第七章时间序列分析基础
- 格式:pptx
- 大小:906.91 KB
- 文档页数:64
第七章时间数列分析一、填空题1、时间指标数值2、逐期增长量累计增长量3、增长水平(或增长量)发展速度4、本期水平去年同期水平5、年距发展速度 1(或100%)6、几何平均法方程法7、同季(月)平均法趋势与季节模型法8、平均季节比重法平均季节比率法9、报告期水平基期水平10、序时平均数(或动态平均数)平均数11、和差12、季节变动长期趋势13、逐期增长量环比增长速度14、长明显1-5 A C C A D 6-10 A B A D B三、多选题1、CDE2、ABDE3、ABCE4、ACDE5、BDE6、BD7、ABCD8、ACE9、AE 10、ACE四、简答题1、序时平均数与一般平均数的异同。
答:(1)相同之处。
二者都是将具体数值抽象化,用一个代表性的数指来代表总体的一般水平。
(2)不同之处。
①计算的依据不同。
一般平均数是根据变量数列计算的,而序时平均数则是根据时间数列计算的;②对比的指标不同。
一般平均数是总体标志总量与总体单位总量对比的结果,而序时平均数则是时间数列各期发展水平的总和与时期项数对比的结果;③说明的问题不同。
一般平均数说明现象在同一时间、不同空间上所达到的一般水平,而序时平均数则说明现象在同一空间、不同时间上所达到的一般水平。
2、时期数列与时点数列的区别。
答:①时期数列中的指标值为时期数,时点数列中的指标值为时点数;②时期数列中的指标值具有可加性,而时点数列中的指标值则不具有可加性;③时期数列中指标值的大小与时间间隔的长短有直接关系,而时点数列中指标值的大小与时间间隔的长短则没有直接关系;④时期数列中的指标值是通过连续调查取得的,而时点数列中的指标值则是通过一次性调查取得的。
3、时间数列的编制原则。
答:(1)基本原则:保持数列中的各项指标数值具有可比性。
(2)具体原则:①时间长短统一;②总体范围统一;③指标口径统一;④计算方法统一;⑤计量单位统一。
4、计算和应用平均速度应注意的问题。
第七章时间序列分析思考与练习一、选择题1.已知2000-2006年某银行的年末存款余额,要计算各年平均存款余额,该平均数是:( b )a. 几何序时平均数;b.“首末折半法”序时平均数;c. 时期数列的平均数;d.时点数列的平均数。
2.某地区粮食增长量1990—1995年为12万吨,1996—2000年也为12万吨。
那么,1990—2000年期间,该地区粮食环比增长速度( d )a.逐年上升b.逐年下降c.保持不变d.不能做结论上表资料中,是总量时期数列的有( d )a. 1、2、3b. 1、3、4c. 2、4d. 1、34.利用上题资料计算零售额移动平均数(简单,4项移动平均),2001年第二季度移动平均数为(a )a. 47.5b. 46.5c. 49.5d. 48.4二、判断题1.连续12个月逐期增长量之和等于年距增长量。
2.计算固定资产投资额的年平均发展速度应采用几何平均法。
3.用移动平均法分析企业季度销售额时间序列的长期趋势时,一般应取4项进行移动平均。
4.计算平均发展速度的水平法只适合时点指标时间序列。
5.某公司连续四个季度销售收入增长率分别为9%、12%、20%和18%,其125126环比增长速度为0.14%。
正确答案:(1)错;(2)错;(3)对;(4)错;(5)错。
三、计算题:1.某企业2000年8月几次员工数变动登记如下表:试计算该企业8月份平均员工数。
解:该题是现象发生变动时登记一次的时点序列求序时平均数,假设员工人数用y 来表示,则: 1122n 12y y ...y y=...nnf f f f f f ++++++121010124051300151270311260()⨯+⨯+⨯+=≈人 该企业8月份平均员工数为1260人。
2. 某地区“十五”期间年末居民存款余额如下表:试计算该地区“十五”期间居民年平均存款余额。
解:居民存款余额为时点序列,本题是间隔相等的时点序列,运用“首末折半法”计算序时平均数。
第七章时间序列分析一、填空1、下表为两个地区的财政收入数据:则A地区财政收入的增长速度是,B地区财政收入的增长速度是,A 地区财政收入的增长1%的绝对值为,B地区财政收入的增长1%的绝对值为。
2、已知环比增长速度为7.1%、3.4%、3.6%、5.3%,则定基增长速度是。
3、年劳动生产率r(千元和职工工资y (元之间的回归方程为110x=,这意味着120y+年劳动生产率每提高1千元时,职工工资平均。
4、拉氏价格或销售量指数的同度量因素都是选期,而派许指数的同度量因素则选期。
5、动态数列的变动一般可以分解为四部分,即趋势变动、变动、变动和不规则变动。
二、选择题1.反映了经济现象在一个较长时间内的发展方向,它可以在一个相当长的时间内表现为一种近似直线的持续向上或持续向下或平稳的趋势。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素2.是经济现象受季节变动影响所形成的一种长度和幅度固定的周期波动。
A长期趋势因素B季节变动因素C周期变动因素D不规则变动因素3、时间序列在一年内重复出现的周期性波动称为(A、趋势B、季节性C、周期性D、随机性4、在使用指数平滑法进行预测时,如果时间序列比较平稳,则平滑系数α的取值(A、应该小些B、应该大些C、等于0D、等于15、某银行投资额2004年比2003年增长了10%,2005年比2003年增长了15%,2005年比2004年增长了(A、15%÷10%B、115%÷110%C、(110%×115%+1D、(115%÷110%-1三、判断1、若1998年的产值比1997年上涨10%,1999年比1998年下降10%,则1999年的产值比1997年的产值低。
(2、若三期的环比增长速度分别为9%、8%、10%,则三期的平均增长速度为9% (。
3、去年物价下降10%,今年物价上涨10%,今年的1元钱比前年更值钱。
(。
4、若平均发展速度大于100%,则环比发展速度也大于100%。
第七章 时间序列分析 第一节 时间序列概述 一.时间序列的概念时间序列的概念:又称时间数列,就是把反映客观现象发展水平的统计指标数值,按时间的先后顺序排列,由此形成的数列叫时间数列(动态数列)。
构成要素:❖ 客观现象发展水平所属的时间 ❖ 客观现象发展水平的指标数值作用❖ 反映客观现象的发展变化及历史状况 ❖ 揭示客观现象的数量变化趋势 ❖ 为预测提供一些方法二.时间序列的种类时间序 列按表 现形式时期序列 相对数时间序列 平均数时间序列绝对数时间序列 时点序列时期序列与时点序列的区别三.时间序列的编制原则a)基本原则:数列中各项指标数值具有可比性b)指标数值涵盖的时间长短一致c)总体范围应当一样d)指标的经济内容应当相同e)计算方法和计算单位、价格一致现行价格:指产品在各个时间,地点、环节实现的价格。
可比价格:是为专门消除货币量中价格变动因素而设计的价格。
第二节时间序列水平指标一.发展水平:是指时间序列中每一个指标数值,又称为时间数列水平。
可表示为总量指标,相对指标与平均指标。
通分为最初水平、最末水平和中间水平。
二.平均发展水平:在时间序列中,把各个时期(或时点上)的指标数值加以平均求得的平均数,又称为序时平均数。
1.序时平均数与一般平均数的区别:❖从计算资料上看:前者是根据时间数列计算;后者是根据变量数列计算❖从说明的问题上看:前者将总体在不同时间上的时间差异抽象化,说明现象在一段时期内的平均发展水平;后者把整体各单位数量差异抽象化,反映总体在静态上的一般水平。
(一)总量指标时间序列序时平均数的计算1.时间序列序时平均数的计算2.时点序列序时平均数的计算连续时点序列的计算:①连续时点相等序列:采用简单算术平均数计算。
公式为:ā=∑a/n②连续时点不等序列:采用加权算术平均数计算。
公式为:ā=∑af / ∑f间断时点序列的计算:③间断时点相等序列:每隔一定时间登记一次,每次的间隔相等。
其计算方法间断时点不等序列:⑤(二) 相对指标时间序列与平均指标时间序列序时平均数的计算❖ 相对数时间序列:应先分清形成相对数的分子、分母数列的性质,同时视资料掌握程度,按“分子、分母分别求序时平均数,再将这两个序时平均数对比”的总原则。
季节性时间序列分析⽅法第七章季节性时间序列分析⽅法由于季节性时间序列在经济⽣活中⼤量存在,故将季节时间序列从⾮平稳序列中抽出来,单独作为⼀章加以研究,具有较强的现实意义。
本章共分四节:简单随机时间序列模型、乘积季节模型、季节型时间序列模型的建⽴、季节调整⽅法X-11程序。
本章的学习重点是季节模型的⼀般形式和建模。
§1 简单随机时序模型在许多实际问题中,经济时间序列的变化包含很多明显的周期性规律。
⽐如:建筑施⼯在冬季的⽉份当中将减少,旅游⼈数将在夏季达到⾼峰,等等,这种规律是由于季节性(seasonality)变化或周期性变化所引起的。
对于这各时间数列我们可以说,变量同它上⼀年同⼀⽉(季度,周等)的值的关系可能⽐它同前⼀⽉的值的相关更密切。
⼀、季节性时间序列1.含义:在⼀个序列中,若经过S个时间间隔后呈现出相似性,我们说该序列具有以S为周期的周期性特性。
具有周期特性的序列就称为季节性时间序列,这⾥S为周期长度。
注:①在经济领域中,季节性的数据⼏乎⽆处不在,在许多场合,我们往往可以从直观的背景及物理变化规律得知季节性的周期,如季度数据(周期为4)、⽉度数据(周期为12)、周数据(周期为7);②有的时间序列也可能包含长度不同的若⼲种周期,如客运量数据(S=12,S=7)2.处理办法:(1)建⽴组合模型;(1)将原序列分解成S个⼦序列(Buys-Ballot 1847)对于这样每⼀个⼦序列都可以给它拟合ARIMA 模型,同时认为各个序列之间是相互独⽴的。
但是这种做法不可取,原因有⼆:(1)S 个⼦序列事实上并不相互独⽴,硬性划分这样的⼦序列不能反映序列{}t x 的总体特征;(2)⼦序列的划分要求原序列的样本⾜够⼤。
启发意义:如果把每⼀时刻的观察值与上年同期相应的观察值相减,是否能将原序列的周期性变化消除?(或实现平稳化),在经济上,就是考查与前期相⽐的净增值,⽤数学语⾔来描述就是定义季节差分算⼦。