工程流体力学 第二章流体运动学基本概念
- 格式:ppt
- 大小:319.00 KB
- 文档页数:51
流体运动的几个基本概念流体运动是指液体或气体在受到外力作用下的运动现象。
在研究流体力学时,我们常常关注一些基本概念来描述和分析流体的运动行为。
下面我将介绍一些与流体运动密切相关的基本概念。
一、速度与流速速度是描述流体运动的一个基本概念,表示流体在单位时间内沿某一方向移动的距离。
速度可以用矢量来表示,包括大小和方向两个要素。
流速则是流体元素在某一方向上的瞬时速度,通常用标量来表示。
二、流线与流管流线是描述流体运动轨迹的曲线,它可以用于表示流体的速度、流速和速度分布等信息。
流线上的任意一点的切线方向即为该点的流速方向。
多个流线构成的集合称为流管,流管的截面称为流面。
流线和流管是研究流体运动的重要工具,可以用以分析流体的流动。
三、流量与流量密度流量是指单位时间内通过某一横截面的流体的体积,用于衡量单位时间内流体流动的多少,流量的单位通常是立方米每秒(m³/s)。
而流量密度是指单位时间内通过单位横截面的流体的体积,通常用标量表示。
流量密度与流速成正比,与截面积成反比。
四、黏性与粘滞系数黏性是指流体内部的分子间相互作用所产生的阻碍流体相对运动的力量。
黏性越大,流体的阻力越大,流体越难以流动。
粘滞系数是描述流体黏性的物理量,单位是帕斯卡秒(Pa·s)。
常见的流体如水和空气的黏滞系数较小,而像汽油和胶水等高黏度液体则黏滞系数较大。
五、雷诺数与流态雷诺数是描述流体运动的重要参数,用于衡量惯性力和黏性力在流体运动中的相对重要性。
雷诺数越大,流体的惯性作用越显著,流体流动越剧烈,流态趋于紊乱;雷诺数越小,黏性作用越重要,流体流动越平稳,流态趋于稳定。
六、层流与湍流层流是指流速在流体中各点之间变化较小,流线平行且相互不交错的流动状态。
层流时流体分子的流动方式有序,黏性力起主导作用。
湍流则是指流速在流体中各点之间变化较大,流线交错且混乱的流动状态。
湍流时流体分子的流动方式无序,惯性力起主导作用。
当雷诺数较小时,流态倾向于层流;当雷诺数较大时,流态倾向于湍流。
流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。
它广泛应用于物理学、力学、航空航天工程、水利工程等领域。
本文将介绍流体运动学的基本概念和我们对流体运动的理解。
一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。
流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。
下面我们将介绍一些流体运动学的基本概念。
1. 流动性流动性是流体运动学的基本特性之一。
流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。
流动性使得流体能够运动和在容器或管道中传输。
2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。
在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。
流量是指单位时间内通过某一截面的流体的质量或体积。
在实际应用中,我们通常更关注流量而不是流速。
3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。
流线能够直观地表达出流体运动的路径和轨迹。
当流体运动具有稳定性和不可压缩性时,流线也是连续的。
流管是由流线围成的管道,它能够将流体流动的区域划分出来。
二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。
常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。
1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。
欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。
2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。
纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。
第一章绪论1.工程流体力学的研究对象:工程流体力学以流体(包括液体和气体)为研究对象,研究流体宏观的平衡和运动的规律,流体与固体壁面之间的相互作用规律,以及这些规律在工程实际中的应用。
第二章流体的主要物理性质1.★流体的概念:凡是没有固定的形状,易于流动的物质就叫流体。
2.★流体质点:包含有大量流体分子,并能保持其宏观力学性能的微小单元体。
3.★连续介质的概念:在流体力学中,把流体质点作为最小的研究对象,从而把流体看成是:1)由无数连续分布、彼此无间隙地;2)占有整个流体空间的流体质点所组成的介质。
4.密度:单位体积的流体所具有的质量称为密度,以P表示。
5.重度:单位体积的流体所受的重力称为重度,以Y表示。
6.比体积:密度的倒数称为比体积,以u表示。
它表示单位质量流体所占有的体积。
7.流体的相对密度:是指流体的重度与标准大气压下4°C纯水的重度的比值,用d表示。
8.★流体的热膨胀性:在一定压强下,流体体积随温度升高而增大的性质称为流体的热膨胀性。
9.★流体的压缩性:在一定温度下,流体体积随压强升高而减少的性质称为流体的压缩性。
10.可压缩流体:P随T和p变化量很大,不可视为常量。
11.不可压缩流体:P随T和p变化量很小,可视为常量。
12.★流体的粘性:流体流动时,在流体内部产生阻碍运动的摩擦力的性质叫流体的粘性。
13.牛顿内摩擦定律:牛顿经实验研究发现,流体运动产生的内摩擦力与沿接触面法线方向的速度变化(即速度梯度)成正比,与接触面的面积成正比,与流体的物理性质有关,而与接触面上的压强无关。
这个关系式称为牛顿内摩擦定律。
14.非牛顿流体:通常把满足牛顿内摩擦定律的流体称为牛顿流体,此时不随du/d n而变化,否则称为非牛顿流体。
15.动力粘度u :动力粘度表示单位速度梯度下流体内摩擦应力的大小,它直接反映了流体粘性的大小。
16.运动粘度v :在流体力学中,动力粘度与流体密度的比值称为运动粘度,以v表示。