0电动力学-绪论
- 格式:ppt
- 大小:754.00 KB
- 文档页数:21
XX《电动力学》教学大纲课程编号: 3407课程名称:电动力学英文名称:学分/学时:4/64课程性质: 必修适用专业: 应用物理建议开设学期:5先修课程: 电磁学,数学物理方法,场论与复变函数开课单位:物理与光电工程学院一、课程的教学目标与任务(1)理解电磁运动的基本规律,理解电磁场基本性质;(2)获得分析和处理一些电磁基本规律问题的能力;(3)通过学习狭义相对论理论,掌握相对论的时空观及有关的基本理论;(4)为后续课程的学习和独力解决实际问题打下必要的基础。
二、课程具体内容及基本要求(一)引言(4学时)1。
基本要求了解《电动力学》的主要内容、熟悉研究对象等电磁场理论的史2.重点、难点掌握数学知识补充(矢量分析和算符运算)3。
作业及课外学习要求:课后及课本XX中的补充内容,掌握基本的矢量分析及算符运算法则(二)第一章电磁现象的普遍规律(8学时)1.基本要求第一节电荷和电场一、库仑定律(电荷连续分布带电体的电场)二、高斯定理,静电场的散度(矢量场的两个基本性质)三、静电场的旋度第二节电流和磁场一、电荷守恒定律(微分形式和积分形式)二、用毕—萨定律证明磁场旋度和散度公式第三节麦克斯韦方程组一、电磁感应定律二、位移电流三、麦克斯韦方程组四、洛伦兹力公式第四节介质的电磁性质一、极化和磁化的物理图象及描述二、极化强度的散度和磁化强度的旋度三、物质方程四、介质中的方程第五节电磁场的边值关系一、方程的积分形式二、法向分量的跃变三、切向分量的跃变第六节电磁场的能量和能流一、场和电荷系统的能量转化和守恒定律的一般形式二、电磁场能量密度和能流密度表示式三、电磁能量的传输2.重点、难点本章重点:方程及其物理根据,电磁场的边值关系,电磁场能量.难点:电磁场的矢量运算,电磁场及边值关系的物理图像。
3.作业及课外学习要求:课后题的部分内容,掌握电磁场的基本边值关系及方程.(三)第二章静电场(13学时)1.基本要求第一节静电场的标势及其微分方程一、静电场的标势二、静电势的微分方程和边值关系三、静电场的能量第二节唯一性定理一、静电问题的唯一性定理二、有导体存在时的唯一性定理第三节拉普拉斯方程分离变量法一、分离变量法二、边界条件的使用第四节电像法一、电像法的物理原理二、电像法的适用区域第五节格林函数法(选讲)一、点电荷密度二、格林函数三、格林公式和边值问题的解第六节电多极矩一、电势的多极展开二、电多极矩三、电荷体系在外电场中的能量2。
电动力学课件01.引言电动力学是物理学中的一个重要分支,主要研究电荷、电流、电磁场以及它们之间的相互作用规律。
电动力学的发展历程可以追溯到19世纪,当时的科学家们通过实验和理论研究,逐步揭示了电磁现象的本质和规律。
本课件旨在介绍电动力学的基本概念、理论框架和重要应用,帮助读者系统地了解电动力学的基本原理和方法。
2.麦克斯韦方程组麦克斯韦方程组是电动力学的基础,描述了电磁场的基本性质和演化规律。
麦克斯韦方程组包括四个方程,分别是:(1)高斯定律:描述了电荷分布与电场之间的关系,即电荷产生电场,电场线从正电荷出发,终止于负电荷。
(2)高斯磁定律:描述了磁场的无源性质,即磁场线是闭合的,没有磁单极子存在。
(3)法拉第电磁感应定律:描述了时变磁场产生电场的现象,即磁场的变化会在空间产生电场。
(4)安培环路定律:描述了电流和磁场之间的关系,即电流产生磁场,磁场线围绕电流线。
3.电磁波的传播(1)电磁波的传播速度:在真空中,电磁波的传播速度等于光速,即c=3×10^8m/s。
(2)电磁波的能量:电磁波传播过程中,电场和磁场交替变化,携带能量。
(3)电磁波的极化:电磁波的电场矢量在空间中的取向称为极化,可分为线极化、圆极化和椭圆极化。
(4)电磁波的反射、折射和衍射:电磁波在遇到边界时会发生反射和折射现象,同时还会产生衍射现象。
4.动态电磁场(1)电磁场的波动方程:描述了电磁波的传播规律,包括波动方程的推导和求解。
(2)电磁场的能量和动量:研究电磁场携带的能量和动量,以及它们与电荷、电流之间的相互作用。
(3)电磁场的辐射:研究电磁波在空间中的辐射现象,包括辐射源、辐射功率和辐射强度等。
5.电动力学应用(1)通信技术:电磁波的传播特性使其成为无线通信的理想载体,广泛应用于方式、电视、无线电等领域。
(2)能源传输:电磁感应原理使电能的高效传输成为可能,如变压器、发电机等。
(3)电子设备:电磁场的控制和应用是电子设备工作的基础,如电脑、方式、家用电器等。