 满足3∣x +y ∣+∣y −1
3
∣=0,则4x +3y =_________。
变式1、已知x 与−2y 互为相反数,y 与3 z 互为相反数,1632
x y z +++的值是_________。
变式2、若∣2x −y +5∣与∣3x −2y −2000∣互为相反数,则9x −5y =_________。
7.有理数大小的比较
⑴利用数轴:右边的总比左边的大;
⑵利用法则:正数>0>负数 ; 两个负数,绝对值大的反而小; 例1.
___ ) ___ )
例2 .已知a 、b 互为相反数,m 、n 互为倒数,x 绝对值为2,求x n
m b
mn --++
a 的值
例3、数a 、b 、c 在数轴上的位置如图所示,且|b |=|c |.
(1)若|b +c |+|a |=3,求a 的值;
(2)用“<”把a ,|a|,b ,c 按从小到大连接起来。
9.②|a+b|=|a|+|b|;③绝对值等于它本身的数是0和1。
④只有负数的绝对值是它的相反数;④两数的绝对值相等则这两数相等;⑤任何一个有理数一定不大于它的绝对值。
其中正确的有_______ 三. 有理数加减
7、下列说法正确的是( )
A.两数相减,被减数一定大于减数
B.0减去一个数仍得这个数
C.互为相反的两个数差为0
D.减去一个数,差一定小于被减数 变式.算式53--不能读作( )
A .3-与5的差
B .3-与5-的和
C .3-与5-的差
D .3-减去5
七.有理数的应用
1.某出租车,一天下午在东西走向的路上运送乘客,从鼓楼出发,如果规定向东为正,他的行车路程(单位:千米)如下:
+3, -2, +15, -1, +12, -3, -2, -23.
(1)将最后一名乘客送到目的地时,车距出发地多远?在什么方向?
(2)若汽车耗油量为a升/千米,送完最后一个乘客回到出发地,共耗油多少升? (3)途中哪名乘客车费最贵?
(4)途中离出发地最远多远?
2.股民李明上星期六买进春兰公司股票1000股,每股25元,下表为本周内每日该股票的涨跌情况(单位:元)(注:用正数记股价比前一日上升数,用负数记股价比前一日下降数)
(1)星期四收盘时,每股是多少元?
(2)本周内最高价是每股多少元?最低价每股多少元?
(3)已知李明买进股票时付了0.1%的手续费,卖出时需付成交额0.1%的手续费和0.1%的交易税,如果李明在星期六收盘前将全部股票卖出,他的收益情况如何?。