SPC_Xbar_S_Chart 过程统计控制_均值_标准差图
- 格式:xlsx
- 大小:58.62 KB
- 文档页数:7
1. 目的:
为了不断地对生产过程进行改进并满足客户对生产过程的能力要求,特规定本程序来对生产过程的稳定状态和过程能力指数进行研究,以达到生产过程预防的效果。
2. 适用范围:
适用于与汽车产品特殊特性相关的关键过程的初始过程和稳定过程的能力研究,及过程控制;
3.定义
4. 职责
4.1 品质部
1)负责SPC过程控制;
2)制定与检讨SPC的操作规格,包括样本大小,抽样频率,管制界限等。
3)负责量测、记录、判读数据,并输入控制图的对应位置,将SPC异常通知给生产部,并要求停
止生产,当SPC数据超出规格限时,需立即组织相关部门采取改善措施;
4)确认SPC异常的回复及改善结果。
5)依客户要求定期向客户提交CPK报告;
6)负责保存及维护SPC相关数据。
7)负责对SPC作业相关人员作有关SPC作业规范的培训和异常判读培训。
4.2 生产部: 配合品质部进行SPC过程控制,并对异常情况采取相对应的改善对策。
4.3 APQP小组:负责策划使用哪种SPC控制图,和控制图样品取样数和取样频次。
5. 程序内容
6. 记录
各种控制图表。
SPC所有公式详细解释及分析SPC统计制程管制计量值管制图:Xbar-R(平均-全距)、Xbar-S(平均-标准差)、X-MR(个别值-移动全距)、EWMA、CUSUM等管制图。
计数值管制图:不良率p、不良数np、良率1-p、缺点数c、单位缺点数u等管制图。
常用分析工具:直方图、柏拉图、散布图、推移图、%GRR...等。
公式解说制程能力指数制程能力分析制程能力研究在于确认这些特性符合规格的程度,以保证制程成品不符规格的不良率在要求的水准之上,作为制程持续改善的依据。
制程能力研究的时机分短期制程能力研究及长期制程能力研究,短期着重在新产品及新制程的试作、初期生产、工程变更或制程设备改变等阶段;长期以量产期间为主。
制程能力指针Cp 或Cpk 之值在一产品或制程特性分配为常态且在管制状态下时,可经由常态分配之机率计算,换算为该产品或制程特性的良率或不良率,同时亦可以几Sigma 来对照。
计数值统计数据的数量表示缺点及不良(Defects VS. Defectives)缺点代表一单位产品不符要求的点数,一单位产品不良可能有一个缺点或多个缺点,此为计点的品质指针。
例如描述一匹布或一铸件的品质,可用每公尺棉布有几个疵点,一铸件表面有几个气孔或砂眼来表达,无尘室中每立方公尺含微粒之个数,一片PCB有几个零件及几个焊点有缺点,一片按键有几个杂质、包风、印刷等缺点,这些都是以计点方式表示一单位产品的特性值。
不良代表一单位产品有不符要求的缺点,可能有一个或一个以上,此将产品分类为好与坏、良与不良及合格与不合格等所谓的通过-不通过(Go-NoGo)的衡量方式称为计件的品质指针。
例如单位产品必须以二分法来判定品质,不良的单位产品必须报废或重修,这是以计件方式来表示一单位产品的特值。
每单位缺点数及每百万机会缺点数(DPU VS. DPMO)一单位产品或制程的复杂程度与其发生缺点的机会有直接的关系,越复杂容易出现缺点;反之越简单越不容易出现缺点。
理解SPC统计图表的解读SPC(统计过程控制)是一种质量管理方法,旨在监控和控制过程中的变异性。
在SPC中,统计图表被广泛使用来帮助我们理解和解读过程中发生的变化。
本文将介绍几种常见的SPC统计图表,并解读它们的意义和应用。
1. 控制图控制图是SPC统计图表中最常见的一种。
它用来监控过程中的变异性,并判断过程是否处于控制状态。
常用的控制图包括X-bar图、R图和S图。
X-bar图X-bar图是用来监控过程平均值变化的控制图。
在图表上,我们可以看到一条中心线,代表过程的平均值,以及上下两条控制限,用于判断过程平均值是否处于控制状态。
解读X-bar图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的平均值保持稳定;•若数据点在控制限之外,可能表示过程平均值发生了变化,需要进一步分析原因。
R图R图用来监控过程的变异性,即数据点之间的离散程度。
R图展示了一条上控制限、下控制限和一条平均线,用于判断过程的变异性是否在可接受的范围内。
解读R图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的变异性保持稳定;•若数据点在控制限之外,可能表示过程的变异性超出了可接受的范围,需要进一步分析原因。
S图S图也是用来监控过程的变异性,与R图类似,但S图使用样本标准差来度量数据点之间的离散程度。
解读S图时,我们需要注意以下几点:•若数据点在控制限内波动,表示过程的变异性保持稳定;•若数据点在控制限之外,可能表示过程的变异性超出了可接受的范围,需要进一步分析原因。
2. 度量图度量图是SPC统计图表中用于度量过程能力的工具。
它帮助我们评估过程在规定限制范围内的表现,并判断过程能否满足要求。
常见的度量图包括直方图和正态概率图。
直方图直方图是一种以柱状表示数据分布情况的图表。
它可以帮助我们了解数据的分布形态和集中程度。
解读直方图时,我们需要注意以下几点:•若数据呈现类似正态分布的形态,表示过程的性能较好;•若数据呈现偏态或多峰分布的形态,可能需要进一步分析导致该现象的原因。
1.XBar-R Chart这个图是叫:均值和极差图:代表的是均值R:代表极差将鼠标指到采样点上,会有弹出框,如上图:中的Index:2,<1>,<2>是采样点的数值,XBar是这些数值的的平均值,由于在属性页的次组中设置为2,即2个采样点为一组,所以这里弹出中是<1>,<2>两个点的数值。
R Chart 中的Index:2 也是类似的,Range是这两个采样点极差的平均值。
下面的具体参数:Nom::理论值LSL:SPC中叫做工程下限,也就是下公差USL:SPC中叫做工程上限,也就是上公差Max:采样点的最大值Min:采样点的最小值Ca:capability of accuracy 准确度Cp:capability of precision 精确度Cpk:稳定过程能力参数,MIN(CPU,CPL)UCL:控制上限LCL:控制下限Pp:性能指数Ppk:性能指数Std:标准差Range:极差Mean:均值Lout%:超出下公差的比率Uout%:超出上公差的比率Pp和Ppk都叫做性能指数,但是计算公式不一样。
2.XBar-S Chart这个图是叫:均值和标准差图S:代表标准差。
其他的参数类似。
3.XBar-Rm Chart:X-Rm Chart:一般资料里叫做X-MR图,是单值和移动极差图。
弹出框中的参数:IX:单个采样点的值Range:极差4.Histogram Chart:这个图是:直方图5.Capability Chart:这个是:正态分布图-3S和+3S:分别代表+/-3倍标准差6.Run Chart:这个是:监控-运行图,是和理论值的对比,弹出框的数据显示了每个采样点的数值。
7.属性页:次组:这里可以选择2-25个采样为1组。
最大值25的设置依据是从有效经验数据得来的。
采样:这里记录了每个采样点的数值。
SPC所有公式详细解释及分析SPC统计制程管制计量值管制图: Xbar-R(平均-全距)、Xbar-S(平均-标准差)、X-MR(个别值-移动全距)、EWMA、CUSUM等管制图。
计数值管制图:不良率p、不良数np、良率1-p、缺点数c、单位缺点数u等管制图。
常用分析工具:直方图、柏拉图、散布图、推移图、%GRR...等。
公式解说制程能力指数制程能力分析制程能力研究在于确认这些特性符合规格的程度,以保证制程成品不符规格的不良率在要求的水准之上,作为制程持续改善的依据。
制程能力研究的时机分短期制程能力研究及长期制程能力研究,短期着重在新产品及新制程的试作、初期生产、工程变更或制程设备改变等阶段;长期以量产期间为主。
制程能力指针 Cp 或 Cpk 之值在一产品或制程特性分配为常态且在管制状态下时,可经由常态分配之机率计算,换算为该产品或制程特性的良率或不良率,同时亦可以几 Sigma 来对照。
计数值统计数据的数量表示缺点及不良(Defects VS. Defectives)缺点代表一单位产品不符要求的点数,一单位产品不良可能有一个缺点或多个缺点,此为计点的品质指针。
例如描述一匹布或一铸件的品质,可用每公尺棉布有几个疵点,一铸件表面有几个气孔或砂眼来表达,无尘室中每立方公尺含微粒之个数,一片PCB有几个零件及几个焊点有缺点,一片按键有几个杂质、包风、印刷等缺点,这些都是以计点方式表示一单位产品的特性值。
不良代表一单位产品有不符要求的缺点,可能有一个或一个以上,此将产品分类为好与坏、良与不良及合格与不合格等所谓的通过-不通过(Go-NoGo)的衡量方式称为计件的品质指针。
例如单位产品必须以二分法来判定品质,不良的单位产品必须报废或重修,这是以计件方式来表示一单位产品的特值。
每单位缺点数及每百万机会缺点数(DPU VS. DPMO)一单位产品或制程的复杂程度与其发生缺点的机会有直接的关系,越复杂容易出现缺点;反之越简单越不容易出现缺点。
SPC统计常用控制图评价引言SPC〔Statistical Process Control,统计过程控制〕是一种通过采集和分析过程数据,以便实时监控和控制过程稳定性的方法。
常用的SPC工具之一是控制图,它能够帮助我们识别过程中的特殊因素和常见问题,并实施相应的改良措施。
本文将介绍SPC常用控制图,并对其评价方法进行讨论。
一、SPC常用控制图1.1 均值图均值图〔X-Bar图〕是一种常用的控制图,用于监控连续型数据的均值是否稳定。
它通过绘制样本均值的变化情况,以及控制限的设置,来判断过程是否受到特殊因素的影响。
如果样本均值超出控制限范围,就说明过程出现了问题。
1.2 极差图极差图〔R图〕是另一种常用的控制图,用于监控连续型数据的变异性是否稳定。
它通过绘制样本极差的变化情况,以及控制限的设置,来判断过程是否存在异常变异。
如果样本极差超出控制限范围,就说明过程出现了问题。
1.3 标准差图标准差图〔S图〕是控制图中另一种用于监控连续型数据变异性的工具,它通过绘制样本标准差的变化情况,以及控制限的设置,来判断过程的稳定性。
如果样本标准差超出控制限范围,就说明过程存在异常变异。
1.4 化验图化验图〔C图〕是一种用于检测离散型数据的控制图。
它通过绘制样本中不良品的数量或比例的变化情况,以及控制限的设置,来判断过程是否稳定。
如果样本不良品数量或比例超出控制限范围,就说明过程存在问题。
二、控制图的评价方法控制图的评价方法主要包括特殊因素的判断和过程能力的评估。
2.1 特殊因素的判断特殊因素指的是导致过程异常的特殊因素,比方机器故障、操作失误、原材料问题等。
通过控制图的帮助,我们可以判断特殊因素是否存在。
一般来说,如果样本点落在控制限之外,或出现非随机的趋势、扰动或周期性变化,就可能是由特殊因素引起的。
在判断特殊因素的时候,还需要考虑其实质性和重复性,以防止过度反响。
2.2 过程能力的评估过程能力是指过程的稳定性和可控性。