第二章流体运动学基本概念
- 格式:ppt
- 大小:723.00 KB
- 文档页数:52
流体运动的基本概念流体运动是物质在空间中运动的一种形式,它是一个复杂而又广泛研究的领域。
流体运动可以是气体、液体和等离子体等,这些物质的运动是由流体力学原理所控制的。
流体运动的研究是非常重要的,因为它们在大自然、工程、以及科学研究中都有广泛的应用。
流体的性质流体是一种没有固定形状和体积的物质,其分子之间存在着相互作用力。
这些分子以各种不同的速度在流体中运动,形成了流体的各种性质。
密度流体的密度定义为单位体积内的质量,以公斤/立方米(kg/m³)为单位。
通常情况下,流体密度变化很小,这是由于流体中分子之间的作用力总是抵消了它们之间的空隙,从而将整个流体装载在一个宏观的容器中。
黏度流体的黏度是衡量流体内部分子之间相互作用力的一种物理量。
比如说,在液体中,分子之间会发生相互碰撞,并使物体受到抵抗。
黏度通常用作流体内部分子阻力的量度,以帕(Pa)或牛顿秒/平方米(N·s/m²)为单位。
压强流体内部分子之间的相互作用力会产生压强。
压强表示在不同流体层之间的压力差。
压强通常用千帕(kPa)或巴(Pa)为单位。
流速流速是衡量流体运动强度的一个物理量,通常用米/秒(m/s)为单位。
流体运动的速度可以通过测量流量以及流动的横截面积来计算。
流速建立一个用于计算流体的物理模型,也为分析流体运动提供了重要的依据。
流量流量是指单位时间内通过流体运动的物质总量,常用升/秒(L/s)为单位。
流量有助于衡量流体的大量运动,特别是在水力学和空气动力学中,该量可用于计算流体开口处的速度。
雷诺数雷诺数是一种描述流体运动不稳定性的物理量,它建立在对流体内部分子相互作用力特性的基础上。
雷诺数衡量了流体内部分子之间的相互作用力与其内部速度之间的比值。
当这个比值超过某一阈值时,流体内部的运动就会发生不稳定性,表现为涡流和湍流等。
这些基本概念提供了一种理解流体运动的方式,是研究流体动力学的基础。
流体动力学是一种物理分支,旨在研究流体在不同条件下的运动和对流体特性的影响,包括密度、压强、黏度和流速等。
第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。
§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。
理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。
(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。
易实验研究,流体力学的主要研究方法。
两种研究方法得到的结论形式不同,但结论的物理相同。
可通过一定公式转换。
1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。
(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。
简称为质点导数。
例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。
流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。
流体力学的基本概念流体力学是研究流体在运动和静止时的物理学科,广泛应用于工程、自然科学和医学领域。
流体力学的基本概念包括:流体、速度场、流线、通量、压力、连通性、黏度等。
下面将对这些基本概念进行介绍。
1. 流体流体是指能够流动的物质,包括气体和液体。
与固体不同的是,流体没有一定的形状,并且具有很强的流动性。
流体力学研究的是在流体中运动和转化的能量和物质。
2. 速度场在流体力学中,速度场指的是在空间中的任何一个点(x,y,z)处,流体在该点的速度向量V(x,y,z)。
速度场可以用向量场表示,它是一个三维矢量,表示流体在不同点的速度和方向。
3. 流线流线是指在流体中某个时刻从每个点出发的一条曲线,它的方向与该点的速度向量方向相同。
流线可用于描述流体在空间中的流动状态,它的密度越集中,表示流体流动越迅速。
4. 通量在流体力学中,通量是指通过一定面积的流体的质量或者体积。
它可以通过流体穿过该面积的速度与面积相乘来计算。
通量是流体力学中的重要概念,与流体的流动速度和流体的面积有关。
5. 压力压力是指单位面积受到的力的大小,以牛顿/平方米表示。
在流体力学中,压力是指垂直于流体流动方向的单位面积上的压力大小,它与流体的密度和流速有关。
6. 连通性流体力学中的连通性是指流体不可穿透的性质,即两个靠近的流体体积不能相互穿透。
在流体运动中,连通性是一条重要的限制条件。
连通性是流体力学中常常需要掌握的概念,尤其是在流体的运动与静止的过程中。
7. 黏度黏度是指流体阻力的大小,它是描述流体的粘性的物理量。
黏度可以用来描述流体在运动中的阻力大小,阻力越大,黏度也就越大。
黏度是流体力学中非常重要的物理量,它影响了流体的运动和可塑性。
流体运动的几个基本概念流体运动是指液体或气体在受到外力作用下的运动现象。
在研究流体力学时,我们常常关注一些基本概念来描述和分析流体的运动行为。
下面我将介绍一些与流体运动密切相关的基本概念。
一、速度与流速速度是描述流体运动的一个基本概念,表示流体在单位时间内沿某一方向移动的距离。
速度可以用矢量来表示,包括大小和方向两个要素。
流速则是流体元素在某一方向上的瞬时速度,通常用标量来表示。
二、流线与流管流线是描述流体运动轨迹的曲线,它可以用于表示流体的速度、流速和速度分布等信息。
流线上的任意一点的切线方向即为该点的流速方向。
多个流线构成的集合称为流管,流管的截面称为流面。
流线和流管是研究流体运动的重要工具,可以用以分析流体的流动。
三、流量与流量密度流量是指单位时间内通过某一横截面的流体的体积,用于衡量单位时间内流体流动的多少,流量的单位通常是立方米每秒(m³/s)。
而流量密度是指单位时间内通过单位横截面的流体的体积,通常用标量表示。
流量密度与流速成正比,与截面积成反比。
四、黏性与粘滞系数黏性是指流体内部的分子间相互作用所产生的阻碍流体相对运动的力量。
黏性越大,流体的阻力越大,流体越难以流动。
粘滞系数是描述流体黏性的物理量,单位是帕斯卡秒(Pa·s)。
常见的流体如水和空气的黏滞系数较小,而像汽油和胶水等高黏度液体则黏滞系数较大。
五、雷诺数与流态雷诺数是描述流体运动的重要参数,用于衡量惯性力和黏性力在流体运动中的相对重要性。
雷诺数越大,流体的惯性作用越显著,流体流动越剧烈,流态趋于紊乱;雷诺数越小,黏性作用越重要,流体流动越平稳,流态趋于稳定。
六、层流与湍流层流是指流速在流体中各点之间变化较小,流线平行且相互不交错的流动状态。
层流时流体分子的流动方式有序,黏性力起主导作用。
湍流则是指流速在流体中各点之间变化较大,流线交错且混乱的流动状态。
湍流时流体分子的流动方式无序,惯性力起主导作用。
当雷诺数较小时,流态倾向于层流;当雷诺数较大时,流态倾向于湍流。
流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。
它广泛应用于物理学、力学、航空航天工程、水利工程等领域。
本文将介绍流体运动学的基本概念和我们对流体运动的理解。
一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。
流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。
下面我们将介绍一些流体运动学的基本概念。
1. 流动性流动性是流体运动学的基本特性之一。
流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。
流动性使得流体能够运动和在容器或管道中传输。
2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。
在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。
流量是指单位时间内通过某一截面的流体的质量或体积。
在实际应用中,我们通常更关注流量而不是流速。
3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。
流线能够直观地表达出流体运动的路径和轨迹。
当流体运动具有稳定性和不可压缩性时,流线也是连续的。
流管是由流线围成的管道,它能够将流体流动的区域划分出来。
二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。
常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。
1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。
欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。
2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。
纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。
流体力学重点概念总结(可直接打印版)第一章绪论表面力,也称面积力,是指直接施加在隔离体表面上的接触力,其大小与作用面积成比例。
剪力、拉力和压力都属于表面力。
质量力是指作用于隔离体内每个流体质点上的力,其大小与质量成正比。
重力和惯性力都属于质量力。
流体的平衡或机械运动取决于流体本身的物理性质(内因)和作用在流体上的力(外因)。
XXX通过著名的平板实验,说明了流体的粘滞性,并提出了牛顿内摩擦定律。
根据该定律,剪切应力τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ是反映流体粘滞性大小的系数,单位为N•s/m2.运动粘度ν等于动力粘度μ除以流体密度ρ。
第二章流体静力学流体静压强具有以下特性:首先,流体静压强是一种压应力,其方向总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
其次,在静止的流体中,任何点上的流体静压强大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
流体静力学基本方程为P=Po+pgh,其中Po为参考压力,p为流体密度,g为重力加速度,h为液体高度。
等压面是压强相等的空间点构成的面。
绝对压强以无气体分子存在的完全真空为基准起算,而相对压强以当地大气压为基准起算。
真空度是绝对压强不足当地大气压的差值,即相对压强的负值。
测压管水头是单位重量液体具有的总势能。
在平面上,净水总压力是潜没于液体中的任意形状平面的总静水压力P,其大小等于受压面面积A与其形心点的静压强pc之积。
需要注意的是,只要平面面积与形心深度不变,面积上的总压力就与平面倾角θ无关,压心的位置与受压面倾角θ无直接关系,是通过XXX表现的,而压心总是在形心之下。
对于作用在曲面壁上的总压力,水平分力Px等于作用于该曲面的在铅直投影面上的投影(矩形平面)上的静水总压力,方向水平指向受力面,作用线通过面积Az的压强分布图体积的形心。
垂直分力Pz等于该曲面上的压力体所包含的液体重,其作用线通过压力体的重心,方向铅垂指向受力面。
第一章绪论液体和气体统称流体,流体的基本特性是具有流动性。
表面力是通过直接接触,作用在所取流体表面上的力。
质量力是作用在所取流体体积内每个质点上的力,因力的大小与流体的质量成比例,故称质量力(重力是最常见的质量力)。
惯性是物体保持原有运动状态的性质,改变物体的运动状态,都必须克服惯性的作用。
表示惯性大小的物理量是质量,质量愈大,惯性愈大,运动状态愈难以改变。
密度:单位体积的质量,以符号ρ表示。
(单位:kg/m3)。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
流体在静止时不能承受剪切力,任何微小的剪切力作用,都使流体流动,这就是流动性的力学解释。
粘性是流体的内摩擦特性,或者说是流体阻抗剪切变形速度的特性。
在简单剪切流动的条件下,流体的内摩擦力符合牛顿内摩擦定律。
牛顿平板实验。
上平板带动粘附在板上的流层运动,而能影响到内部各流层运动,表明内部相邻流层之间存在着剪切力,即内摩擦力,这就是粘性的表象。
因此说粘性是流体内摩擦特性。
牛顿内摩擦定律:T=μA(du/dy)【流体的内摩擦力T与流速梯度(U/h)=(du/dy)成比例,与流层的接触面积A成比例,与流体的性质有关,与接触面上的压力无关。
】[动力]粘度μ:反映流体粘性大小的系数,单位:Pa.s,μ值越大,流体越粘,流动性越差。
运动粘度ν:ν=μ/ρ。
液体的粘度随温度升高而减小,气体的粘度却随温度的升高而增大。
其原因是液体分子间的距离很小,分子间的引力即内聚力是形成粘性的主要因素,温度升高,分子间距离增大,内聚力减小,粘度随之减小;气体分子间距离远大于液体,分子热运动引起的动量交换是形成粘性的主要因素,温度升高,分子热运动加剧,动量交换加大,粘度随之增大。
无粘性流体,是指粘性,即μ=0的液体。
无粘性流体实际上是不存在的,它是一种对物理性质进行简化的力学模型。
压缩性是流体受压,分子间距离减小,体积缩小的性质。
膨胀性是流体受热,分子间距离增大,体积增大的性质。