高中物理专题复习电磁感应
- 格式:doc
- 大小:1.59 MB
- 文档页数:38
高考物理电磁感应知识点归纳高考物理电磁感应知识点归纳1.电磁感应现象电磁现象:利用磁场产生电流的现象称为电磁感应,产生的电流称为感应电流。
(1)产生感应电流的条件:通过闭合电路的磁通量发生变化,即0。
(2)产生感应电动势的条件:无论回路是否闭合,只要通过线圈平面的磁通量发生变化,线路中就会产生感应电动势。
导体中产生感应电动势的部分相当于电源。
(3)电磁感应的本质是产生感应电动势。
如果回路闭合,会有感应电流;如果回路不闭合,只会有感应电动势而没有感应电流。
2.磁通量(1)定义:磁感应强度b与垂直于磁场方向的面积s的乘积称为通过这个表面的磁通量,定义公式为=BS。
如果面积S不垂直于B,则B应乘以垂直于磁场方向的投影面积S,即=BS,SI单位:Wb。
在计算磁通量时,应该是通过某一区域的磁感应线的净数量。
每张脸都有正面和背面;当磁感应线从表面的正方向穿透时,通过表面的磁通量为正。
相反,磁通量是负的。
磁通量是穿过正面和背面的磁感应线的代数和。
3.楞次定律(1)楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
楞次定律适用于感应电流方向的一般判断,而右手定则只适用于剪线时磁感应线的运动,用右手定则比楞次定律更容易判断。
(2)理解楞次定律(1)谁阻碍谁——感应电流的磁通量阻碍了感应电流的磁通量。
阻碍——阻碍的是通过回路的磁通量的变化,而不是磁通量本身。
如何阻碍——当一次磁通增加时,感应电流的磁场方向与一次磁场方向相反;当一次磁通量减少时,感应电流的磁场方向与一次磁场的方向相同,即,一次磁通量增加,一次磁通量减少。
阻塞-阻塞的结果不是停止,而是增加和减少。
(3)楞次定律的另一种表述:感应电流总是阻碍其产生的原因,表现形式有三种:(1)阻碍原始磁通量的变化;阻碍物体之间的相对运动;阻止一次电流(自感)的变化。
4.法拉第电磁感应定律电路中感应电动势的大小与通过电路的磁通量的变化率成正比。
表达式E=n/t当导体切割磁感应线时,感应电动势公式为E=BLvsin。
高中物理:磁场电磁感应知识点总结
一、磁场:
1、磁场定义:磁场是一种能够使磁体产生旋转矩力,使磁性物体运动的空间性质。
2、磁场的表示:磁场的大小和方向可以用一个向量来表示,其中,磁场强度表示磁
场的大小;而磁场方向代表磁场的传输路线。
3、磁场的性质:磁场具有外力的作用,它能够对磁性物体施加力,使磁性物体运动;而非磁性物体则不受磁场的影响。
此外,磁场还可以产生电能,为机器提供动力。
二、电磁感应:
1、电磁感应定义:电磁感应指一种电场中存在的磁场和受磁场作用时产生的动作矩。
2、电磁感应的原理:电磁感应的原理是,当一个磁体在电场中存在时,会产生一个
磁场,当另一个电体接近时,会受到这个磁场的作用,产生一个磁力矩,从而引起电体的
变动。
3、电磁感应在实际应用中的作用:电磁感应是电气技术和电工技术中一种重要的基础,电磁感应在实际应用中主要应用于发电、电机、变压器和直流主动电动机等方面。
电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。
2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。
1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。
高中物理——电磁感应一、电磁感应的基本概念1. 电磁感应的定义2. 法拉第电磁感应定律3. 电磁感应的应用练习题:1. 一根长20cm 的导线在磁感应强度为0.1T 的磁场中以60° 角度匀速转动,求导线在6s 内转过的角度。
答案:72°2. 一个长度为10cm,电阻为2Ω 的导线,以速率为3m/s 进入磁感应强度为0.5T 的磁场中,求产生的感应电动势。
答案:1.5V二、电磁感应定律的应用1. 变压器原理2. 感应电流和感应电动势3. 洛伦兹力和感应电动势练习题:1. 一个高压线圈和低压线圈的匝数比为4:1,高压线圈输入电压为200V,求低压线圈的输出电压。
答案:50V2. 一个直径为0.05m,线圈匝数为1000,转动速率为300转/min 的圆形电发生器,求其在磁感应强度为0.1T 的磁场中产生的感应电动势。
答案:47.1V3. 在磁感应强度为0.2T 的磁场中,有一根长度为0.3m,电阻为5Ω 的导线以速率为2m/s 进入磁场中,求导线所受的洛伦兹力和感应电动势。
答案:洛伦兹力为0.6N,感应电动势为1V三、动生电和静生电1. 动生电和动生电的原理2. 静生电和静生电的原理3. 静电感应和静电感应的原理练习题:1. 一根长30cm 的导线在磁感应强度为0.2T 的磁场中以90° 角度匀速转动,导线两端的电压为多少?答案:1.8V2. 在磁场中有一根长度为0.5m,电阻为10Ω 的导线,导线以速率为3m/s 进入磁场,求导线端的电压。
答案:3V3. 一块金属板放置于与水平面成30° 角度的非均匀电场中,电场强度为 3.0×10⁴N/C,板的长度为10cm,宽度为5cm,板两端的电势差为多少?答案:2.6V总结:电磁感应是高中物理中的重要知识点,涉及到电磁感应定律、变压器原理、感应电流和感应电动势、洛伦兹力和感应电动势、动生电和静生电、静电感应等多个方面。
高考复习物理 电磁感应大题1.(18分)如图所示,两根相同的劲度系数为k 的金属轻弹簧用两根等长的绝缘线悬挂在水平天花板上,弹簧上端通过导线与阻值为R 的电阻相连,弹簧下端连接一质量为m ,长度为L ,电阻为r 的金属棒,金属棒始终处于宽度为d 垂直纸面向里的磁感应强度为B 的匀强磁场中。
开始时弹簧处于原长,金属棒从静止释放,水平下降h 高时达到最大速度。
已知弹簧始终在弹性限度内,且弹性势能与弹簧形变量x 的关系为221kx E p ,不计空气阻力及其它电阻。
求:(1)此时金属棒的速度多大?(2)这一过程中,R 所产生焦耳热Q R 多少?2.(17分)如图15(a )所示,一端封闭的两条平行光滑导轨相距L ,距左端L 处的中间一段被弯成半径为H 的1/4圆弧,导轨左右两段处于高度相差H 的水平面上。
圆弧导轨所在区域无磁场,右段区域存在磁场B 0,左段区域存在均匀分布但随时间线性变化的磁场B (t ),如图15(b )所示,两磁场方向均竖直向上。
在圆弧顶端,放置一质量为m 的金属棒ab ,与导轨左段形成闭合回路,从金属棒下滑开始计时,经过时间t 0滑到圆弧顶端。
设金属棒在回路中的电阻为R ,导轨电阻不计,重力加速度为g 。
⑴问金属棒在圆弧内滑动时,回路中感应电流的大小和方向是否发生改变?为什么?⑵求0到时间t 0内,回路中感应电流产生的焦耳热量。
⑶探讨在金属棒滑到圆弧底端进入匀强磁场B 0的一瞬间,回路中感应电流的大小和方向。
3、(16分)t =0时,磁场在xOy 平面内的分布如图所示。
其磁感应强度的大小均为B 0,方向垂直于xOy 平面,相邻磁场区域的磁场方向相反。
每个同向磁场区域的宽度均为l 0。
整个磁场以速度v 沿x 轴正方向匀速运动。
⑴若在磁场所在区间,xOy 平面内放置一由n 匝线圈串联而成的矩形导线框abcd ,线框的bc 边平行于x 轴.bc =l B 、ab =L ,总电阻为R ,线框始终保持静止。
高中物理电磁感应知识点总结1。
电磁感应的实质是:感应电流在磁场中受到力的作用。
当一个导体切割磁感线时,就会在其周围产生一个感应电流(洛伦兹力),这个电流的方向与原来的电流的方向和大小相反,但二者间的作用总是互相的,因此,我们把这种电流称为“感生电流”。
2。
电磁感应现象发生的条件:感应电流的产生、闭合电路的一部分处于磁场中、穿过闭合电路的磁通量发生变化。
3。
在安培力作用下的导体中会产生电流。
这个电流的方向与安培力的方向垂直。
4。
法拉第电磁感应定律:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就有电流产生,这个电流的方向跟产生这个电流的磁场的方向和磁感线的方向有关,而与切割运动的速度无关,即:。
5。
发电机:由线圈、磁极、铁芯和机座等组成。
通电线圈在磁场中受到力的作用,从而使机座带动转子旋转,机座上装有发电机的铁芯,铁芯中有两个闭合线圈,分别叫主线圈和副线圈。
主副线圈的位置相对,它们都是在同一铁芯上绕制的,磁通穿过主线圈和副线圈时会在两线圈中产生感应电势。
副线圈有自己的磁极,可以用来产生电流。
2。
电磁感应现象发生的条件:感应电流的产生、闭合电路的一部分处于磁场中、穿过闭合电路的磁通量发生变化。
3。
在安培力作用下的导体中会产生电流。
这个电流的方向与安培力的方向垂直。
4。
法拉第电磁感应定律:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就有电流产生,这个电流的方向跟产生这个电流的磁场的方向和磁感线的方向有关,而与切割运动的速度无关,即:。
5。
发电机:由线圈、磁极、铁芯和机座等组成。
通电线圈在磁场中受到力的作用,从而使机座带动转子旋转,机座上装有发电机的铁芯,铁芯中有两个闭合线圈,分别叫主线圈和副线圈。
主副线圈的位置相对,它们都是在同一铁芯上绕制的,磁通穿过主线圈和副线圈时会在两线圈中产生感应电势。
副线圈有自己的磁极,可以用来产生电流。
6。
闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中也会产生电流。
电磁感应知识点总结一、电磁感应现象1、电磁感应现象与感应电流.(1)利用磁场产生电流的现象,叫做电磁感应现象。
(2)由电磁感应现象产生的电流,叫做感应电流。
物理模型上下移动导线AB,不产生感应电流左右移动导线AB,产生感应电流原因:闭合回路磁感线通过面积发生变化不管是N级还是S级向下插入,都会产生感应电流,抽出也会产生,唯独磁铁停止在线圈力不会产生原因闭合电路磁场B发生变化开关闭合、开关断开、开关闭合,迅速滑动变阻器,只要线圈A中电流发生变化,线圈B就有感应电流二、产生感应电流的条件1、产生感应电流的条件:闭合电路.......。
....中磁通量发生变化2、产生感应电流的常见情况 .(1)线圈在磁场中转动。
(法拉第电动机)(2)闭合电路一部分导线运动(切割磁感线)。
(3)磁场强度B变化或有效面积S变化。
(比如有电流产生的磁场,电流大小变化或者开关断开)3、对“磁通量变化”需注意的两点.(1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过平面的磁感线的净条数)。
(2)“运动不一定切割,切割不一定生电”。
导体切割磁感线,不是在导体中产生感应电流的充要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。
三、感应电流的方向1、楞次定律.(1)内容:感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
(2)“阻碍”的含义.从阻碍磁通量的变化理解为:当磁通量增大时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁通量减小。
从阻碍相对运动理解为:阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。
(3)“阻碍”的作用.楞次定律中的“阻碍”作用,正是能的转化和守恒定律的反映,在克服这种阻碍的过程中,其他形式的能转化成电能。
(4)“阻碍”的形式.1.阻碍原磁通量的变化,即“增反减同”。
2.阻碍相对运动,即“来拒去留”。
3. 使线圈面积有扩大或缩小的趋势,即“增缩减扩”。
高考物理中电磁感应的考点和解题技巧有哪些在高考物理中,电磁感应是一个重要且具有一定难度的考点。
理解和掌握电磁感应的相关知识,以及熟练运用解题技巧,对于在高考中取得优异成绩至关重要。
一、电磁感应的考点1、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心内容之一。
其表达式为:$E = n\frac{\Delta \Phi}{\Delta t}$,其中$E$ 表示感应电动势,$n$ 为线圈匝数,$\Delta \Phi$ 表示磁通量的变化量,$\Delta t$ 表示变化所用的时间。
这个考点通常会要求我们计算感应电动势的大小,或者根据给定的条件判断感应电动势的变化情况。
2、楞次定律楞次定律用于判断感应电流的方向。
其核心思想是:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。
这一定律在解决电磁感应中的电流方向问题时经常用到,需要我们能够准确理解并运用“阻碍”这一概念。
3、电磁感应中的电路问题当导体在磁场中做切割磁感线运动或者磁通量发生变化时,会产生感应电动势,从而形成闭合回路中的电流。
在这类问题中,我们需要根据电路的基本规律,如欧姆定律、串并联电路的特点等,来计算电路中的电流、电压、电阻等物理量。
4、电磁感应中的能量转化问题电磁感应现象中,机械能与电能相互转化。
例如,导体棒在磁场中运动时,克服安培力做功,将机械能转化为电能;而电流通过电阻时,电能又转化为内能。
在解题时,需要运用能量守恒定律来分析能量的转化和守恒关系。
5、电磁感应与力学的综合问题这类问题通常将电磁感应现象与力学中的牛顿运动定律、功和能等知识结合起来。
例如,导体棒在磁场中受到安培力的作用,其运动情况会受到影响,我们需要综合运用电磁学和力学的知识来求解。
6、电磁感应中的图像问题包括磁感应强度$B$、磁通量$\Phi$、感应电动势$E$、感应电流$I$ 等随时间或位移变化的图像。
要求我们能够根据给定的物理过程,准确地画出相应的图像,或者从给定的图像中获取有用的信息,分析物理过程。
高中物理专题复习课件电磁感应电磁感应现象、感应电流方向的判断跟踪练习1如图所示,两个同心放置的共面单匝金属环a和b,一条形磁铁穿过圆心且与环面垂直放置,设穿过圆形a的磁通量为Φa,穿过圆形b的磁通量为Φb,已知两圆环的横截面积分别为和,且<,则穿过两圆环的磁通量大小关系为( ) A.ΦΦb B.Φa>Φb C.Φa<Φb D.无法确定跟踪练习2如图所示,平面M的面积为S,垂直于匀强磁场B,求平面M由此位置出发绕与B垂直的轴转过60°和转过180°时磁通量的变化量.例1 如图所示,当磁铁向铜环运动时,铜环的运动情况是( )A.向右摆动B.向左摆动C.停止D.不能判断例2如图所示,在O点正下方有一个有界匀强磁场,铜环自A点处由静止释放向右摆至最高点B,不考虑空气阻力,下列说法正确的是( )、B两点在同一水平线上点高于B点点低于B点D.铜环最终做等幅摆动【例与练】如图所示,在通电直导线的正下方有矩形导线框,导线框在下列运动中能产生感应电流的是()A.导线框在水平方向向右匀速运动B.导线框在水平方向向右加速运动C.导线框以直导线为轴旋转D.导线框向直导线靠近【例与练】如图所示,两个相同的闭合铝环套在一根无限长的光滑杆上,将一条形磁铁向左插入铝环(未穿出)的过程中,两环的运动情况是:( )A、同时向左运动,距离增大;B、同时向左运动,距离不变;C、同时向左运动,距离变小;D、同时向右运动,距离增大。
【例与练】某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→G→bB.先a→G→b,后b→G→aS NvC.b→G→aD.先b→G→a,后a→G→b【例与练】如图,一水平放置的圆形通电线圈1固定,电流强度为I,方向如图所示.另一个较小的圆形线圈2从1的正上方下落,在下落的过程中两线圈平面始终保持平行且共轴,则线圈2从1的正上方下落至1的正下方的过程中,从上向下看线圈2,应是( ) A.无感应电流产生B.有顺时针方向的感应电流C.有先顺时针后逆时针方向的感应电流D.有先逆时针后顺时针方向的感应电流【例与练】(2010·海南卷)一金属圆环水平固定放置.现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放.在条形磁铁穿过圆环的过程中,条形磁铁与圆环( ) A.始终相互吸引B.始终相互排斥C.先相互吸引,后相互排斥D.先相互排斥,后相互吸引【例与练】在图所示装置中,是一个绕垂直于纸面的轴转动的闭合导线框,当滑线变阻器的滑片自左向右滑动时,线框的运动情况是:()A、保持静止不动B、逆时针转动C、顺时针转动D、转动方向由电源极性决定【例与练】如图所示,在一蹄形磁铁两极之间放一个矩形线框.磁铁和线框都可以绕竖直轴′自由转动.若使蹄形磁铁以某角速度转动时,线框的情况将是( )A.静止B.随磁铁同方向转动C.沿与磁铁相反方向转动D.要由磁铁具体转动方向来决定【例与练】如图所示,进行以下操作,请判断R中的电流方向⑴突然闭合开关⑵突然断开开关⑶开关闭合后,P向左或向右滑动时。
【例与练】如图所示,通电螺线管置于闭合金属环a的轴线上,当螺线管中电流I减小时( )A. 环有缩小的趋势以阻碍原磁通量的减小B. 环有扩大的趋势以阻碍原磁通量的减小C. 环有缩小的趋势以阻碍原磁通量的增大D. 环有扩大的趋势以阻碍原磁通量的增大【例与练】(2010上海单科)如图所示,金属环A用轻绳悬挂,与长直螺线管共轴,并位于其左侧.若变阻器滑片P向左移动,则金属环A将向(填“左”或“右”)运动,并有(填“收缩”或“扩张”)趋势.A RP K【例与练】如下图所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是( ) A.三者同时落地B.甲、乙同时落地,丙后落地C.甲、丙同时落地,乙后落地D.乙、丙同时落地,甲后落地【例与练】如图所示,在光滑水平桌面上有两个金属圆环,在它们圆心连线中点正上方有一个条形磁铁,当条形磁铁自由下落时,将会出现的情况是( ) A.两金属环将相互靠拢B.两金属环将相互分开C.磁铁的加速度会大于g D.磁铁的加速度会小于g 【例与练】如右图所示,当导线在电阻不计的金属导轨上滑动时,线圈C向右摆动.则的运动情况是( ) A.向左或向右做匀速运动B.向左或向右做减速运动C.向左或向右做加速运动D.只能向右做匀加速运动【例与练】如图所示,在匀强磁场中放有平行铜导轨,它与大导线圈M相连接.要使小导线圈N获得顺时针方向的感应电流,则放在导轨中的裸金属棒的运动情况是(两导线圈共面放置)( ) A.向右匀速运动B.向左加速运动C.向右减速运动D.向右加速运动【例与练】如右图所示,水平放置的两条光滑轨道上有可自由移动的金属棒、,的左边有一闭合电路,当在外力的作用下运动时,向右运动.则所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动【例与练】如图所示,闭合的矩形金属框的平面与匀强磁场垂直,现金属框固定不动而磁场运动,发现边所受安培力的方向为竖直向上,则此时磁场的运动可能是( )A.水平向右平动B.水平向左平动C.竖直向上平动D.竖直向下平动法拉第电磁感应定律跟踪练习1 穿过某线圈的磁通量随时间变化的关系如图所示,在下列几段时间内,线圈中感应电动势最小的是( )A.0~2 sB.2~4 sC.4~5 sD.5~10 s跟踪练习2 如图所示为空间存在的磁场的磁感应强度B随时间t的变化规律(余弦),在此空间内有一面积为S的正方形导线框与磁场垂直,则下列说法中正确的有( ) A.在零时刻和t2时刻,穿过线框的磁通量最大,磁通量的变化率也最大B.在t1时刻,穿过线框的磁通量为零,磁通量的变化率也是零C.在t1→t3时间内磁通量的变化率为D.以上说法均不正确例1 如图所示,边长为a,电阻为R 的正方形闭合线框在匀强磁场中绕边匀速转动,磁感应强度为B,初始时刻线框所在平面与磁感线垂直,经过时间t0转过120°角,求:(1)线框内感应电动势在t0时间内的平均值;(2)转过120°角时感应电动势的瞬间值;(3)转过120°角的过程中,通过线框横截面的电荷量.例2 如图所示边长为l,具有质量的钢性正方形导线框位于光滑水平面上,线框总电阻为R.虚线表示一匀强磁场区域的边界,宽为s(s>l),磁感应强度为B,方向竖直向下.线框以v的初速度沿光滑水平面进入磁场,已知边刚进入磁场时通过导线框的电流为I0.试在i -x坐标上定性画出此后流过导线框的电流i 随坐标位置x变化的图线.【例与练】穿过闭合回路的磁通量Φ随时间t变化的图象分别如下图①~④所示.下列关于回路中产生的感应电动势的论述中正确的是( )A.图①中,回路产生的感应电动势恒定不变B.图②中,回路产生的感应电动势一直在变大C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势D.图④中,回路产生的感应电动势先变小再变大【例与练】如下图所示,三个相同的金属圆环内存在不同的有界匀强磁场,虚线表示环的某条直径.已知所有磁场的磁感应强度随时间变化的关系都满足B=,方向如图所示.测得A环中感应电流强度为I,则B环和C环内感应电流强度分别为( )A.=I,=0B.=I,=2IC.=2I,=2ID.=2I,=0【例与练】如图所示是高频焊接原理示意图.线圈中通以高频变化的电流时,待焊接的金属工件中就产生感应电流,感应电流通过焊缝产生大量热量,将金属熔化,把工件焊接在一起,而工件其他部分发热很少.以下说法正确的是( ) A.电流变化的频率越高,焊缝处的温度升高得越快B.电流变化的频率越低,焊缝处的温度升高得越快C.工件上只有焊缝处温度升得很高是因为焊缝处的电阻小D.工件上只有焊缝处温度升得很高是因为焊缝处的电阻大【例与练】一个由电阻均匀的导线绕制成的闭合线圈放在匀强磁场中,如图所示,线圈平面与磁场方向成60°角,磁感应强度随时间均匀变化,用下列哪种方法可使感应电流增加一倍( ) A.把线圈匝数增加一倍B.把线圈面积增加一倍C.把线圈半径增加一倍Bk t∆=∆D .改变线圈与磁场方向的夹角【例与练】(09年全国卷Ⅱ)如图,匀强磁场的磁感应强度方向垂直于纸面向里,大小随时间的变化率 k 为负的常量.用电阻率为ρ、横截面积为S 的硬导线做成一边长为 l 的方框.将方框固定于纸面内,其右半部位于磁场区域中.求:(1)导线中感应电流的大小;(2)磁场对方框作用力的大小随时间的变化率.法拉第电磁感应定律的应用例1 如图所示,水平的平行虚线间距为50 ,其间有1.0 T 的匀强磁场.一个正方形线圈边长为10 ,线圈质量100 g,电阻为0.020 Ω.开始时,线圈的下边缘到磁场上边缘的距离为80.将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等.取10 2,求:(1)线圈进入磁场过程中产生的是电热Q;(2)线圈下边缘穿越磁场过程中的最小速度v;(3)线圈下边缘穿越磁场过程中加速度的最小值a.例2 两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l.导轨上面横放着两根导体棒和,构成矩形回路,如图所示.两根导体棒的质量皆为m,电阻皆为R,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨无摩擦地滑行,开始时棒静止,棒有指向棒的初速v0.若两导体棒在运动中始终不接触,求:(1) 在运动中产生的焦耳热最多是多少?(2)当棒的速度变为初速度的3/4时,棒的加速度是多少?【例与练】(2010·全国Ⅰ卷)某地的地磁场磁感应强度的竖直分量方向向下,大小为4.5×10-5 T。
一灵敏电压表连接在当地入海河段的两岸,河宽100 m,该河段涨潮和落潮时有海水(视为导体)流过。
设落潮时,海水自西向东流,流速为2 。
下列说法正确的是( )A.电压表记录的电压为5 B.电压表记录的电压为9 C.河南岸的电势较高D.河北岸的电势较高【例与练】如图所示,长为6 m 的导体在磁感应强度B=0.1 T 的匀强磁场中,以上的一点O 为轴,沿着顺时针方向旋转.角速度ω=5 ,O 点距A 端为2 m,求的电势差.【例与练】放在绝缘水平面上的两条平行导轨和之间宽度为L,在间存在磁感应强度为B的匀强磁场,B的方向垂直于导轨平面,导轨左端接有阻值为R的电阻,其他部分电阻不计.导轨右端接一电容为C 的电容器,长为2L的金属棒放在导轨上与导轨垂直且接触良好,其a端放在导轨上.现将金属棒以a端为轴,以角速度ω沿导轨平面顺时针旋转90°角,如图所示,解答下列问题(设导轨长度比2L长得多).(1)电阻R中流过的最大感应电流;(2)通过电阻R的总电量.自感现象跟踪练习1 关于线圈中自感电动势的大小说法中正确的是( )A.电感一定时,电流变化越慢,电动势越大B.电感一定时,电流变化越快,电动势越大C.通过线圈的电流为零的瞬间,电动势为零D.通过线圈的电流为最大值的瞬间,电动势最大跟踪练习2 如图所示,为日光灯的工作电路.(1)开关S刚合上前,启动器D的静触片和动触片是(填接通的、断开的).(2)开关S刚合上时,220 V电压加在 .使灯发出红光.(3)日光灯启辉器断开瞬间,灯管两端电压220 V(填大于、等于、小于).(4)日光灯正常发光时,启动器D的静触片和动触片(填接触、断开).例1 如图所示的电路中有L1和L2两个完全相同的灯泡,线圈L的电阻忽略不计,下列说法中正确的是( )A.闭合S时,L2先亮,L1后亮,最后一样亮B.断开S时,L2立刻熄灭,L1过一会儿熄灭1中的电流始终从a到b 2中的电流始终从c到d例2 如右图所示,S是闭合的,流过线圈L的电流为i1,流过灯A的电流为i2,且i1>i2.在t1时刻将S断开,那么流过灯泡的电流随时间变化的图象是下图中的( )【例与练】在如图所示的电路中,A、B是相同的两个灯泡,L是一个带铁芯的线圈,直流电阻可不计。