中考数学旋转专题提高训练
- 格式:doc
- 大小:175.66 KB
- 文档页数:4
中考数学复习《旋转》专题训练-附带有答案一、选择题1.将如图所示的图形按逆时针方向旋转90°后得到图形是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,在正方形网格中,△ABC绕某点旋转一定的角度得到△A′B′C′,则旋转中心是点()A.O B.P C.Q D.M4.若P与A(1,3)关于原点对称,则点P落在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系xOy中,点M与点N(3,4)关于原点对称,那么点M的坐标为()A.(3,4)B.(−3,−4)C.(−3,4)D.(3,−4)6.如图,将边长为√3的正方形ABCD绕点B逆时针旋转30°得到正方形A′BC′D′,AD与C′D′交于点M,那么图中点M的坐标为()A .(√3,1)B .(1,√3)C .(√3,√32)D .(√32,√3) 7.如图所示,在平面直角坐标系中,点A (0,4),B (2,0),连接AB ,点D 为AB 的中点,将点D 绕着点A 旋转90°得到点D 的坐标为( )A .(﹣2,1)或(2,﹣1)B .(﹣2,5)或(2,3)C .(2,5)或(﹣2,3)D .(2,5)或(﹣2,5)8.如图,直角坐标系中,点G 的坐标为(2,0),点F 是y 轴上任意动点,FG 绕点F 逆时针旋转90°得FH ,则动点H 总在下列哪条直线上( )A .y =x +2B .y =2x +2C .y =12x +2D .y =2x +1二、填空题 9.如图所示的图形绕其中心至少旋转 度就可以与原图形完全重合.10.在平面直角坐标系中,点A(5,m)与点B(−5,−3)关于原点对称,则m 的值为 .11.如图,将△ABC 绕点A 逆时针旋转到△ADE 的位置,B 、D 、C 在一条直线上.若∠B =70°,则∠CAE 的大小为 .12.如图,在平面直角坐标系中,点B 坐标(8,4), 连接OB , 将OB 绕点O 逆时针旋转90°,得到OB',则点B ′的坐标为 .13.直线y =−43x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 .三、解答题14.如图,△ABO 与△CDO 关于O 点成中心对称,点E 、F 在线段AC 上,且AF =CE .求证:FD =BE ,FD ∥BE .15.在4×4的方格纸中,△ABC 的三个顶点都在格点上.(1)在图1中画出与△ABC 成轴对称且与△ABC 有公共边的格点三角形(画出一个即可);(2)将图2中的△ABC 绕着点C 按顺时针方向旋转90°,画出经旋转后的三角形.16.如图,等腰三角形ABC 中,AB=AC ,BAC ∠=α作BD AC ⊥于点D ,将线段AD 绕着点A 逆时针旋转角α后得到线段AE ,连接CE .求证:AE CE ⊥.17.如图,在边长为1的正方形网格中,ABC 的顶点均在格点上,建立平面直角坐标系后,点A 的坐标为()4,1-,点B 的坐标为()1,1-.(1)画出ABC 关于原点O 对称的111A B C △;(2)画出ABC 绕点B 逆时针旋转90︒后得到的22A BC ,并写出点A 的对应点2A 的坐标.18.如图,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE 的长度;(3)BE 与DF 的位置关系如何?参考答案1.A2.B3.B4.C5.B6.B7.C8.A9.9010.311.40°12.(﹣4,8)13.(7,3)14.证明:连接BF、DE∵△ABO与△CDO关于O点成中心对称∴OB=OD,OA=OC.∵AF=CE∴OF=OE.∴四边形BEDF是平行四边形∴FD=BE,FD∥BE.15.(1)解:如图所示:或(2)解:如图所示:16.证明:∵将线段AD 绕着点A 逆时针旋转角α后得到线段AE ∴,.AD AE CAE α=∠=∵,BAC α∠=∴.BAC CAE ∠=∠∵BD AC ⊥∴90.ADB ∠=︒在ABD 与ACE 中,,,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE ≌∴90.ADB AEC ∠=∠=︒∴AE CE ⊥.17.(1)解:()4,1A - ()1,1B -由图可知()1,3C -A ∴、B 、C 关于原点O 对称的三点分别为()14,1A -,()1,1B -和()1,3C - 在图中标出,依次连接即可如图,111A B C △即为所求(2)如图,22A BC 即为所求由图可知,点A 的对应点2A 的坐标为()12--,. 18.(1)解:根据正方形的性质可知:△AFD ≌△AEB 即AE=AF=4,∠EAF=90°,∠EBA=∠FDA ; 可得旋转中心为点A ;旋转角度为:90°或270°;(2)解:DE=AD − AE=7 − 4=3(3)解:BE ⊥DF ;延长BE 交DF 于点G由旋转△ADF≌△ABE ∴∠ADF=∠ABE又∵∠DEG=∠AEB∴∠DGE=∠EAB=90°∴BE⊥DF。
中考数学(初中数学 旋转提高练习题)压轴题训练含详细答案一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。
(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。
【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。
(2)△ABE 为等边三角形。
证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。
又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。
在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。
∴11BAD CAD BAC 22α∠=∠=∠=。
∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。
∴BEC BAD ∠=∠。
在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。
∴AB=BE 。
∴△ABE 为等边三角形。
(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。
又∵∠DEC=45°,∴△DCE 为等腰直角三角形。
∴DC=CE=BC 。
∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。
而1EBC 30152α∠=︒-=︒。
∴30α=︒。
(1)∵AB=AC ,∠BAC=α,∴180ABC 2α︒-∠=。
《旋转》提高训练一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.(1)求证:AD⊥EF;(2)求CG的长.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标,C2的坐标.《旋转》提高训练参考答案与试题解析一、选择题1.如图,将方格纸中的图形绕点O顺时针旋转90°后得到的图形是()A.B.C.D.【分析】利用已知将图形绕点O顺时针旋转90°得出符合题意的图形即可.【解答】解:如图所示:将方格纸中的图形绕点O顺时针旋转90°后得到的图形是,故选:B.【点评】本题考查了生活中的旋转现象,在找旋转中心时,要抓住“动”与“不动”,熟悉图形的性质是解题的关键.2.如图,把△AOB绕点O顺时针旋转得到△COD,则旋转角是()A.∠AOC B.∠AOD C.∠AOB D.∠BOC【分析】根据旋旋转角的定义即可判断;【解答】解:如图,把△AOB绕点O顺时针旋转得到△COD,旋转角是∠AOC或∠BOD,故选:A.【点评】本题考查旋转变换,旋转角等知识,解题的关键是熟练掌握基本知识,属于中考基础题.3.在平面直角坐标系中,将点P(﹣3,2)绕坐标原点O顺时针旋转90°,所得到的对应点P'的坐标为()A.(﹣2,﹣3)B.(2,3)C.(﹣3,﹣2)D.(3,2).【分析】根据旋转中心为点O,旋转方向顺时针,旋转角度90°,作出点P的对称图形P′,可得所求点的坐标.【解答】解:如图所示,由图中可以看出点P′的坐标为(2,3).故选:B.【点评】本题考查了坐标与图形的变换﹣旋转,熟练掌握关于原点的对称点的坐标特征是解决问题的关键.4.在平面直角坐标系中,O为坐标原点,点A的坐标为(2,5),把OA绕点O 逆时针旋转90°,那么A点旋转后所得到点的坐标是()A.(﹣5,2)B.(﹣5,﹣2)C.(﹣2,5)D.(﹣2,﹣5)【分析】首先根据旋转的性质作图,利用图象则可求得点B的坐标.【解答】解:过点B作BC⊥x轴于点C,过点B作BC⊥y轴于点F,∵点A的坐标为(2,5),将OA绕原点O逆时针旋转90°到OB的位置,∴BC=2,CO=5∴点B的坐标为:(﹣5,2),故选:A.【点评】此题考查了旋转的性质,解题的关键是数形结合思想的应用得出BC,BF的长.5.如图,∠AOB=90°,把∠AOB顺时针旋转50°得到∠COD,则下列说法正确的是()A.∠AOC与∠BOD互余B.∠BOC=50°C.∠BOC的余角只有∠AOC D.∠AOD=140°【分析】根据旋转变换的性质得到∠BOD=∠AOC=50°,根据余角和补角的概念判断即可.【解答】解:由旋转变换的性质可知,∠BOD=∠AOC=50°,∵∠AOB=90°,∴∠COB=40°,∴∠AOC与∠BOD相等,不互余,A错误;B错误;∠BOC的余角有∠AOC和∠BOD,C错误;∠AOD=∠AOB+∠BOD=140°,D正确;故选:D.【点评】本题考查的是旋转的性质、余角和补角的概念,掌握旋转变换的性质、认识旋转角是解题的关键.二、填空题6.如图,在△ABC中,∠ACB=90°,AC=3,CB=5,点D是CB边上的一个动点,将线段AD绕着点D顺时针旋转90°,得到线段DE,连结BE,则线段BE的最小值等于.【分析】过E作EF⊥BC于F,根据余角的性质得到∠DEF=∠ADC,根据全等三角形的性质得到DF=AC=3,EF=CD,设CD=x,根据勾股定理得到BE2=x2+(2﹣x)2=2(x﹣1)2+2,于是得到结论.【解答】解:过E作EF⊥BC于F,∵∠C=∠ADE=90°,∴∠EFD=∠C=90°,∠FED+∠EDF=90°,∠EDF+∠ADC=90°,∴∠DEF=∠ADC,在△EDF和△DAC中,,∴△EDF≌△DAC(AAS),∴DF=AC=3,EF=CD,设CD=x,则BE2=x2+(2﹣x)2=2(x﹣1)2+2,∴AD2的最小值是2,∴AD的最小值是,故答案为:.【点评】本题考查了全等三角形的性质和判定,旋转的性质,二次函数的最值,勾股定理的应用,关键是得出二次函数的解析式.7.将点B(﹣3,1)绕坐标原点O旋转180°,则点B的对应点B1的坐标为(3,﹣1).【分析】根据题意可得,点B和点B的对应点B1关于原点对称,据此求出B1的坐标即可.【解答】解:∵将点B(﹣3,1)绕坐标原点O旋转180°后,得到的对应点B1,∴点B和点B1关于原点对称,∵点B的坐标为(﹣3,1),∴B1的坐标为(3,﹣1).故答案为:(3,﹣1).【点评】本题考查了坐标与图形变化﹣旋转,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.8.如图,在平面直角坐标系中,已知点A(3,0),B(0,4),如果将线段AB 绕点B顺时针旋转90°至CB,那么点C的坐标是(﹣4,1).【分析】作CD⊥y轴于点D,如图,根据旋转的性质得∠ABC=90°,BC=BA,再利用等角的余角相等得到∠CBD=∠A,则可证明△ABO≌△BCD得到BD=OA=3,CD=OB=4,然后根据第二象限内点的坐标特征写出C点坐标.【解答】解:如图,作CD⊥y轴于点D,∵A(3,0),B(0,4),∴OA=3,OB=4,∵线段AB绕点B顺时针旋转90°至CB,∴∠ABC=90°,BC=BA,∵∠ABO+∠A=90°,∠ABO+∠CBD=90°,∴∠CBD=∠A,在△ABO和△BCD中,∴△ABO≌△BCD(AAS),∴BD=OA=3,CD=OB=4,∴OD=OB﹣BD=4﹣3=1,∴C点坐标为(﹣4,1).故答案为:(﹣4,1).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是作CD⊥y 轴于点D后求出CD和OD的长.9.如图,OA⊥OB,Rt△CDE的边CD在OB上,∠ECD=45°,CE=4,若将△CDE 绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则OC的长度为2.【分析】根据旋转得出∠NCE=75°,求出∠NCO,根据直角三角形30度角的性质可得:OC=CN,可得结论.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,∴∠ECN=75°,CN=CE=4,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,∴OC=CN=2,故答案为:2.【点评】本题考查了含30度角的直角三角形性质,旋转性质,三角形的内角和定理等知识点,主要考查学生综合运用性质进行推理和计算的能力,题目比较好.10.如图,在平面内将△ABC绕点B旋转至△A'BC'的位置时,点A'在AC上,AC ∥BC',∠ABC=70°,则旋转的角度是40°.【分析】根据旋转前后的两个图形全等,则:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,所以∠A=∠AA'B=70°,根据三角形的内角和定理可得∠ABA'=40°.【解答】解:由旋转得:∠A=∠BA'C',∠ABC=∠A'BC'=70°,AB=A'B,∵AC∥BC',∴∠AA'B=∠A'BC'=70°,∴∠A=∠AA'B=70°,∴∠ABA'=180°﹣70°﹣70°=40°,即旋转角是40°,故答案为:40°.【点评】本题考查了旋转的性质:旋转前后两图形全等,明确对应点与旋转中心的连线段所夹的角等于旋转角.也考查了等腰三角形的性质和三角形内角和定理.三、解答题11.如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A 按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF 过点D.(1)求证:AD⊥EF;(2)求CG的长.【分析】(1)由平移的性质可知:AB∥DF,再利用平行线的性质即可证明;(2)先判断出∠ADE=∠ACB,进而得出△ADE∽△ACB,得出比例式求出AE,即可得出结论.【解答】(1)证明:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠ADF+∠DAB=180°∴∠ADF=90°,∴AD⊥EF.(2)由平移的性质得,AE∥CG,AB∥EF,∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,∵∠DAB=90°,∴∠ADE=90°,∵∠ACB=90°,∴∠ADE=∠ACB,∴△ADE∽△ACB,∴=,∵AC=8,AB=AD=10,∴AE=12.5,由平移的性质得,CG=AE=12.5.【点评】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质,解直角三角形,相似三角形的判定和性质,判断出△ADE∽△ACB 是解本题的关键.12.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A与CB的延长线上的点E重合,连接CD.(1)试判断△CBD的形状,并说明理由;(2)求∠BDC的度数.【分析】(1)根据图形旋转不变性的性质得出△ABC≌△EBD,故可得出BC=BD,由此即可得出结论;(2)根据图形选旋转不变性的性质求出∠EBD的度数,再由等腰三角形的性质即可得出∠BDC的度数.【解答】解:(1)∵△EBD由△ABC旋转而成,∴△ABC≌△EBD,∴BC=BD,∴△CBD是等腰三角形.(3)∵△ABC≌△EBD,∴∠EBD=∠ABC=30°,∴∠DBC=180﹣30°=150°,∵△CBD是等腰三角形,∴∠BDC===15°.【点评】本题考查的是旋转的性质,熟知图形旋转不变性的性质是解答此题的关键.13.已知△ABC在平面直角坐标系中的位置如图所示.(1)写出A,B,C三点的坐标;(2)将△ABC绕着点C顺时针方向旋转90°后得到△A1B2C,画出旋转后的△A1B1C,并写出A1,B1的坐标.【分析】(1)根据平面坐标系得出A、B、C三点的坐标即可;(2)分别画出A,B的对应点A1,B2,写出A1,B1的坐标即可.【解答】解:(1)如图所示:A、B、C三点的坐标分别为:(﹣1,2),(﹣3,1),(0,﹣1);(2)△A1B2C如图所示,A1,B1的坐标分别为(3,0),(2,2).【点评】本题考查作图﹣旋转变换,解题的关键是熟练掌握基本知识,属于中考常考题型.14.如图,△ABC中,∠C=90°,将△ABC绕点C顺时针旋转90°,得到△DEC(其中点D、E分别是A、B两点旋转后的对应点).(1)请画出旋转后的△DEC;(2)试判断DE与AB的位置关系,并证明你的结论.【分析】(1)根据要求画出△DCE即可;(2)利用“8字型”证明∠AFE=∠DCE即可解决问题;【解答】解:(1)旋转后的△DEC如图所示.(2)结论:DE⊥AB.理由:延长DE交AB于点F.由旋转不变性可知:∠A=∠D,∠ACB=∠DCE=90°,∵∠AEF=∠DEC,∠∠AFE=∠DCE=90°,∴DE⊥AB.【点评】本题考查旋转变换,解题的关键是熟练掌握利用“8字型”证明角相等,属于中考常考题型.15.在如图的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴向右平移4个单位,在图中画出平移后的△A1B1C1(2)作△ABC关于坐标原点成中心对称的△A2B2C2.(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可;(2)分别作出A,B,C的对应点△A2,B2,C2即可;(3)根据B1,C2,的位置写出坐标即可;【解答】解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示;(3)求B1的坐标(2,﹣2),C2的坐标(4,1).【点评】本题考查作图﹣旋转变换,平移变换,解题的关键是熟练掌握基本知识,属于中考常考题型.。
旋转一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点、旋转角是.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA PB+PC(选填“>”、“=”、“<”)10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为度,图中除△ABC外,还有等边三形是△.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).旋转参考答案与试题解析一、选择题(共6小题,每小题4分,满分24分)1.下列图形中,你认为既是中心对称图形又是轴对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:既是中心对称图形又是轴对称图形的只有A.故选A.【点评】掌握好中心对称与轴对称的概念.轴对称的关键是寻找对称轴,两边图象沿对称轴折叠后可重合,中心对称是要寻找对称中心,图形旋转180度后与原图重合.2.如图,所给的图案由△ABC绕点O顺时针旋转()前后的图形组成的.A.45°、90°、135°B.90°、135°、180°C.45°、90°、135°、180°、225° D.45°、180°、225°【考点】旋转的性质.【专题】计算题.【分析】根据旋转的性质,把旋转后的图形看作为正八边形,依次得到旋转的角度.【解答】解:把△ABC绕点O顺时针旋转45°,得到△HEF;顺时针旋转180°,得到△ADC;顺时针旋转225°,得到△HGF;故选D.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.3.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB′C′D′,图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质;正方形的性质.【分析】设B′C′与CD的交点为E,连接AE,利用“HL”证明Rt△AB′E和Rt△ADE全等,根据全等三角形对应角相等∠DAE=∠B′AE,再根据旋转角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ADEB′的面积,列式计算即可得解.【解答】解:如图,设B′C′与CD的交点为E,连接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋转角为30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选:C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.4.如图,P是等边三角形ABC内一点,∠APB,∠BPC,∠CPA的大小之比为5:6:7,则以PA,PB,PC为边的三角形三内角大小之比(从小到大)是()A.2:3:4 B.3:4:5C.4:5:6 D.以上结果都不对【考点】旋转的性质;三角形内角和定理;等边三角形的性质.【专题】计算题.【分析】将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,则AP′=AP,∠P′AP=60°,得到△AP′P是等边三角形,PP′=AP,所以△P′CP的三边长分别为PA,PB,PC;再由∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,得到∠APB=100°,∠BPC=120°,∠CPA=140°,这样可分别求出∠PP′C=∠AP′C﹣∠AP′P=∠APB ﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,即可得到答案.【解答】解:如图,将△APB绕A点逆时针旋转60°得△AP′C,显然有△AP′C≌△APB,连PP′,∵AP′=AP,∠P′AP=60°,∴△AP′P是等边三角形,∴PP′=AP,∵P′C=PB,∴△P′CP的三边长分别为PA,PB,PC,∵∠APB+∠BPC+∠CPA=360°,∠APB:∠BPC:∠CPA=5:6:7,∴∠APB=100°,∠BPC=120°,∠CPA=140°,∴∠PP′C=∠AP′C﹣∠AP′P=∠APB﹣∠AP′P=100°﹣60°=40°,∠P′PC=∠APC﹣∠APP′=140°﹣60°=80°,∠PCP′=180°﹣(40°+80°)=60°,∴∠PP′C:∠PCP′:∠P′PC=2:3:4.故选A.【点评】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.也考查了等边三角形的性质.5.下列图形中,是中心对称图形的是()A.菱形B.等腰梯形C.等边三角形D.等腰直角三角形【考点】中心对称图形.【分析】旋转180°后与原图重合的图形是中心对称图形.【解答】解:菱形,等腰梯形,等边三角形,等腰直角三角形都是轴对称图形;菱形既是轴对称图形,又是中心对称图形.故选A.【点评】运用轴对称和中心对称图形概念,找出符合条件的图形.【链接】如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.6.在平面直角坐标系中,点P(2,﹣3)关于原点对称的点的坐标是()A.(2,3)B.(﹣2,3)C.(﹣2,﹣3)D.(﹣3,2)【考点】关于原点对称的点的坐标.【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y)”解答.【解答】解:根据中心对称的性质,得点P(2,﹣3)关于原点对称的点的坐标是(﹣2,3).故选B.【点评】关于原点对称的点坐标的关系,是需要识记的基本问题.记忆方法是结合平面直角坐标系的图形记忆.二、填空题(共6小题,每小题5分,满分30分)7.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得点P1,延长OP1到点P2,使OP2=2OP1再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3的坐标是(﹣1,).【考点】坐标与图形变化﹣旋转.【专题】压轴题.【分析】已知将点P0绕着原点O按逆时针方向旋转60°得点P1,则OP1=1,P1点的坐标是(.则P2的坐标是;再将点P2绕着原点O按逆时针方向旋转60°得点P3,则点P3与P2关于y轴对称,因而点P3的坐标就很容易求出.【解答】解:∵点P0绕着原点O按逆时针方向旋转60°得点P1,∴P1点的坐标是(,∴P2的坐标是,又∵点P3与P2关于y轴对称,∴点P3的坐标是(﹣1,).【点评】解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.8.如图所示,△ABC中,∠BAC=90°,AB=AC=5,△ABC按逆时针方向旋转一个角度后,成为△ACD,则旋转中心是点A、旋转角是∠CAD,是90°.【考点】旋转的性质.【分析】确定图形的旋转时首先要确定旋转前后的对应点,即可确定旋转中心.【解答】解:旋转中心是点A、旋转角是∠CAD,是90°.【点评】本题主要考查了旋转的定义,正确确定旋转中的对应点,是确定旋转中心,旋转角的前提.9.如图,设P是等边三角形ABC内任意一点,△ACP′是由△ABP旋转得到的,则PA<PB+PC(选填“>”、“=”、“<”)【考点】旋转的性质;三角形三边关系;等边三角形的判定.【分析】此题只需根据三角形的任意两边之和大于第三边和等边三角形的性质,进行分析即可.【解答】解:根据三角形的三边关系,得:BC<PB+PC.又AB=BC>PA,∴PA<PB+PC.【点评】本题结合旋转主要考查了三角形的三边关系:两边之和大于第三边,两边之差小于第三边.10.如图,E、F分别是正方形ABCD的边BC、CD上一点,且BE+DF=EF,则∠EAF=45度.【考点】旋转的性质;正方形的性质.【分析】根据BE+DF=EF,则延长FD到G,使DG=BE,则FG=EF,可以认为是把△ABE 绕点A逆时针旋转90度,得到△ADG,根据旋转的定义即可求解.【解答】解:如图:延长FD到G,使DG=BE,则FG=EF,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG又∴AF=AF,GF=EF∴△AGF≌△AEF∴∠EAF=∠GAF=×90°=45°.【点评】本题考查旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.11.如图,O是等边△ABC内一点,将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,则旋转角为60度,图中除△ABC外,还有等边三形是△AOD.【考点】旋转的性质;等边三角形的性质;等边三角形的判定.【分析】根据旋转的性质及全等三角形的性质作答.【解答】解:∵将△AOB绕A点逆时针旋转,使得B,O两点的对应分别为C,D,∴△AOB≌△ADC,∴OA=AD,∠BAO=∠DAC,∴∠BAO+∠OAC=∠DAC+∠OAC=∠BAC=60°,即∠OAD=60°,所以旋转角为60°.∵OA=AD,∠OAD=60°,∴△AOD为等边三角形.【点评】此题主要考查了图形旋转的性质:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.12.如图,Rt△ABC中,P是斜边BC上一点,以P为中心,把这个三角形按逆时针方向旋转90°得到△DEF,图中通过旋转得到的三角形还有△EPQ.【考点】旋转的性质.【分析】旋转中心是P,旋转方向为逆时针,旋转角是90度,已确定,再通过观察发现全等三角形,判断是否符合本题的旋转规律.【解答】解:根据旋转的性质可知,旋转中心是P,旋转角是90度,图中通过旋转得到的三角形还有△EPQ.【点评】本题考查旋转两相等的性质,即对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.三、解答题13.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【考点】旋转的性质;全等三角形的判定与性质;正方形的性质.【专题】计算题;压轴题.【分析】(1)BM+DN=MN成立,证得B、E、M三点共线即可得到△AEM≌△ANM,从而证得ME=MN.(2)DN﹣BM=MN.证明方法与(1)类似.【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.【点评】本题考查了旋转的性质,解决此类问题的关键是正确的利用旋转不变量.14.如图,正方形ABCD的边长为1,AB,AD上各有一点P,Q,如果△APQ的周长为2,求∠PCQ的度数.【考点】正方形的性质;全等三角形的判定与性质.【专题】计算题.【分析】简单的求正方形内一个角的大小,首先从△APQ的周长入手求出PQ=DQ+BP,然后将△CDQ逆时针旋转90°,使得CD、CB重合,然后利用全等来解.【解答】解:如图所示,△APQ的周长为2,即AP+AQ+PQ=2①,正方形ABCD的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①﹣②得,PQ﹣QD﹣PB=0,∴PQ=PB+QD.延长AB至M,使BM=DQ.连接CM,△CBM≌△CDQ(SAS),∴∠BCM=∠DCQ,CM=CQ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ.在△CPQ与△CPM中,CP=CP,PQ=PM,CQ=CM,∴△CPQ≌△CPM(SSS),∴∠PCQ=∠PCM=∠QCM=45°.【点评】熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算.15.有两张完全重合的矩形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到矩形AMEF(如图1),连接BD、MF,若此时他测得BD=8cm,∠ADB=30°.(1)请直接写出AF的长;(2)小红同学用剪刀将△BCD与△MEF剪去,与小亮同学继续探究.他们将△ABD绕点A顺时针旋转得△AB1D1,AD1交FM于点K(如图2),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,求△AFK的面积(保留根号).【考点】锐角三角函数的定义;旋转的性质.【专题】操作型.【分析】(1)根据旋转的性质可知△AFM≌△ADB,则AF=AD=BD•cos∠ADB=8×=4cm;(2)当△AFK为等腰三角形时,由于AM<AF,那么A不能是等腰△AFK的顶点,则分两种情况:①K为顶点,即AK=FK时;②F为顶点,即AF=FK.针对每一种情况,利用三角形的面积公式,可分别求出△AFK的面积.【解答】解:(1)AF=;(2)△AFK为等腰三角形时,分两种情况:①当AK=FK时,如图.过点K作KN⊥AF于N,则KN⊥AF,AN=NF=AF=2cm.在直角△NFK中,∠KNF=90°,∠F=30°,∴KN=NF•tan∠F=2cm.∴△AFK的面积=×AF×KN=;②当AF=FK时,如图.过点K作KP⊥AF于P.在直角△PFK中,∠KPF=90°,∠F=30°,∴KP=KF=2cm.∴△AFK的面积=×AF×KP=12cm2.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.注意(2)中需分情况讨论△AFK为等腰三角形时的不同分类,不要漏解.。
九年级中考数学初中数学旋转解答题压轴题提高专题练习及答案一、旋转1.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=2,∴OM=2﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃) ∴MN =﹣42+46. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.2.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度. 【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117 【解析】 【分析】(1)如图1中,只要证明PMN V 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅V V ,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得2222BE PM MN ===; (3)有两种情形分别求解即可. 【详解】 (1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB ,∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE , ∴AD =BE , ∴PM =PN , ∵∠ACB =90°, ∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC , ∴PM ⊥PN ,∴△PMN 的等腰直角三角形, ∴2MN PM =,∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H . ∵△ABC 和△CDE 是等腰直角三角形, ∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°, ∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE , ∴∠ACD =∠ECB ,∴△ECB ≌△DCA , ∴BE =AD ,∠DAC =∠EBC , ∵∠AHB =180°﹣(∠HAB +∠ABH ) =180°﹣(45°+∠HAC +∠ABH ) =∠180°﹣(45°+∠HBC +∠ABH ) =180°﹣90° =90°, ∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°,∴2222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=∴342BE BG GE =-= ∴21712MN BE ==. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=,∴342BE BG GE =+=+, ∴2171MN BE ==+. 综上所述,MN =17﹣1或17+1. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.3.(12分)如图1,在等边△ABC 中,点D ,E 分别在边AB ,AC 上,AD=AE ,连接BE ,CD ,点M 、N 、P 分别是BE 、CD 、BC 的中点.(1)观察猜想:图1中,△PMN 的形状是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,△PMN 的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN 的周长的最大值.【答案】(1) 等边三角形;(2) △PMN 的形状不发生改变,仍然为等边三角形,理由见解析;(3)6 【解析】分析:(1)如图1,先根据等边三角形的性质得到AB=AC,∠ABC=∠ACB=60°,则BD=CE,再根据三角形中位线性质得PM∥CE,PM=12CE,PN∥AD,PN=12BD,从而得到PM=PN,∠MPN=60°,从而可判断△PMN为等边三角形;(2)连接CE、BD,如图2,先利用旋转的定义,把△ABD绕点A逆时针旋转60°可得到△CAE,则BD=CE,∠ABD=∠ACE,与(1)一样可得PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,则计算出∠BPM+∠CPN=120°,从而得到∠MPN=60°,于是可判断△PMN为等边三角形.(3)利用AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)得到BD的最大值为4,则PN的最大值为2,然后可确定△PMN的周长的最大值.详解:(1)如图1.∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵AD=AE,∴BD=CE.∵点M、N、P分别是BE、CD、BC的中点,∴PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,∴∠MPN=60°,∴△PMN为等边三角形;故答案为等边三角形;(2)△PMN的形状不发生改变,仍然为等边三角形.理由如下:连接CE、BD,如图2.∵AB=AC,AE=AD,∠BAC=∠DAE=60°,∴把△ABD绕点A逆时针旋转60°可得到△CAE,∴BD=CE,∠ABD=∠ACE,与(1)一样可得PM∥CE,PM=12CE,PN∥AD,PN=12BD,∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,∴∠MPN=60°,∴△PMN为等边三角形.(3)∵PN=12BD,∴当BD的值最大时,PN的值最大.∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)∴BD的最大值为1+3=4,∴PN的最大值为2,∴△PMN的周长的最大值为6.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的判定与性质和三角形中位线性质.4.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(261;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF2221-3,在Rt△ABF中,BF22AB AF-6,∴BD=CE=BF﹣DF61,∴FH=12EC61-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.5.小明在矩形纸片上画正三角形,他的做法是:①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF,把纸片展平;②沿折痕BG折叠纸片,使点C落在EF上的点P处,再折出PB、PC,最后用笔画出△PBC(图1).(1)求证:图1中的PBC是正三角形:(2)如图2,小明在矩形纸片HIJK上又画了一个正三角形IMN,其中IJ=6cm,且HM=JN.①求证:IH=IJ②请求出NJ的长;(3)小明发现:在矩形纸片中,若一边长为6cm,当另一边的长度a变化时,在矩形纸片上总能画出最大的正三角形,但位置会有所不同.请根据小明的发现,画出不同情形的示意图(作图工具不限,能说明问题即可),并直接写出对应的a的取值范围.【答案】(1)证明见解析;(2)①证明见解析;②12-63(3)33<a<43,a>43【解析】分析:(1)由折叠的性质和垂直平分线的性质得出PB=PC,PB=CB,得出PB=PC=CB即可;(2)①利用“HL”证Rt△IHM≌Rt△IJN即可得;②IJ上取一点Q,使QI=QN,由Rt△IHM≌Rt△IJN知∠HIM=∠JIN=15°,继而可得∠NQJ=30°,设NJ=x,则IQ=QN=2x、QJ=3x,根据IJ=IQ+QJ求出x即可得;(3)由等边三角形的性质、直角三角形的性质、勾股定理进行计算,画出图形即可.(1)证明:∵①对折矩形纸片ABCD(AB>BC),使AB与DC重合,得到折痕EF∴PB=PC∵沿折痕BG折叠纸片,使点C落在EF上的点P处∴PB=BC∴PB=PC=BC∴△PBC是正三角形:(2)证明:①如图∵矩形AHIJ∴∠H=∠J=90°∵△MNJ 是等边三角形∴MI=NI在Rt △MHI 和Rt △JNI 中MI NI MH NJ =⎧⎨=⎩∴Rt △MHI ≌Rt △JNI (HL )∴HI=IJ②在线段IJ 上取点Q ,使IQ=NQ∵Rt △IHM ≌Rt △IJN ,∴∠HIM=∠JIN ,∵∠HIJ=90°、∠MIN=60°,∴∠HIM=∠JIN=15°,由QI=QN 知∠JIN=∠QNI=15°,∴∠NQJ=30°,设NJ=x ,则IQ=QN=2x ,QJ=22=3QN NJ -x ,∵IJ=6cm ,∴2x+3x=6,∴x=12-63,即NJ=12-63(cm ).(3)分三种情况:①如图:设等边三角形的边长为b ,则0<b≤6,则tan60°3=2ab ,∴a=32b , ∴0<63=33②如图当DF与DC重合时,DF=DE=6,∴a=sin60°×DE=63=33,当DE与DA重合时,a=643 sin603==︒,∴33<a<43;③如图∵△DEF是等边三角形∴∠FDC=30°∴DF=643 cos303==︒∴a>3点睛:本题是四边形的综合题目,考查了折叠的性质、等边三角形的判定与性质、旋转的性质、直角三角形的性质、正方形的性质、全等三角形的判定与性质等知识;本题综合性强,难度较大.6.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.7.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S△BCE=12EC•BE=12(4﹣12t)(t+2)=﹣14t2+32t+4;S△ABC=12•AB•AC=1214t2+4,∴S=S△BEC+S△ABC=32t+8.当A与O重合,C与F重合,如图2,此时t=0,当C与E重合时,如图3,AG=EF,即1 2t=4,t=8,∴S与t之间的函数关系式为:S=32t+8(0≤t≤8);(III)如图1,易得△ABO∽△CAF,∴ABAC=OBAF=OAFC=2,∴AF=2,CF=12t,由勾股定理得:ACBC∴BC+AC=(),∴当t=0时,BC+AC有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.8.如图,△ABC是等边三角形,AB=6cm,D为边AB中点.动点P、Q在边AB上同时从点D出发,点P沿D→A以1cm/s的速度向终点A运动.点Q沿D→B→D以2cm/s的速度运动,回到点D停止.以PQ为边在AB上方作等边三角形PQN.将△PQN绕QN的中点旋转180°得到△MNQ.设四边形PQMN与△ABC重叠部分图形的面积为S(cm2),点P运动的时间为t(s)(0<t<3).(1)当点N落在边BC上时,求t的值.(2)当点N到点A、B的距离相等时,求t的值.(3)当点Q沿D→B运动时,求S与t之间的函数表达式.(4)设四边形PQMN的边MN、MQ与边BC的交点分别是E、F,直接写出四边形PEMF 与四边形PQMN的面积比为2:3时t的值.【答案】(1)(2)2(3)S=S菱形PQMN=2S△PNQ=t2;(4)t=1或【解析】试题分析:(1)由题意知:当点N落在边BC上时,点Q与点B重合,此时DQ=3;(2)当点N到点A、B的距离相等时,点N在边AB的中线上,此时PD=DQ;(3)当0≤t≤时,四边形PQMN与△ABC重叠部分图形为四边形PQMN;当≤t≤时,四边形PQMN与△ABC重叠部分图形为五边形PQFEN.(4)MN、MQ与边BC的有交点时,此时<t<,列出四边形PEMF与四边形PQMN的面积表达式后,即可求出t的值.试题解析:(1)∵△PQN与△ABC都是等边三角形,∴当点N落在边BC上时,点Q与点B重合.∴DQ=3∴2t=3.∴t=;(2)∵当点N到点A、B的距离相等时,点N在边AB的中线上,∴PD=DQ,当0<t<时,此时,PD=t,DQ=2t∴t=2t∴t=0(不合题意,舍去),当≤t<3时,此时,PD=t,DQ=6﹣2t∴t=6﹣2t,解得t=2;综上所述,当点N到点A、B的距离相等时,t=2;(3)由题意知:此时,PD=t,DQ=2t当点M在BC边上时,∴MN=BQ∵PQ=MN=3t,BQ=3﹣2t∴3t=3﹣2t∴解得t=如图①,当0≤t≤时,S△PNQ=PQ2=t2;∴S=S菱形PQMN=2S△PNQ=t2,如图②,当≤t≤时,设MN、MQ与边BC的交点分别是E、F,∵MN=PQ=3t,NE=BQ=3﹣2t,∴ME=MN﹣NE=PQ﹣BQ=5t﹣3,∵△EMF是等边三角形,∴S△EMF=ME2=(5t﹣3)2.;(4)MN、MQ与边BC的交点分别是E、F,此时<t<,t=1或.考点:几何变换综合题9.如图2,边长为2的等边△ABC内接于⊙O,△ABC绕圆心O顺时针方向旋转得到△,A′C′分别与AB、AC交于E、D点,设旋转角度为.(1)当=,△A′B′C′与△ABC出现旋转过程中的第一次完全重合;(2)当=60°时(如图1),该图()A.是中心对称图形但不是轴对称图形B.是轴对称图形但不是中心对称图形C.既是轴对称图形又是中心对称图形D.既不是轴对称图形也不是中心对称图形(3)如图2,当,△ADE的周长是否会发生变化,如会变化,说明理由,如不会变化,求出它的周长.【答案】(1)120°;(2)C;(3)△的周长不变.【解析】【分析】(1)根据等边三角形的中心角为120°可直接求解;(2)根据题意可知,当=60°时,点A、、B、、C、为⊙O的六等分点,,所有的三角形都是正三角形,由此可得到所有图形即是轴对称图形,又是中心对称图形;(3)得到结论:周长不发生变化,连接A,根据弦相等,则它们所对的弧相等的性质可得,即,再根据等弧所对的圆周角相等,得,由等角对等边的性质可得,同理,因此可求△的周长==.【详解】解:(1)120°.如图,可根据等边三角形的性质直接根据三角形的内角和求得∠O=120°;(2)C(3)△的周长不变;理由如下:连接AA′,∵,∴,∴,∴,∴,同理,,∴△的周长=.即考点:正多边形与圆,圆周角定理10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB中点,点P为直线BC上的动点(不与点B、点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)如图1,当点P在线段BC上时,请直接写出线段BQ与CP的数量关系.(2)如图2,当点P在CB延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P在BC延长线上时,若∠BPO=15°,BP=4,请求出BQ的长..【答案】(1)BQ=CP;(2)成立:PC=BQ;(3)434【解析】试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程(62)24a a ++=,求出a 即可解决问题;试题解析:解:(1)结论:BQ =CP . 理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ . (2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF . ∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.11.小明合作学习小组在探究旋转、平移变换.如图△ABC ,△DEF 均为等腰直角三角形,各顶点坐标分别为A (1,1),B (2,2),C (2,1),D (2,0),E(22, 0),F (322,22-).(1)他们将△ABC 绕C 点按顺时针方向旋转450得到△A 1B 1C .请你写出点A 1,B 1的坐标,并判断A 1C 和DF 的位置关系;(2)他们将△ABC 绕原点按顺时针方向旋转450,发现旋转后的三角形恰好有两个顶点落在抛物线2y 22x bx c =++上.请你求出符合条件的抛物线解析式;(3)他们继续探究,发现将△ABC 绕某个点旋转45,若旋转后的三角形恰好有两个顶点落在抛物线2y x =上,则可求出旋转后三角形的直角顶点P 的坐标.请你直接写出点P 的所有坐标.【答案】解:(1)222222b c 0{3232222c +=+=⎝⎭. A 1C 和DF 的位置关系是平行.(2)∵△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,∴①当抛物线经过点D 、E 时,根据题意可得:(222222b c 0{2222b c 0++=++=,解得b 12{c 82=-= ∴2y 2x 12x 82=-+②当抛物线经过点D 、F 时,根据题意可得:222222b c 0{3232222c ++=+=⎝⎭,解得b 11{c 72=-= ∴2y 2x 11x 2=-+③当抛物线经过点E、F时,根据题意可得:(22c0{b c222++=⎛++=⎝⎭,解得b13{c=-=∴2y13x=-+(3)在旋转过程中,可能有以下情形:①顺时针旋转45°,点A、B落在抛物线上,如答图1所示,易求得点P坐标为(0).②顺时针旋转45°,点B、C落在抛物线上,如答图2所示,设点B′,C′的横坐标分别为x1,x2,易知此时B′C′与一、三象限角平分线平行,∴设直线B′C′的解析式为y=x+b.联立y=x2与y=x+b得:x2=x+b,即2x x b0--=,∴1212x x1x x b+==-,.∵B′C′=1,∴根据题意易得:12x x2-=,∴()2121x x2-=,即()212121x x4x x2+-=.∴114b2+=,解得1b8=-.∴21x x08-+=,解得2x4+=x或2x4-=.∵点C′的横坐标较小,∴2x4=.当2x4=时,23y x8-==.∴P③顺时针旋转45°,点C、A落在抛物线上,如答图3所示,设点C′,A′的横坐标分别为x1,x2.易知此时C′A′与二、四象限角平分线平行,∴设直线C′A′的解析式为y x b=-+.联立y=x2与y x b=-+得:2x x b=-+,即2x x b0+-=,∴1212x x1x x b+=-=-,.∵C′A′=1,∴根据题意易得:12x x2-=,∴()2121x x2-=,即()212121x x 4x x 2+-=. ∴114b 2+=,解得1b 8=-. ∴21x x 08++=,解得22x -+=x 或22x --=.∵点C′的横坐标较大,∴22x 4-+=. 当22x 4-+=时,2322y x 8-==. ∴P (22-+,322-). ④逆时针旋转45°,点A 、B 落在抛物线上.因为逆时针旋转45°后,直线A′B′与y 轴平行,因为与抛物线最多只能有一个交点,故此种情形不存在.⑤逆时针旋转45°,点B 、C 落在抛物线上,如答图4所示, 与③同理,可求得:P (22-+,322-). ⑥逆时针旋转45°,点C 、A 落在抛物线上,如答图5所示, 与②同理,可求得:P (22+,322+). 综上所述,点P 的坐标为:(0,122-),(224-,3228-),P (224-+,3228-,(224+,3228+).【解析】(1)由旋转性质及等腰直角三角形边角关系求解.(2)首先明确△ABC 绕原点按顺时针方向旋转45°后的三角形即为△DEF ,然后分三种情况进行讨论,分别计算求解.(3)旋转方向有顺时针、逆时针两种可能,落在抛物线上的点有点A 和点B 、点B 和点C 、点C 和点D 三种可能,因此共有六种可能的情形,需要分类讨论,避免漏解. 考点:旋转变换的性质,曲线上点的坐标与方程的关系,平行线的性质,等腰直角三角形的性质,分类思想的应用.12.已知O 为直线MN 上一点,OP ⊥MN ,在等腰Rt △ABO 中,90BAO ∠=︒,AC ∥OP 交OM 于C ,D 为OB 的中点,DE ⊥DC 交MN 于E .(1) 如图1,若点B 在OP 上,则①AC OE (填“<”,“=”或“>”);②线段CA 、CO 、CD 满足的等量关系式是 ;(2) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3) 将图1中的等腰Rt △ABO 绕O 点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA 、CO 、CD 满足的等量关系式 ;【答案】(1)①=;②AC 2+CO 2=CD 2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD. 【解析】试题分析:(1)①如图1,证明AC=OC 和OC=OE 可得结论;②根据勾股定理可得:AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A 、D 、O 、C 四点共圆,得∠ACD=∠AOB ,同理得:∠EFO=∠EDO ,再证明△ACO ≌△EOF ,得OE=AC ,AO=EF ,根据勾股定理得:AC 2+OC 2=FO 2+OE 2=EF 2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD ,则AD=OD 证明△ACD ≌△OED ,根据△CDE 是等腰直角三角形,得CE 2=2CD 2,等量代换可得结论(OC ﹣OE )2=(OC ﹣AC )2=2CD 2,开方后是:OC ﹣AC=CD .试题解析:(1)①AC=OE ,理由:如图1,∵在等腰Rt △ABO 中,∠BAO=90°,∴∠ABO=∠AOB=45°, ∵OP ⊥MN ,∴∠COP=90°,∴∠AOC=45°,∵AC ∥OP ,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC , 连接AD ,∵BD=OD ,∴AD=OD ,AD ⊥OB ,∴AD ∥OC ,∴四边形ADOC 是正方形,∴∠DCO=45°, ∴AC=OD ,∴∠DEO=45°,∴CD=DE ,∴OC=OE , ∴AC=OE ; ②在Rt △CDO 中,∵CD 2=OC 2+OD 2,∴CD 2=AC 2+OC 2; 故答案为AC 2+CO 2=CD 2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题13.如图,是边长为的等边三角形,边在射线上,且,点从点出发,沿的方向以的速度运动,当不与点重合是,将绕点逆时针方向旋转得到,连接.(1)求证:是等边三角形;(2)当时,的周长是否存在最小值?若存在,求出的最小周长;若不存在,请说明理由.(3)当点在射线上运动时,是否存在以为顶点的三角形是直角三角形?若存在,求出此时的值;若不存在,请说明理由.【答案】(1)详见解析;(2)存在,2+4;(3)当t=2或14s时,以D、E、B为顶点的三角形是直角三角形.【解析】试题分析:(1)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(2)当6<t<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;(3)存在,①当点D与点B重合时,D,B,E不能构成三角形,②当0≤t<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2,于是得到t=2÷1=2s;③当6<t<10s时,此时不存在;④当t>10s时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到t=14÷1=14s.试题解析:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2cm,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤t<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA ﹣DA=6﹣4=2, ∴t=2÷1=2s ;③当6<t <10s 时,由∠DBE=120°>90°, ∴此时不存在;④当t >10s 时,由旋转的性质可知,∠DBE=60°, 又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC , 而∠BDC >0°, ∴∠BDE >60°, ∴只能∠BDE=90°, 从而∠BCD=30°, ∴BD=BC=4, ∴OD=14cm , ∴t=14÷1=14s ,综上所述:当t=2或14s 时,以D 、E 、B 为顶点的三角形是直角三角形. 考点:旋转与三角形的综合题.14.(1)发现如图,点A 为线段BC 外一动点,且BC a =,AB b =.填空:当点A 位于____________时,线段AC 的长取得最大值,且最大值为_________.(用含a ,b 的式子表示)(2)应用点A 为线段BC 外一动点,且3BC =,1AB =.如图所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE . ①找出图中与BE 相等的线段,并说明理由; ②直接写出线段BE 长的最大值.(3)拓展如图,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()5,0,点P 为线段AB 外一动点,且2PA =,PM PB =,90BPM ∠=︒,求线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB 的延长线上,a+b ;(2)①DC=BE,理由见解析;②BE 的最大值是4;(3)AM 的最大值是2,点P 的坐标为(22) 【解析】 【分析】(1)根据点A 位于CB 的延长线上时,线段AC 的长取得最大值,即可得到结论; (2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=60°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果;(3)连接BM ,将△APM 绕着点P 顺时针旋转90°得到△PBN ,连接AN ,得到△APN 是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM ,根据当N 在线段BA 的延长线时,线段BN 取得最大值,即可得到最大值为2+3;如图2,过P 作PE ⊥x 轴于E ,根据等腰直角三角形的性质即可得到结论. 【详解】解:(1)∵点A 为线段BC 外一动点,且BC=a ,AB=b ,∴当点A 位于CB 的延长线上时,线段AC 的长取得最大值,且最大值为BC+AB=a+b , 故答案为CB 的延长线上,a+b ; (2)①CD=BE ,理由:∵△ABD 与△ACE 是等边三角形, ∴AD=AB ,AC=AE ,∠BAD=∠CAE=60°, ∴∠BAD+∠BAC=∠CAE+∠BAC , 即∠CAD=∠EAB , 在△CAD 与△EAB 中,AD AB CAD EAB AC AE ⎧⎪∠∠⎨⎪⎩=== , ∴△CAD ≌△EAB , ∴CD=BE ;②∵线段BE 长的最大值=线段CD 的最大值,由(1)知,当线段CD 的长取得最大值时,点D 在CB 的延长线上, ∴最大值为BD+BC=AB+BC=4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴2,∴22,∴P(22).【点睛】考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.15.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段BE与BF有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由.。
一、旋转真题与模拟题分类汇编(难题易错题)1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD =112+×6=2,∴AE=AD+DE=2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.3.如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.【解析】试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.试题解析:(1)BE=CD.理由如下:∵△ABC与△CDE是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB-∠ACE=∠ECD-∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴BE=AD;(2)∵旋转角为30°,∴∠BCF=30°,∴∠ACF=60°-30°=30°,∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,∴∠ACF=∠CHQ,∴△CHQ是等腰三角形;(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,∴CG=CP•cos30°=(x+4),∵△CHQ是等腰三角形,∴CH=2•CQcos30°=2x•=x,∴GH=CG-CH=(x+4)-x=2-x.考点:几何变换综合题.4.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.5.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;62【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.∴EG=m+3m=(1+3)m , ∵S △BEG =12•EG•BN=12•BG•EH , ∴EH=3?(13)2m m m +=3+32m ,在Rt △EBH 中,sin ∠EBH=3+362246mEHEB m+==. 【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,7.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 顺时针旋转60°,得到线段PQ ,连接BQ .(1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO =15°,BP =4,请求出BQ 的长.【答案】(1)BQ =CP ;(2)成立:PC =BQ ;(3)434-. 【解析】试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程(62)24a a ++=,求出a 即可解决问题;试题解析:解:(1)结论:BQ =CP .理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图1,O 为直线AB 上一点,过点O 作射线OC ,AOC 30∠=,将一直角三角板()M 30∠=的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.()1将图1中的三角板绕点O 以每秒5的速度沿逆时针方向旋转一周.如图2,经过t 秒后,ON 落在OC 边上,则t =______秒(直接写结果).()2如图2,三角板继续绕点O 以每秒5的速度沿逆时针方向旋转到起点OA 上.同时射线OC 也绕O 点以每秒10的速度沿逆时针方向旋转一周,①当OC 转动9秒时,求MOC ∠的度数.②运动多少秒时,MOC 35∠=?请说明理由.【答案】(1)6;(2)①45;②11秒或25秒,理由见解析. 【解析】【分析】(1)因为∠AOC=30°,所以ON 落在OC 边上时,三角板旋转了30°,即可求出旋转时间;(2)在整个旋转过程中,可以看做这样一个追及问题更容易理解,即:ON 绕点O 以每秒5°的速度沿逆时针方向旋转,同时射线OC 也绕O 点以每秒10°的速度沿逆时针方向旋转; ①9秒时,∠NOC=45°,而OC 旋转了90°,所以∠MOC 的度数就是45°; ②∠MOC=35°时,应分OC 与OM 重合前35°与重合后35°两种情况考虑,分别进行求解即可.【详解】()1AOC 30∠=,而三角板每秒旋转5,∴当ON 落在OC 边上时,有5t 30=,得t 6=,故答案为6;()2①当OC 转动9秒时,COA 30109120∠=+⨯=, 而MOA 309059165∠=++⨯=,又MOC MOA COA ∠∠∠=-,即:MOC 16512045∠=-=,答:当OC 转动9秒时,MOC ∠的度数为45;②设OC 运动起始位置为射线OP(如图1),运动t 秒时,MOC 35∠=,则MOP 905t ∠=+,COP 10t ∠=,当MOC 35∠=时,有()905t 10t 35+-=或()10t 905t 35-+=,得t 11=或t 25=,因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况,故当运动11秒或25秒时,MOC 35∠=.【点睛】本题考查的是用方程的思想解决角的旋转的问题,找准等量关系,正确列出一元一次方程是解题的关键.。
中考数学复习考点知识专题训练19 因旋转产生的角度问题(提优篇)1.如图1,已知PQ∥MN,且∠BAM=2∠BAN.(1)填空:∠BAN=°;(2)如图1所示,射线AM绕点A开始顺时针旋转至AN便立即回转至AM位置,射线BP绕点B 开始顺时针旋转至BQ便立即回转至BP位置.若AM转动的速度是每秒2度,BP转动的速度是每秒1度,若射线BP先转动30秒,射线AM才开始转动,在射线BP到达BQ之前,射线AM转动几秒,两射线互相平行?(3)如图2,若两射线分别绕点A,B顺时针方向同时转动,速度同题(2),在射线AM到达AN 之前.若两射线交于点C,过C作∠ACD交PQ于点D,且∠ACD=120°,则在转动过程中,请探究∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请说明理由.2.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=23∠ABN,∠CDM=23∠CDN,写出∠M与∠E之间数量关系,并说明理由.3.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图2,灯A射线自AM顺时针旋转至AN便立即回转至原位置,灯B射线自BP顺时针旋转至BQ便立即回转至原位置,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B 转动的速度是b°/秒,且a、b满足|a﹣3|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值.(2)如图1,若两灯同时转动,在灯A射线第一次转到AN之前,两灯射出的光线交于点C,若∠C=70°,求∠BAC的度数.(3)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线第一次转到BQ之前,A灯转动几秒,两灯的光线互相平行?4.钱塘江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+(a+b﹣4)2=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)求a、b的值;(2)若灯B射线先转动30秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前,若射出的光束交于点C,过C作CD⊥AC 交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系;若改变,请求出其取值范围.5.如图,钱塘江入海口某处河道两岸所在直线(PQ,MN)夹角为20°,在河道两岸安装探照灯B 和A,若灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BQ逆时针旋转至BP便立即回转,两灯不停交叉照射巡视.设灯A转动的速度是a度/秒,灯B转动的速度是b度/秒.已知∠BAN=50°(1)当b=2时,问灯B转动几秒后,射出的光束第一次经过灯A?(2)当a=3,b=6时,若两灯同时转动,在1分钟内(包括1分钟),问A灯转动几秒,两灯的光束互相平行?(3)若A、B两灯同时转动(a>b),在45秒与90秒时,两灯的光束各平行一次,求a,b的值.6.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a,b满足|a﹣3|+√b−1=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN =45°(1)求a,b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC 交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是否发生变化?若不变,请求出其数量关系.7.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足3a=27=32•3b.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN=45°(1)求a、b的值;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BCD:∠BAC=.8.长江汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看江水及两岸河堤的情况.如图1,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线自BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3b|+b2﹣2b+1=0.假定这一带长江两岸河堤是平行的,即PQ∥MN,且∠BAN =45°.(1)则a=,b=;(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动几秒,两灯的光束互相平行?(3)如图2,两灯同时转动,在灯A射线到达AN之前.若射出的光束交于点C,过C作CD⊥AC交PQ于点D,则在转动过程中,∠BAC与∠BCD的数量关系是(请直接写出结论).9.辽宁汛期即将来临,防汛指挥部在一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图,灯A射线自AM顺时针旋转至AN便立即回转,灯B射线白BP顺时针旋转至BQ便立即回转,两灯不停交叉照射巡视.若灯A转动的速度是a°/秒,灯B转动的速度是b°/秒,且a、b满足|a﹣3|+(a+b﹣4)2=0,假定这带两岸河堤是平行的,即PQ∥MN,且∠BAN=45°.(1)请直接写出a=,b=.(2)若灯B射线先转动20秒,灯A射线才开始转动,在灯B射线到达BQ之前,A灯转动秒,两灯的光束互相平行.(请直接写出答案)10.如图,取一副三角板按图1拼接,固定三角板ADE(∠AED=30°的Rt△),将三角板ABC(∠ACB=45°的Rt△)绕点A顺时针旋转一个大小为α的角(0°<c≤45°),试问:(1)当α=度时,能使图2中的AB∥DE;(2)当α=度时,能使图3中的AB与AE重合;(3)当0°<a≤45°时,连接BD(如图12﹣4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.11.(1)如图1,若AB∥CD,将点P在AB、CD内部,∠B,∠D,∠P满足的数量关系是,并说明理由.(2)在图1中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图2,利用(1)中的结论(可以直接套用),求∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(3)科技活动课上,雨轩同学制作了一个图(3)的“飞旋镖”,经测量发现∠P AC=30°,∠PBC =35°,他很想知道∠APB与∠ACB的数量关系,你能告诉他吗?说明理由.12.已知:如图,直线MN⊥PQ于点C,△ACB是直角三角形,且∠ACB=90°,斜边AB交直线PQ于点D,CE平分∠ACN,∠BDC的平分线交EC的延长线于点F,∠A=36°.(1)如图1,当AB∥MN时,求∠F的度数.(2)如图2,当△ACB绕C点旋转一定的角度(即AB与MN不平行),其他条件不变,问∠F的度数是否发生改变?请说明理由.13.一副直角三角板叠放如图①,现将含45°角的三角板ADE固定不动,把含30°角的三角板ABC 绕顶点A顺时针旋转角α(α=∠BAD且0°<α<180°),使两块三角板至少有一组对应边(所在的直线)垂直.(1)如图②,α=°时,BC⊥AE;(2)请你在下列备用图中各画一种符合要求的图形,计算出旋转角α,并用符号表示出垂直的边.14.如图①,AB、CD是两条射线,P为夹在这两条射线之间的一点,连P A和PC,作∠P AB和∠PCD 的平分线相交于点Q.(1)旋转射线AB,使AB∥CD,并调整点P的位置,使∠APC=180°,如图②,请直接写出∠Q的度数;(2)当AB∥CD时,再调整点P的位置如图③,猜想并证明∠Q与∠P有何等量关系;(3)如图④,若射线AB,CD交于一点R,其他条件不变,猜想∠P、∠Q和∠R这三个角之间满足什么样的等量关系?并证明你的结论.15.将一副直角三角尺(即直角三角形AOB和直角三角形COD)的直角顶点O的重合,其中,在△AOB中,∠A=60°,∠B=30°,∠AOB=90°;在△COD中,∠C=∠D=45°,∠COD=90°.(1)如图1,当OA在∠COD的外部,且∠AOC=45°时,①试说明CO平分∠AOB;②试说明OA∥CD(要求书写过程);(2)如图2,绕点O旋转直角三角尺AOB,使OA在∠COD的内部,且CD∥OB,试探索∠AOC =45°是否成立,并说明理由.16.将一副三角板中的两块三角板重合放置,其中45°和30°的两个角顶点重合在一起.(1)如图1所示,边OA与OC重合,此时,AB∥CD,则∠BOD=;(2)三角板△COD的位置保持不动,将三角板△AOB绕点O顺时针方向旋转,如图2,此时OA ∥CD,求出∠BOD的大小;(3)在图2中,若将三角板△AOB绕点O按顺时针方向继续旋转,在转回到图1的过程中,还存在△AOB中的一边与CD平行的情况,请针对其中一种情况,画出图形,并直接写出∠BOD的大小.17.已知∠AOC和∠BOC是互为邻补角,∠BOC=50°,将一个三角板的直角顶点放在点O处(注:∠DOE=90°,∠DEO=30°).(1)如图1,使三角板的短直角边OD与射线OB重合,则∠COE=.(2)如图2,将三角板DOE绕点O逆时针方向旋转,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线.(3)如图3,将三角板DOE绕点O逆时针转动到使∠COD=14∠AOE时,求∠BOD的度数.(4)将图1中的三角板绕点O以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE恰好与直线OC重合,求t的值.18.如图,直线CD与EF相交于点O,∠COE=60°,将一直角三角尺AOB的直角顶点与O重合,OA平分∠COE.(1)求∠BOD的度数;(2)将三角尺AOB以每秒3°的速度绕点O顺时针旋转,同时直线EF也以每秒9°的速度绕点O顺时针旋转,设运动时间为t秒(0≤t≤40).①当t为何值时,直线EF平分∠AOB;②若直线EF平分∠BOD,直接写出t的值.19.将一副三角板的直角重合放置,如图1所示,(1)图1中∠BEC的度数为(2)三角板△AOB的位置保持不动,将三角板△COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角板△COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.20.取一副三角尺按图1拼接,固定三角尺ADC.(1)在图1中,连接BD,计算∠DBC+∠BDC=;(2)将三角尺ABC绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC1,试问:①当α=时,能使AB∥CD;②当α=45°时,∠DBC1+∠CAC1+∠BDC=;③当0°<α≤45°时,如图2所示,连结BD,探寻∠DBC1+CAC1+∠BDC的值的大小变化情况,并给出你的证明.。
中考数学(初中数学旋转提高练习题)压轴题训练及详细答案一、旋转1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,求证:△AEF是等腰三角形;猜想与发现:(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.结论1:DM、MN的数量关系是;结论2:DM、MN的位置关系是;拓展与探究:(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.【解析】试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.试题解析:(1)∵四边形ABCD是正方形,∴AB=AD=BC=CD,∠B=∠ADF=90°,∵△CEF 是等腰直角三角形,∠C=90°,∴CE=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的数量关系是相等,DM、MN的位置关系是垂直;∵在Rt△ADF中DM是斜边AF的中线,∴AF=2DM,∵MN 是△AEF的中位线,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90°,∴DM⊥MN;(3)(2)中的两个结论还成立,连接AE,交MD于点G,∵点M为AF的中点,点N为EF的中点,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵点M为AF的中点,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可证:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90°,∵MN∥AE,∴∠DMN=∠DGE=90°,∴DM⊥MN.所以(2)中的两个结论还成立.考点:1.正方形的性质;2.全等三角形的判定与性质;3.三角形中位线定理;4.旋转的性质.2.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m<3)m =6或m3. 【解析】试题分析:(1)由题意抛物线的顶点C (0,4),A(,0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由()22142142y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.试题解析:(1)由题意抛物线的顶点C (0,4),A(,0),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()2142y x m =--,由21421(42x y x y ⎧=-+⎪⎪⎨⎪=-⎪⎩,消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(428020280m m m ⎧-->⎪⎪>⎨⎪->⎪⎩,解得2<m<,∴满足条件的m 的取值范围为2<m< (3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m 17﹣3时,四边形PMP ′N 是正方形.3.(1)发现:如图1,点A 为线段BC 外一动点,且BC =a ,AB =b .填空:当点A 位于 时,线段AC 的长取得最大值,且最大值为 (用含a ,b 的式子表示) (2)应用:点A 为线段BC 外一动点,且BC =4,AB =1,如图2所示,分别以AB ,AC 为边,作等边三角形ABD 和等边三角形ACE ,连接CD ,BE .①请找出图中与BE 相等的线段,并说明理由;②直接写出线段BE 长的最大值. (3)拓展:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(6,0),点P 为线段AB 外一动点,且PA =2,PM =PB ,∠BPM =90°,请直接写出线段AM 长的最大值及此时点P 的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(222).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.4.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM 2+BN 2=MN 2;(3)如图3中,若点B 是MN 的中点,求MN 的长. 设MN =2x ,则BM =BN =x , ∵OA =AB =4,∠OAB =90°, ∴OB =42, ∴OM =42﹣x , ∵OM 2+BN 2=MN 2. ∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃) ∴MN =﹣42+46. 【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.5.平面上,Rt △ABC 与直径为CE 的半圆O 如图1摆放,∠B =90°,AC =2CE =m ,BC =n ,半圆O 交BC 边于点D ,将半圆O 绕点C 按逆时针方向旋转,点D 随半圆O 旋转且∠ECD 始终等于∠ACB ,旋转角记为α(0°≤α≤180°)(1)当α=0°时,连接DE ,则∠CDE = °,CD = ;(2)试判断:旋转过程中BDAE的大小有无变化?请仅就图2的情形给出证明; (3)若m =10,n =8,当α=∠ACB 时,求线段BD 的长;(4)若m =6,n =2,当半圆O 旋转至与△ABC 的边相切时,直接写出线段BD 的长.【答案】(1)90°,2n ;(2)无变化;(3)55;(4)BD=101143. 【解析】试题分析:(1)①根据直径的性质,由DE ∥AB 得CD CECB CA即可解决问题.②求出BD 、AE 即可解决问题.(2)只要证明△ACE ∽△BCD 即可.(3)求出AB 、AE ,利用△ACE ∽△BCD 即可解决问题.(4)分类讨论:①如图5中,当α=90°时,半圆与AC 相切,②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,分别求出BD 即可. 试题解析:(1)解:①如图1中,当α=0时,连接DE ,则∠CDE =90°.∵∠CDE =∠B =90°,∴DE ∥AB ,∴CE CD AC CB ==12.∵BC =n ,∴CD =12n .故答案为90°,12n . ②如图2中,当α=180°时,BD =BC +CD =32n ,AE =AC +CE =32m ,∴BD AE =n m.故答案为nm. (2)如图3中,∵∠ACB =∠DCE ,∴∠ACE =∠BCD .∵CD BC nCE AC m==,∴△ACE ∽△BCD ,∴BD BC nAE AC m==.(3)如图4中,当α=∠ACB 时.在Rt △ABC 中,∵AC =10,BC =8,∴AB 22AC BC -.在Rt △ABE 中,∵AB =6,BE =BC ﹣CE =3,∴AE 22AB BE +2263+52)可知△ACE ∽△BCD ,∴BD BCAE AC=,∴35=810,∴BD 125125. (4)∵m =6,n =2∴CE =3,CD 2,AB 22CA BC -=2,①如图5中,当α=90°时,半圆与AC 相切.在Rt △DBC 中,BD 22BC CD +224222+()()10. ②如图6中,当α=90°+∠ACB 时,半圆与BC 相切,作EM ⊥AB 于M .∵∠M =∠CBM =∠BCE =90°,∴四边形BCEM 是矩形,∴342BM EC ME ===,∴AM =5,AE 22AM ME +57,由(2)可知DB AE =23,∴BD =1143. 故答案为102114.点睛:本题考查了圆的有关知识,相似三角形的判定和性质、勾股定理等知识,正确画出图形是解决问题的关键,学会分类讨论的思想,本题综合性比较强,属于中考压轴题.6.如图①,在等腰△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE=120°.(1)求证:△ABD≌△ACE;(2)把△ADE绕点A逆时针方向旋转到图②的位置,连接CD,点M、P、N分别为DE、DC、BC的中点,连接MN、PN、PM,判断△PMN的形状,并说明理由;(3)在(2)中,把△ADE绕点A在平面内自由旋转,若AD=4,AB=6,请分别求出△PMN周长的最小值与最大值.【答案】(1)证明见解析;(2)△PMN是等边三角形.理由见解析;(3)△PMN周长的最小值为3,最大值为15.【解析】分析:(1)由∠BAC=∠DAE=120°,可得∠BAD=∠CAE,再由AB=AC,AD=AE,利用SAS即可判定△ABD≌△ADE;(2)△PMN是等边三角形,利用三角形的中位线定理可得PM=12CE,PM∥CE,PN=12BD,PN∥BD,同(1)的方法可得BD=CE,即可得PM=PN,所以△PMN是等腰三角形;再由PM∥CE,PN∥BD,根据平行线的性质可得∠DPM=∠DCE,∠PNC=∠DBC,因为∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,所以∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,再由∠BAC=120°,可得∠ACB+∠ABC=60°,即可得∠MPN=60°,所以△PMN是等边三角形;(3)由(2)知,△PMN是等边三角形,PM=PN=12BD,所以当PM最大时,△PMN周长最大,当点D在AB上时,BD最小,PM最小,求得此时BD的长,即可得△PMN周长的最小值;当点D在BA延长线上时,BD最大,PM的值最大,此时求得△PMN周长的最大值即可.详解:(1)因为∠BAC=∠DAE=120°,所以∠BAD=∠CAE,又AB=AC,AD=AE,所以△ABD≌△ADE;(2)△PMN是等边三角形.理由:∵点P,M分别是CD,DE的中点,∴PM=12CE,PM∥CE,∵点N,M分别是BC,DE的中点,∴PN=12BD,PN∥BD,同(1)的方法可得BD=CE,∴PM=PN,∴△PMN是等腰三角形,∵PM∥CE,∴∠DPM=∠DCE,∵PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC=∠BCE+∠DBC =∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=120°,∴∠ACB+∠ABC=60°,∴∠MPN=60°,∴△PMN是等边三角形.(3)由(2)知,△PMN是等边三角形,PM=PN=12 BD,∴PM最大时,△PMN周长最大,∴点D在AB上时,BD最小,PM最小,∴BD=AB-AD=2,△PMN周长的最小值为3;点D在BA延长线上时,BD最大,PM最大,∴BD=AB+AD=10,△PMN周长的最大值为15.故答案为△PMN周长的最小值为3,最大值为15点睛:本题主要考查了全等三角形的判定及性质、三角形的中位线定理、等边三角形的判定,解决第(3)问,要明确点D在AB上时,BD最小,PM最小,△PMN周长的最小;点D在BA延长线上时,BD最大,PM最大,△PMN周长的最大值为15.7.如图,正方形ABCD中,点E是BC边上的一个动点,连接AE,将线段AE绕点A逆时针旋转90°,得到AF,连接EF,交对角线BD于点G,连接AG.(1)根据题意补全图形;(2)判定AG与EF的位置关系并证明;(3)当AB=3,BE=2时,求线段BG的长.【答案】(1)见解析;(2)见解析;(3)25.【解析】【分析】(1)根据题意补全图形即可;(2)先判断出△ADF≌△ABE,进而判断出点C,D,F共线,即可判断出△DFG≌△HEG,得出FG=EG,即可得出结论;(3)先求出正方形的对角线BD,再求出BH,进而求出DH,即可得出HG,求和即可得出结论.【详解】(1)补全图形如图所示,(2)连接DF,由旋转知,AE=AF,∠EAF=90°,∵四边形ABCD是正方形,∴AB∥CD,AD=AB,∠ABC=∠ADC=BAD=90°,∴∠DAF=∠BAE,∴△ADF≌△ABE(SAS),∴DF=BE,∠ADF=∠ABC=90°,∴∠ADF+∠ADC=180°,∴点C,D,F共线,∴CF∥AB,过点E作EH∥BC交BD于H,∴∠BEH=∠BCD=90°,DF∥EH,∴∠DFG=∠HEG,∵BD是正方形ABCD的对角线,∴∠CBD=45°,∴BE=EH,∵∠DGF=∠HGE,∴△DFG≌△HEG(AAS),∴FG=EG∵AE=AF,∴AG⊥EF;(3)∵BD是正方形的对角线,∴BD=2AB=32,由(2)知,在Rt△BEH中,BH=2BE=22,∴DG=BD-BH=2由(2)知,△DFG≌△HEG,∴DG=HG,∴HG=12DH=22,∴BG=BH+HG=22+22=522.【点睛】此题是四边形综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,作出辅助线是解本题的关键.8.如图(1)所示,将一个腰长为2等腰直角△BCD和直角边长为2、宽为1的直角△CED 拼在一起.现将△CED绕点C顺时针旋转至△CE’D’,旋转角为a.(1)如图(2),旋转角a=30°时,点D′到CD边的距离D’A=______.求证:四边形ACED′为矩形;(2)如图(1),△CED绕点C顺时针旋转一周的过程中,在BC上如何取点G,使得GD’=E’D;并说明理由.(3)△CED绕点C顺时针旋转一周的过程中,∠CE’D=90°时,直接写出旋转角a的值.【答案】1【解析】分析:(1)过D′作D′N⊥CD于N.由30°所对直角边等于斜边的一半即可得结论.由D’A∥CE且D’A=CE=1,得到四边形ACED’为平行四边形.根据有一个角为90°的平行四边形是矩形,即可得出结论;(2)取BC中点即为点G,连接GD’.易证△DCE’≌△D’CG,由全等三角形的对应边相等即可得出结论.(3)分两种情况讨论即可.详解:(1)D’A=1.理由如下:过D′作D′N⊥CD于N.∵∠NCD′=30°,CD′=CD=2,∴ND′= 12CD′=1.由已知,D’A∥CE,且D’A=CE=1,∴四边形ACED’为平行四边形.又∵∠DCE=90°,∴四边形ACED’为矩形;(2)如图,取BC中点即为点G,连接GD’.∵∠DCE=∠D’CE’=90°,∴∠DCE’=∠D’CG.又∵D’C= DC,CG=CE’,∴△DCE’≌△D’CG,∴GD’=E’D.(3)分两种情况讨论:①如图1.∵∠CE′D=90°,CD=2,CE′=1,∴∠CDE′=30°,∴∠E′CD=60°,∴∠E′CB=30°,∴旋转角=∠ECE′=180°+30°=210°.②如图2,同理可得∠E′CE=30°,∴旋转角=360°-30°=330°.点睛:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.9.如图,点A是x轴非负半轴上的动点,点B坐标为(0,4),M是线段AB的中点,将点M绕点A顺时针方向旋转90°得到点C,过点C作x轴的垂线,垂足为F,过点B作y 轴的垂线与直线CF相交于点E,连接AC,BC,设点A的横坐标为t.(Ⅰ)当t=2时,求点M的坐标;(Ⅱ)设ABCE的面积为S,当点C在线段EF上时,求S与t之间的函数关系式,并写出自变量t的取值范围;(Ⅲ)当t为何值时,BC+CA取得最小值.【答案】(1)(1,2);(2)S=32t+8(0≤t≤8);(3)当t=0时,BC+AC有最小值【解析】试题分析:(I)过M作MG⊥OF于G,分别求OG和MG的长即可;(II)如图1,同理可求得AG和OG的长,证明△AMG≌△CAF,得:AG=CF=12t,AF=MG=2,分别表示EC和BE的长,代入面积公式可求得S与t的关系式;并求其t的取值范围;(III)证明△ABO∽△CAF,根据勾股定理表示AC和BC的长,计算其和,根据二次根式的意义得出当t=0时,值最小.试题解析:解:(I)如图1,过M作MG⊥OF于G,∴MG∥OB,当t=2时,OA=2.∵M是AB的中点,∴G是AO的中点,∴OG=12OA=1,MG是△AOB的中位线,∴MG=12OB=12×4=2,∴M(1,2);(II)如图1,同理得:OG=AG=12t.∵∠BAC=90°,∴∠BAO+∠CAF=90°.∵∠CAF+∠ACF=90°,∴∠BAO=∠ACF.∵∠MGA=∠AFC=90°,MA=AC,∴△AMG≌△CAF,∴AG=CF=12t,AF=MG=2,∴EC=4﹣12t,BE=OF=t+2,∴S △BCE =12EC •BE =12(4﹣12t )(t +2)=﹣14t 2+32t +4; S △ABC =12•AB •AC =12•216t +•21162t +=14t 2+4,∴S =S △BEC +S △ABC =32t +8. 当A 与O 重合,C 与F 重合,如图2,此时t =0,当C 与E 重合时,如图3,AG =EF ,即 12t =4,t =8,∴S 与t 之间的函数关系式为:S =32t +8(0≤t ≤8); (III )如图1,易得△ABO ∽△CAF ,∴AB AC =OB AF =OA FC =2,∴AF =2,CF =12t ,由勾股定理得:AC =22AF CF +=22122t +()=2144t +,BC =22BE EC +=221242t t ++-()()=21544t +(),∴BC +AC =( 5+1)2144t +,∴当t =0时,BC +AC 有最小值.点睛:本题考查了几何变换综合题,知识点包括相似三角形、全等三角形、点的坐标、几何变换(旋转)、三角形的中位线等,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.10.在△ABC 中,AB=6,AC=BC=5,将△ABC 绕点A 按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B 的对应点为点D,点C 的对应点为点E,连接BD ,BE .(1)如图,当α=60°时,延长BE 交AD 于点F .①求证:△ABD 是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长;(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.【答案】(1)①②详见解析;③3﹣4;(2)13.【解析】试题分析:(1)①由旋转性质知AB=AD,∠BAD=60°即可得证;②由BA=BD、EA=ED根据中垂线性质即可得证;③分别求出BF、EF的长即可得;(2)由∠ACB+∠BAC+∠ABC=180°、∠DAG+∠DAE+∠BAE=180°、∠DAG=∠ACB、∠DAE=∠BAC得∠BAE=∠BAC且AE=AC,根据三线合一可得CE⊥AB、AC=5、AH=3,继而知CE=2CH=8、BE=5,即可得答案.试题解析:(1)①∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AB=AD,∠BAD=60°,∴△ABD是等边三角形;②由①得△ABD是等边三角形,∴AB=BD,∵△ABC绕点A顺时针方向旋转60°得到△ADE,∴AC=AE,BC=DE,又∵AC=BC,∴EA=ED,∴点B、E在AD的中垂线上,∴BE是AD的中垂线,∵点F在BE的延长线上,∴BF⊥AD, AF=DF;③由②知BF⊥AD,AF=DF,∴AF=DF=3,∵AE=AC=5,∴EF=4,∵在等边三角形ABD中,BF=AB•sin∠BAF=6×=3,∴BE=BF﹣EF=3﹣4;(2)如图所示,∵∠DAG=∠ACB,∠DAE=∠BAC,∴∠ACB+∠BAC+∠ABC=∠DAG+∠DAE+∠ABC=180°,又∵∠DAG+∠DAE+∠BAE=180°,∴∠BAE=∠ABC,∵AC=BC=AE,∴∠BAC=∠ABC,∴∠BAE=∠BAC,∴AB⊥CE,且CH=HE=CE,∵AC=BC,∴AH=BH=AB=3,则CE=2CH=8,BE=5,∴BE+CE=13.考点:三角形综合题.11.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;③62.【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.∴3(3m,∵S△BEG=12•EG•BN=12•BG•EH,∴EH=3?(13)m m+=32m,在Rt△EBH中,sin∠EBH=3+362246EHEB m==.【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,12.已知O为直线MN上一点,OP⊥MN,在等腰Rt△ABO中,90BAO∠=︒,AC∥OP 交OM于C,D为OB的中点,DE⊥DC交MN于E.(1) 如图1,若点B在OP上,则①AC OE(填“<”,“=”或“>”);②线段CA、CO、CD满足的等量关系式是;(2) 将图1中的等腰Rt△ABO绕O点顺时针旋转α(045α︒<<︒),如图2,那么(1)中的结论②是否成立?请说明理由;(3)将图1中的等腰Rt△ABO绕O点顺时针旋转α(),请你在图3中画出图形,并直接写出线段CA、CO、CD满足的等量关系式;【答案】(1)①=;②AC2+CO2=CD2;(2)(1)中的结论②不成立,理由见解析;(3)画图见解析;OC-CA=2CD.【解析】试题分析:(1)①如图1,证明AC=OC和OC=OE可得结论;②根据勾股定理可得:AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,作辅助线,构建全等三角形,证明A、D、O、C四点共圆,得∠ACD=∠AOB,同理得:∠EFO=∠EDO,再证明△ACO≌△EOF,得OE=AC,AO=EF,根据勾股定理得:AC2+OC2=FO2+OE2=EF2,由直角三角形中最长边为斜边可得结论;(3)如图3,连接AD,则AD=OD证明△ACD≌△OED,根据△CDE是等腰直角三角形,得CE2=2CD2,等量代换可得结论(OC﹣OE)2=(OC﹣AC)2=2CD2,开方后是:OC﹣AC=CD.试题解析:(1)①AC=OE,理由:如图1,∵在等腰Rt△ABO中,∠BAO=90°,∴∠ABO=∠AOB=45°,∵OP⊥MN,∴∠COP=90°,∴∠AOC=45°,∵AC∥OP,∴∠CAO=∠AOB=45°,∠ACO=∠POE=90°,∴AC=OC,连接AD,∵BD=OD,∴AD=OD,AD⊥OB,∴AD∥OC,∴四边形ADOC是正方形,∴∠DCO=45°,∴AC=OD,∴∠DEO=45°,∴CD=DE,∴OC=OE,∴AC=OE;②在Rt△CDO中,∵CD2=OC2+OD2,∴CD2=AC2+OC2;故答案为AC2+CO2=CD2;(2)如图2,(1)中的结论②不成立,理由是:连接AD,延长CD交OP于F,连接EF,∵AB=AO,D为OB的中点,∴AD⊥OB,∴∠ADO=90°,∵∠CDE=90°,∴∠ADO=∠CDE,∴∠ADO﹣∠CDO=∠CDE﹣∠CDO,即∠ADC=∠EDO,∵∠ADO=∠ACO=90°,∴∠ADO+∠ACO=180°,∴A、D、O、C四点共圆,∴∠ACD=∠AOB,同理得:∠EFO=∠EDO,∴∠EFO=∠AOC,∵△ABO是等腰直角三角形,∴∠AOB=45°,∴∠DCO=45°,∴△COF和△CDE是等腰直角三角形,∴OC=OF,∵∠ACO=∠EOF=90°,∴△ACO≌△EOF,∴OE=AC,AO=EF,∴AC2+OC2=FO2+OE2=EF2,Rt△DEF中,EF>DE=DC,∴AC2+OC2>DC2,所以(1)中的结论②不成立;(3)如图3,结论:OC﹣CA=CD,理由是:连接AD,则AD=OD,同理:∠ADC=∠EDO,∵∠CAB+∠CAO=∠CAO+∠AOC=90°,∴∠CAB=∠AOC,∵∠DAB=∠AOD=45°,∴∠DAB﹣∠CAB=∠AOD﹣∠AOC,即∠DAC=∠DOE,∴△ACD≌△OED,∴AC=OE,CD=DE,∴△CDE是等腰直角三角形,∴CE2=2CD2,∴(OC﹣OE)2=(OC﹣AC)2=2CD2,∴OC﹣AC=CD,故答案为OC﹣AC=CD.考点:几何变换的综合题13.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值。
旋转基础练习一一、选择题1.在26个英文大写字母中,通过旋转180°后能与原字母重合的有()A.6个B.7个C.8个D.9个2.从5点15分到5点20分,分针旋转的度数为()A.20°B.26°C.30°D.36°3.如图1,在Rt△ABC中,∠ACB=90°,∠A=40°,以直角顶点C为旋转中心,将△ABC 旋转到△A′B′C的位置,其中A′、B′分别是A、B的对应点,且点B在斜边A′B′上,直角边CA′交AB于D,则旋转角等于()A.70°B.80°C.60°D.50°(图1) (图2) (图3)二、填空题.1.在平面内,将一个图形绕一个定点沿着某个方向转动一个角度,这样的图形运动称为________,这个定点称为________,转动的角为________.2.如图2,△ABC与△ADE都是等腰直角三角形,∠C和∠AED都是直角,点E在AB 上,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点_________;旋转的度数是__________.3.如图3,△ABC为等边三角形,D为△ABC内一点,△ABD经过旋转后到达△ACP的位置,则,(1)旋转中心是________;(2)旋转角度是________;(3)△ADP是________三角形.三、解答题.1.阅读下面材料:如图4,把△ABC沿直线BC平行移动线段BC的长度,可以变到△ECD的位置.如图5,以BC为轴把△ABC翻折180°,可以变到△DBC的位置.(图4) (图5) (图6) (图7) 如图6,以A点为中心,把△ABC旋转90°,可以变到△AED的位置,像这样,其中一个三角形是由另一个三角形按平行移动、翻折、旋转等方法变成的,这种只改变位置,不改变形状和大小的图形变换,叫做三角形的全等变换.回答下列问题如图7,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上一点,AF=21AB . (1)在如图7所示,可以通过平行移动、翻折、旋转中的哪一种方法,使△ABE 移到△ADF 的位置?(2)指出如图7所示中的线段BE 与DF 之间的关系.2.一块等边三角形木块,边长为1,如图,现将木块沿水平线翻滚五个三角形,那么B 点从开始至结束所走过的路径长是多少?答案:一、1.B 2.C 3.B二、1.旋转 旋转中心 旋转角 2.A 45° 3.点A 60° 等边 三、1.(1)通过旋转,即以点A 为旋转中心,将△ABE 逆时针旋转90°.(2)BE=DF ,BE ⊥DF2.翻滚一次滚120° 翻滚五个三角形,正好翻滚一个圆,所以所走路径是2.旋转基础练习二一、选择题1.△ABC 绕着A 点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于( ) A .50° B .210° C .50°或210° D .130° 2.在图形旋转中,下列说法错误的是( )A .在图形上的每一点到旋转中心的距离相等B .图形上每一点转动的角度相同C .图形上可能存在不动的点D .图形上任意两点的连线与其对应两点的连线长度相等3.如图,下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是( )二、填空题1.在作旋转图形中,各对应点与旋转中心的距离________.2.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是________,它们之间的关系是______,其中BD CE(填“>”,“<”或“=”).3.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF的关系是________.三、解答题1.如图,正方形ABCD的中心为O,M为边上任意一点,过OM随意连一条曲线,将所画的曲线绕O点按同一方向连续旋转3次,每次旋转角度都是90°,这四个部分之间有何关系?2.如图,以△ABC的三顶点为圆心,半径为1,作两两不相交的扇形,则图中三个扇形面积之和是多少?3.如图,已知正方形ABCD的对角线交于O点,若点E在AC的延长线上,AG⊥EB,交EB的延长线于点G,AG的延长线交DB的延长线于点F,则△OAF与△OBE重合吗?如果重合给予证明,如果不重合请说明理由?答案:一、1.C 2.A3.D二、1.相等2.△ACE 图形全等= 3.相等三、1.这四个部分是全等图形2.∵∠A+∠B+∠C=180°,∴绕AB、AC的中点旋转180°,可以得到一个半圆,∴面积之和=21. 3.重合:证明:∵EG ⊥AF ∴∠2+∠3=90° ∵∠3+∠1+90°=180° ∵∠1+∠3=90° ∴∠1=∠2同理∠E=∠F ,∵四边形ABCD 是正方形,∴AB=BC ∴△ABF ≌△BCE ,∴BF=CE ,∴OE=OF ,∵OA=OB ∴△OBE 绕O 点旋转90°便可和△OAF 重合.旋转基础练习三一、选择题1.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)( ) A .左上角的梅花只需沿对角线平移即可B .右上角的梅花需先沿对角线平移后,再顺时针旋转45°C .右下角的梅花需先沿对角线平移后,再顺时针旋转180D .左下角的梅花需先沿对角线平移后,再顺时针旋转90° 2.同学们曾玩过万花筒吧,它是由三块等宽等长的玻璃镜片围 成的,如图是看到的万花筒的一个图案,图中所有三角形均 是等边三角形,其中的菱形AEFG 可以看成把菱形ABCD 以 A 为中心( )A .顺时针旋转60°得到的B .顺时针旋转120°得到的C .逆时针旋转60°得到的D .逆时针旋转120°得到的3.下面的图形中,绕着一个点旋转120°后,能与原来的位置重合的是 ( )A .(1),(4)B .(1),(3)C .(1),(2)D .(3),(4)二、填空题1.如图,五角星也可以看作是一个三角形绕中心点旋转_______次得到的,每次旋转的角度是________.2.图形之间的变换关系包括平移、_______、轴对称以及它们的组合变换.3.如图,过圆心O和图上一点A连一条曲线,将OA绕O点按同一方向连续旋转三次,每次旋转90°,把圆分成四部分,这四部分面积_________.三、解答题.1.请你利用线段、三角形、菱形、正方形、圆作为“基本图案”绘制一幅以“校运动会”为主题的徽标.2.如图,是某设计师设计的方桌布图案的一部分,请你运用旋转的方法,将该图案绕原点O顺时针依次旋转90°、180°、270°,并画出图形,你来试一试吧!但是涂阴影时,要注意利用旋转变换的特点,不要涂错了位置,否则你将得不到理想的效果,并且还要扣分的噢!3.如图,△ABC的直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△AC P′重合,如果AP=3,求PP′的长.答案:一、1.D 2.D 3.C二、1.4 72°2.旋转3.相等三、1.答案不唯一,学生设计的只要符合题目的要求,都应给予鼓励.2.略3.∵△ABP绕点A逆时针旋转后,能与△ACP′重合,∴AP′=AP,∠CAP′=∠BAP,∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=∠BAC=90°,△PAP′为等腰直角三角形,PP′为斜边,∴旋转基础练习四一、选择题1.在英文字母VWXYZ中,是中心对称的英文字母的个数有()A.1个B.2个C.3个D.4个2.下面的图案中,是中心对称图形的个数有()A.1个B.2个C.3个D.4个3.如图,把一张长方形ABCD的纸片,沿EF折叠后,ED′与BC的交点为G,点D、C分别落在D′、C′的位置上,若∠EFG=55°,则∠1=()A.55°B.125°C.70°D.110°二、填空题1.关于某一点成中心对称的两个图形,对称点连线必通过_________.2.把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形是_________图形.3.用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_______(填序号)(1)长方形;(2)菱形;(3)正方形;(4)一般的平行四边形;(5)等腰三角形;(6)梯形.三、解答题1.仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内.A2.如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法.3.如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形.答案:一、1.B 2.D 3.D二、1.这一点(对称中心)2.中心对称3.(1)(4)(5)三、1.略2.作法:(1)延长CB且BC′=BC;(2)延长DB且BD′=DB,延长AB且使BA′=BA;(3)连结A′D′、D′C′、C′B则四边形A′BC′D′即为所求作的中心对称图形,如图所示.3.略.旋转基础练习五一、选择题1.下面图形中既是轴对称图形又是中心对称图形的是()A.直角B.等边三角形C.直角梯形D.两条相交直线2.下列命题中真命题是()A.两个等腰三角形一定全等B.正多边形的每一个内角的度数随边数增多而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等3.将矩形ABCD沿AE折叠,得到如图的所示的图形,已知∠CED′=60°,则∠AED的大小是()A.60°B.50°C.75°D.55°二、填空题1.关于中心对称的两个图形,对称点所连线段都经过__________,而且被对称中心所________.2.关于中心对称的两个图形是_________图形.3.线段既是轴对称图形又是中心对称图形,它的对称轴是_________,它的对称中心是__________.三、解答题1.分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:21085(1)以顶点A 为对称中心,(2)以BC 边的中点K 为对称中心.2.如图,已知一个圆和点O ,画一个圆,使它与已知圆关于点O 成中心对称.3.如图,A 、B 、C 是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M ,现计划修建居民小区D ,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利于生态环境建设,试写居民小区D 的位置.答案:一、1.D 2.C 3.A二、1.对称中心 平分 2.全等 3.线段中垂线,线段中点.三、1.略 2.作出已知圆圆心关于O 点的对称点O′,以O′为圆心,已知圆的半径为半径作圆.3.连结AB 、AC ,分别作AB 、AC 的中垂线PQ 、GH 相交于M ,学校M 所在位置,就是△ABC 外接圆的圆心,小区D 是在劣弧BC 的中点即满足题意.旋转基础练习六一、选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是( ) A .等边三角形 B .等腰梯形 C .平行四边形 D .正六边形2.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .正方形B .矩形C .菱形D .平行四边形3.如图所示,平放在正立镜子前的桌面上的数码“21085”在镜子中的像是( )A .21085B .28015C .58012D .51082二、填空题1.把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做__________.2.请你写出你所熟悉的三个中心对称图形_________.3.中心对称图形具有什么特点(至少写出两个)_____________. 三、解答题1.在平面内,如果一个图形绕一个定点旋转一定的角度后能与自身重合,那么就称这个图形是旋转对称图形,转动的这个角称为这个图形的一个旋转角,例如:正方形绕着它的对角线的交点旋转90°后能与自身重合,所以正方形是旋转对称图形,应有一个旋转角为90°.(1)判断下列命题的真假(在相应括号内填上“真”或“假”) ①等腰梯形是旋转对称图形,它有一个旋转角为180°;( ) ②矩形是旋转对称图形,它有一个旋转角为180°;( )(2)填空:下列图形中是旋转对称图形,且有一个旋转角为120°是_____.(写出所有正确结论的序号)①正三角形;②正方形;③正六边形;④正八边形.(3)写出两个多边形,它们都是旋转对称图形,却有一个旋转角为72°,并且分别满足下列条件:①是轴对称图形,但不是中心对称图形;②既是轴对称图形,又是中心对称图形.2.如图,将矩形A 1B 1C 1D 1沿EF 折叠,使B 1点落在A 1D 1边上的B 处;沿BG 折叠,使D 1点落在D 处且BD 过F 点.(1)求证:四边形BEFG 是平行四边形;(2)连接BB ,判断△B 1BG 的形状,并写出判断过程.FG DECA B1A 1B 1C 1D3.如图,直线y=2x+2与x 轴、y 轴分别交于A 、B 两点,将△AOB 绕点O 顺时针旋转90°得到△A 1OB 1.(1)在图中画出△A 1OB 1;(2)设过A 、A 1、B 三点的函数解析式为y=ax 2+bx+c ,求这个解析式.答案:一、1.D 2.D 3.D二、1.中心对称图形 2.答案不唯一 3.答案不唯一三、1.(1)①假 ②真 (2)①③(3)①例如正五边形 正十五边形 •②例如正十边 正二十边形2.(1)证明:∵A 1D 1∥B 1C 1,∴∠A 1BD=∠C 1FB 又∵四边形ABEF 是由四边形A 1B 1EF 翻折的,∴∠B 1FE=∠EFB ,同理可得:∠FBG=∠D 1BG , ∴∠EFB=90°-21∠C 1FB ,∠FBG=90°-21∠A 1BD , ∴∠EFB=∠FBG∴EF ∥BG ,∵EB ∥FG ∴四边形BEFG 是平行四边形. (2)直角三角形,理由:连结BB ,∵BD 1∥FC 1,∴∠BGF=∠D 1BG ,∴∠FGB=∠FBG 同理可得:∠B 1BF=∠FB 1B . ∴∠B 1BG=90°,∴△B 1BG 是直角三角形 3.解:(1)如右图所示(2)由题意知A 、A 1、B 1三点的坐标分别是(-1,0),(0,1),(2,0)∴⎩=++⎪⎨=⎪⎧=-+a b cc a b c 04210 解这个方程组得⎩⎪⎪=⎪⎨=⎪⎪⎪=-⎧c b a 12121∴所求五数解析式为y=-21x 2+21x+1.旋转基础练习七一、选择题1.下列函数中,图象一定关于原点对称的图象是( ) A .y=x1B .y=2x+1C .y=-2x+1D .以上三种都不可能2.如图,已知矩形ABCD 周长为56cm ,O 是对称线交点,点O 到矩形两条邻边的距离之差等于8cm ,则矩形边长中较长的一边等于( )A .8cmB .22cmC .24cmD .11cm 二、填空题1.如果点P (-3,1),那么点P (-3,1)关于原点的对称点P′的坐标是P′_______. 2.写出函数y=-x 3与y=x3具有的一个共同性质________(用对称的观点写). DCAB O三、解答题1.如图,在平面直角坐标系中,A (-3,1),B (-2,3),C (0,2),画出△ABC 关于x 轴对称的△A′B′C′,再画出△A′B′C′关于y 轴对称的△A″B″C″,那么△A″B″C″与△ABC 有什么关系,请说明理由.2.如图,直线AB 与x 轴、y 轴分别相交于A 、B 两点,且A (0,3),B (3,0),现将直线AB 绕点O 顺时针旋转90°得到直线A 1B 1. (1)在图中画出直线A 1B 1;(2)求出过线段A 1B 1中点的反比例函数解析式; (3)是否存在另一条与直线A 1B 1平行的直线y=kx+b (我们发现互相平行的两条直线斜率k 相等)它与双曲线只有一个交点,若存在,求此直线的解析式;若不存在,请说明不存在的理由.答案:一、1.A 2.B 二、1.(3,-1) 2.答案不唯一 参考答案:关于原点的中心对称图形. 三、1.画图略,△A″B″C″与△ABC 的关系是关于原点对称. 2.(1)如右图所示,连结A 1B 1; (2)A 1B 1中点P (1.5,-1.5),设反比例函数解析式为y=x k ,则y=-x2.25.(3)A 1B 1:设y=k 1x+b 1 ⎩=-⎨⎧=-k b 033311⎩=-⎨⎧=b k 3111∴y=x+3∵与A 1B 1直线平行且与y=x2.25相切的直线是A 1B 1•旋转而得到的. ∴所求的直线是y=x+3, 下面证明y=x+3与y=-x2.25相切, ⎩⎪=-⎨⎪⎧=+x y y x 2.253 ⇒x 2+3x+2.25=0,b 2-4ac=9-4×1×2.25=0,∴y=x+3与y=-x2.25相切.旋转基础练习八一、选择题1.在图所示的4个图案中既包含图形的旋转,还有图形轴对称是( )2.将三角形绕直线L 旋转一周,可以得到如图所示的立体图形的是( )二、填空题1.基本图案在轴对称、平移、旋转变化的过程中,图形的______和______都保持不变.2.如上右图,是由________关系得到的图形.三、解答题 1.(1)图案设计人员在进行图设计时,常常用一个模具板来设计一幅幅美丽漂亮的图案,你能说出用同一模具板设计出的两个图案之间是什么关系吗?(2)现利用同一模具板经过平移、旋转、轴对称设计一个图案,并说明你所表达的意义.2.如图,你能利用平移、旋转或轴对称这样的变化过程来分析它的形成过程吗?答案:一、1.D 2.B二、1.形状大小2.旋转三、1.(1)用同一块模块设计出的两个图案之间可能是由平移、旋转、•轴对称变化得到的,或者是由这三种变化的组合而成的;(2)略2.略。
旋转50题一、选择题:1.下列图形中,既是轴对称图形又是中心对称图形的是()A B C D2.如图,将△OAB绕点O逆时针旋转80°,得到△OCD,若∠A=2∠D=100°,则∠α的度数是()A.50° B.60° C.40° D.30°3.下列图形既是轴对称图形又是中心对称图形的是( )4.下列图案中,可以看做是中心对称图形的有()A.1个B.2个C.3个D.4个5.如图,图中的图形是常见的安全标记,其中是轴对称图形的是()A.B.C.D.6.在平面直角坐标系中,点P(﹣20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.﹣33C.﹣7D.77.下列各点中关于原点对称的两个点是()A.(﹣5,0)和(0,5)B.(2,﹣1)和(1,﹣2)C.(5,0)和(0,﹣5)D.(﹣2,﹣1)和(2,1)8.如图,在△ABC中,∠CAB=90°,将△ABC绕点A顺时针旋转60°得△ADE,则∠EAB的度数为()A.20° B.25° C.28° D.30°9.下列图形中,既是轴对称图形又是中心对称图形的是()10.如图,△ABC中,AB=4,BC=6,∠B=60°,将△ABC沿射线BC的方向平移,得到△A′B′C′,再将△A′B′C′绕点A′逆时针旋转一定角度后,点B′恰好与点C重合,则平移的距离和旋转角的度数分别为()A.4,30°B.2,60°C.1,30°D.3,60°11.下面的图形中,既是轴对称图形又是中心对称图形的是()12.下列图形中,是中心对称图形的是()A. B. C. D.13.下列四个说法,其中说法正确的个数是()①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个14.正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕C点顺时针方向旋转90°后,A点的坐标为()A.(,0)B.(0,7)C.(,1)D.(7,0)15.如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 C.2 D.316.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C. D.π17.在等边△ABC中,D是边AC上一点,连接BD,将△BCD绕点B逆时针旋转60°,得到△BAE,连接ED,若BC=5,BD=4.则下列结论错误的是()A.AE∥BC B.∠ADE=∠BDCC.△BDE是等边三角形D.△ADE的周长是918.如图,边长为1的正方形ABCD绕点A逆时针旋转45°得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )A. B. C.-1D.19.如图,已知△ABC中,∠ACB=90°,AC=BC=2,将直角边AC绕A点逆时针旋转至AC′,连接BC′,E为BC′的中点,连接CE,则CE的最大值为()A. B. +1 C. +1 D. +120.如图,正方形ABCD的边长为6,点E,F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF长为( )A.2B.3C.D.二、填空题:21.请写出一个既是轴对称图形又是中心对称图形的平面图形,你所写的平面图形名称是.(写一个即可)22.如图所示,在平面直角坐标系中,△OAB三个顶点的坐标O(0,0)、A(3,4)、B(5,2).将△OAB绕原点O按逆时针方向旋转90°后得到△OA1B1,则点A1的坐标是.23.在图形的平移、旋转、轴对称变换中,其相同的性质是.24..如图,直线y=-x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO/B/,则点B′的坐标是.25.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠B的度数为__ __.(导学号 02052551)26.如图,在平面直角坐标系中,三角形②是由三角形①绕点P旋转后所得的图形,则旋转中心P的坐标是________.27.如图,把Rt△ABC绕点A逆时针旋转44°,得到Rt△AB′C′,点C′恰好落在边AB上,连接BB′,则∠BB′C′= .28.点A (a ,3)与点B (﹣4,b )关于原点对称,则a+b= .29.P 是等边△ABC 内部一点,∠APB 、∠BPC 、∠CPA 的大小之比是5:6:7,将△ABP 逆时针旋转,使得AB 与AC 重合,则以PA 、PB 、PC 的长为边的三角形的三个角∠PCQ :∠QPC :∠PQC= .30.△ABC 绕着A 点旋转后得到△AB ′C ′,若∠BAC ′=130°,∠BAC=80°,则旋转角等于31.如图,已知Rt △ABC 中,∠ACB=90°,AC=6,BC=4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC.若点F 是DE 的中点,连接AF ,则AF= .32.如图,△ABC 中,已知∠C=90°,∠B=55°,点D 在边BC 上,BD=2CD .把△ABC 绕着点D 逆时针旋转m (0<m<180)度后,如果点B 恰好落在初始Rt △ABC 的边上,那么m= .33.如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE 的和最小,则这个最小值为 .34.如图,正方形ABCD 绕点B 逆时针旋转30°后得到正方形BEFG ,EF 与AD 相交于点H ,延长DA 交GF 于点K.若正方形ABCD 边长为,则AK=__ __.A DEPBC35.如图,在Rt △ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点C 逆时针旋转60°,得到△MNC,连接BM ,则BM 的长是 .36.如图,在△ABC 中,AB=AC=5,BC=6,将△ABC 绕点C 顺时针方向旋转一定角度后得到△A ′B ′C .若点A ′恰好落在BC 的延长线上,则点B ′到BA ′的距离为 .37.如图,四边形ABCD 中,AB=3,BC=2,若AC=AD 且∠ACD=60°,则对角线BD 的长最大值为 .38.如图,O 是等边△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO ′,下列结论:①△BO ′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O ′的距离为4;③∠AOB=150°;④四边形AOBO ′的面积为6+3;⑤S △AOC +S △AOB =6+43.其中正确的结论是_ _.39.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.40.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(1.5,0),B(0,2),则点B2016的坐标为.三、解答题:41.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.42.△ABC在直角坐标系中的位置如图所示,直线l经过点(-1,0),并且与y轴平行.(1)①将△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,在图中画出△A1B1C1;②求出由点C运动到点C1所经过的路径的长.(2)①△A2B2C2与△ABC关于直线l对称,画出△A2B2C2,并写出△A2B2C2三个顶点的坐标;②观察△ABC与△A2B2C2对应点坐标之间的关系,写出直角坐标系中任意一点P(a,b)关于直线l的对称点的坐标:.43.如图,正方形ABCD 中,点F 在边BC 上,E 在边BA 的延长线上.(1)若DCF △按顺时针方向旋转后恰好与DAE △重合.则旋转中心是点 ;最少旋转了 度;(2)在(1)的条件下,若3,2AE BF ==,求四边形BFDE 的面积.44.(1)如图1,点P 是正方形ABCD 内的一点,把△ABP 绕点B 顺时针方向旋转,使点A 与点C 重合,点P 的对应点是Q .若PA=3,PB=2,PC=5,求∠BQC 的度数.(2)点P 是等边三角形ABC 内的一点,若PA=12,PB=5,PC=13,求∠BPA 的度数.DC FB E A45.探究:如图1和2,四边形ABCD中,已知AB=AD,∠BAD=90°,点E、F分别在BC、CD上,∠EAF=45°.(1)①如图1,若∠B、∠ADC都是直角,把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD 重合,则能证得EF=BE+DF,请写出推理过程;②如图2,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(2)拓展:如图3,在△ABC中,∠BAC=90°,AB=AC=2,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE长.46.在△ABC中,AB=AC,∠BAC=ɑ(0°<ɑ<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求ɑ的值.47.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO绕点B逆时针旋转60°得到线段BO′.(1)求点O与O′的距离;(2)证明:∠AOB=150°;(3)求四边形AOBO′的面积.(4)直接写出△AOC与△AOB的面积和48.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:①当α=0°时,AE:BD= ;②当α=180°时,AE:BD= .(2)拓展探究:试判断:当0°≤α<360°时,AE:BD的大小有无变化?请仅就图2的情形给出证明.(3)问题解决:当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.49.在平面直角坐标系中,O为原点,点A(4,0),点B(0,3),把△ABO绕点B逆时针旋转,得△A′BO′,点A,O旋转后的对应点为A′,O′,记旋转角为α.(Ⅰ)如图①,若α=90°,求AA′的长;(Ⅱ)如图②,若α=120°,求点O′的坐标;(Ⅲ)在(Ⅱ)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,求点P′的坐标(直接写出结果即可)50.给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)以下四边形中,是勾股四边形的为.(填写序号即可)①矩形;②有一个角为直角的任意凸四边形;③有一个角为60°的菱形.(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,∠DCB=30°,连接AD,DC,CE.①求证:△BCE是等边三角形;②求证:四边形ABCD是勾股四边形.参考答案1.D2.A3.C4.B5.A6.D7.D8.D9.B10B11.C12.A13.C14.D15.D16.B17.B18.D19.B.20.A21.答案为:圆.22.答案为:(-4,3).23.解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.24.答案为: (7,3)25.答案为:65°26.答案为:(0,1)27.答案为:22°28.答案为:a+b=1.29.答案为:3:4:2.30.答案为:50°或210°.31.答案为:_5_32.答案为:70°或120°.33.答案为:34.答案为:2-35.答案为:1+.36.答案为:4.8.37.解:如图,在AB的右侧作等边三角形△ABK,连接DK.∵AD=AC,AK=AB,∠DAC=∠KAB,∴∠DAK=∠CAB,在△DAK和△CAB中,,∴△DAK≌△CAB,∴DK=BC=2,∵DK+KB≥BD,DK=2,KB=AB=3,∴当D、K、B共线时,BD的值最大,最大值为DK+KB=5.38.正确的结论为:①②③⑤.39.解:连结PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故答案为24+9.40.答案为:(6048,2).41.解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.42.(1)①画图正确②OC=点C运动到点C1所经过的路径的长==(2)①画图正确△A2B2C2三个顶点的坐标为A2(-5,6),B2(-3,1),C2(-6,3)②P(a,b)关于直线l的对称点的坐标为(-a-2,b)43.44.解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.45.【解答】(1)①解:如图1,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;②解:∠B+∠D=180°,理由是:把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴C、D、G在一条直线上,和①知求法类似,∠EAF=∠GAF=45°,在△EAF和△GAF中∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(2)解:∵△ABC中,AB=AC=2,∠BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:BC===4,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF.则AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD和△EAD中∴△FAD≌△EAD,∴DF=DE,设DE=x,则DF=x,∵BC=1,∴BF=CE=4﹣1﹣x=3﹣x,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:DF2=BF2+BD2,x2=(3﹣x)2+12,解得:x=,即DE=.46.(1)30°-0.5α.(2)△ABE为等边三角形.证明:连接AD、CD、ED.∵线段BC绕点B逆时针旋转60°得到线段BD,∴BC=BD,∠DBC=60°. ∵∠ABE=60°,∴∠ABD=60°-∠DBE=∠EBC=30°-0.5α.又∵BD=CD,∠DBC=60°,∴△BCD为等边三角形,∴BD=CD.又∵AB=AC,AD=AD,∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD=0.5∠BAC=0.5α.∵∠BCE=150°,∴∠BEC=180°-(30°-0.5α)-150°=0.5α.∴∠BAD=∠BEC.在△ABD与△EBC中,△ABD≌△EBC(AAS).∴AB=BE.又∵∠ABE=60°,∴△ABE为等边三角形.(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°.∵∠DEC=45°,∴△DCE为等腰直角三角形.∴CD=CE=BC.∵∠BCE=150°,∴∠EBC=15°.又∵∠EBC=30°-0.5α=15°,∴α=30°47.解:(1)∵等边△ABC,∴AB=CB,∠ABC=600。
2022年中考数学复习:旋转综合体专项训练1.如图,在Rt ABC 中,90ABC ∠=︒,30ACB ∠=︒,将ABC 绕点C 顺时针旋转一定的角度α得到DEC ,点A ,B 的对应点分别是点D ,E .(1)如图①,当点E 恰好在AC 边上时,连接AD ,求①ADE 的度数;(2)如图①,当60α=时,若点F 为AC 边上的动点,当①FBC 为何值时,四边形BFDE 为平行四边形?请说出你的结论并加以证明2.综合与实践问题:如图1,已知点G 在正方形ABCD 的对角线AC 上,GE ⊥BC ,GF ⊥CD ,垂足为F .证明与推断(1)①四边形CEGF 的形状是 ;②AGBE的值为 ; 【探究与证明】(2)在图1的基础上,将正方形CEGF 绕点C 按顺时针方向旋转α角(0°<α<45°),如图2所示,并说明理由;【拓展与运用】(3)如图3,在(2)的条件下,正方形CEGF 在旋转过程中,AG 和GE 的位置关系是 .3.若①ABC ,①ADE 为等腰三角形,AC =BC ,AD =DE ,将①ADE 绕点A 旋转,连接BE ,F 为BE 中点,连接CF ,DF .(1)若①ACB =①ADE =90°,如图1,试探究DF 与CF 的关系并证明; (2)若①ACB =60°,①ADE =120°,如图2,请直接写出CF 与DF 的关系.4.在平面直角坐标系中,点(0,0)O ,点A ,点)(0),30B m m AOB >∠=︒.以点O 为中心,逆时针旋转OAB ,得到OCD ,点,A B 的对应点分别为,C D .记旋转角为α.(1)如图①,当点C 落在OB 上时,求点D 的坐标;(2)如图①,当45α=︒时,求点C 的坐标;(3)在(2)的条件下,求点D 的坐标(直接写出结果即可).5.如图,30HAB ∠=︒,点B 与点C 关于射线AH 对称,连接AC .D 点为射线AH 上任意一点,连接CD .将线段CD 绕点C 顺时针旋转60°,得到线段CE ,连接BE .(1)求证:直线EB 是线段AC 的垂直平分线;(2)点D 是射线AH 上一动点,请你直接写出ADC ∠与ECA ∠之间的数量关系.6.已知如图,等腰△ABC 中,AB=AC ,△BAC=α(α>90︒),F 为BC 中点,D 为BC 延长线上一点,以点A 为中心,将线段AD 逆时针旋转α得到线段AE ,连接CE ,DE .(1)补全图形并比较△BAD 和△CAE 的大小; (2)用等式表示CE ,CD ,BF 之间的关系,并证明;(3)过F 作AC 的垂线,并延长交DE 于点H ,求EH 和DH 之间的数量关系,并证明.7.一副三角尺(分别含30°,60°,90°和45°,45°,90°)按如图所示摆放,边OB ,OC 在直线l 上,将三角尺ABO 绕点O 以每秒10°的速度顺时针旋转,当边OA 落在直线l 上时停止运动,设三角尺ABO 的运动时间为t 秒.(1)如图,①AOD = °= ′; (2)当t =5时,①BOD = °; (3)当t = 时,边OD 平分①AOC ;(4)若在三角尺ABO 开始旋转的同时,三角尺DCO 也绕点O 以每秒4°的速度逆时针旋转,当三角尺ABO 停止旋转时,三角尺DCO 也停止旋转.在旋转过程中,是否存在某一时刻使①AOC =2①BOD ,若存在,请直接写出的值;若不存在,请说明理由.8.如图,正方形ABCO 的边OA 、OC 在坐标物上,点B 坐标为()3,3.将正方形ABCO 绕点A 顺时针旋转角度()090αα︒<<︒,得到正方形ADEF ,ED 交线段OC 于点G ,ED 的延长线交线段BC 于点P .连AP 、AG .(1)求证:AOG①ADG;∠的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(2)求PAG(3)当12∠=∠时,求直线PE的解析式(可能用到的数据:在Rt中,30°内角对应的直角边等于斜边的一半).(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.9.如图,等腰Rt①ABC中,AB=AC,D为线段BC上的一个动点,E为线段AB上的一个动点,使得CD=.连接DE,以D点为中心,将线段DE顺时针旋转90°得到线段DF,连接线段EF,过点D作射线DR①BC交射线BA于点R,连接DR,RF.(1)依题意补全图形;(2)求证:①BDE①①RDF;(3)若AB=AC=2,P为射线BA上一点,连接PF,请写出一个BP的值,使得对于任意的点D,总有①BPF为定值,并证明.10.在①ABC中,AB=AC,①BAC=90°,D为平面内的一点.(1)如图1,当点D在边BC上时,BD=2,且①BAD=30°,AD=;(2)如图2,当点D在①ABC的外部,且满足①BDC﹣①ADC=45°,求证:BD AD;(3)如图3,若AB =4,当D 、E 分别为AB 、AC 的中点,把①DAE 绕A 点顺时针旋转,设旋转角为α(0<α≤180°)直线BD 与CE 的交点为P ,连接P A ,直接出①P AB 面积的最大值 .11.已知:①ABC 为等边三角形,且AB =4,点D 在直线BC 上运动,线段DA 绕着点D 顺时针旋转60°得到线段DE ,连接AE 和BE ,直线AE 交直线BC 于点F . (1)如图,当点D 在点C 左侧时,求证:CD =BE ;(2)若①ABC 的面积等于①ABF 面积的4倍,直接写出线段CD 的长;(3)在(2)的条件下,若点E 关于直线AD 的对称点为点G ,连接DG 交线段AC 于点M ,DE 交线段AB 于点N ,连接MN ,直接写出线段MN 的长.12.已知在①ABC 中,90ACB ∠=︒,AC =BC =(1)如图1,以点A 为原点,AB 所在直线为x 轴建立平面直角坐标系,直接写出点B ,C 的坐标; (2)如图2,过点C 作①MCN =45°交AB 于点M ,N ,且AM =1,求MN 的长度;(3)如图3,过点C 作①MCN =45°,当点M ,N 分布在点B 异侧时,线段AM ,BN 和MN 满足怎样的数量关系?并给予证明.13.如图,在①ABC 中,AC = BC ,①ACB = 90°,D 是线段AC 延长线上一点,连接BD ,过点A 作AE ①BD 于E .(1)求证:①CAE =①CBD ;(2)将射线AE 绕点A 顺时针旋转45°后,所得的射线与线段BD 的延长线交于点F ,连接CE . ①依题意补全图形;①用等式表示线段EF ,CE ,BE 之间的数量关系,并证明.14.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________. (4)当旋转角α=__________时,ABD △的面积最大.15.如图,在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,矩形BDEF 的边BF =1,BD =2,矩形BDEF 可以绕点B 在平面内旋转,连接AE 、BE 、CD . (1)证明:①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,求CD 的长;(3)设AE 的中点为M ,连接FM ,直接写出FM 的最大值.16.在平面直角坐标系中,四边形AOBC 是矩形,点A 的坐标为()5,0,点B 的坐标为()0,3,以点A 为中心,顺时针旋转矩形AOBC ,得到矩形ADEF ,点O ,B ,C 的对应点分别为D ,E ,F .(1)如图①,当点D 落在BC 边上时,求点D 的坐标;(2)如图①,当点D 落在线段BE 上时,连接AB ,AD 与BC 交于点H . ①求证:ADB AOB ≅△△; ①求点H 的坐标.(3)点K 为矩形AOBC 对角线的交点,S 为KDE 得面积,直接写出S 的取值范围.17.如图,P 是正三角形ABC 内的一点,且6,8,10PA PB PC ===,若将PAC △绕点A 顺时针旋转后得到P AB '△,(1)求旋转角的度数;(2)求点P 与点P '之间的距离; (3)求APB ∠的度数.18.如图在平面直角坐标系中,点O 为坐标原点,直线y 34=-x +b 分别交x 轴,y 轴于点A 、B ,OA =4,①OBA 的外角平分线交x 轴于点D .(1)求点D 的坐标;(2)点P 是线段BD 上一点(不与B 、D 重合),过点P 作PC ①BD 交x 轴于点C ,设点P 的横坐标为t ,△BCD 的面积为S ,求S 与t 之间的函数解析式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,PC 的延长线交y 轴于点E ,当PC =PB 时,将射线EP 绕点E 旋转45°交直线AB 于点F ,求F 点坐标.19.如图,在菱形ABCD 中,60ABC ∠=︒,E 为对角线AC 上一点,将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F ,连接BE ,AF ,CF .(1)求证:B ,C ,F 三点共线;(2)若点G 为BE 的中点,连接AG ,求证:2AF AG =.20.如图,在四边形ABCD中,BC=CD,△BCD=α°,△ABC+△ADC=180°,AC、BD交于点E.将△CBA 绕点C顺时针旋转α°得到△CDF(点B、A的对应点分别为点D、F).(1)画出旋转之后的图形(不要求写画法,保留画图痕迹);(2)求证:△CAB=△CAD;(3)若△ABD=90°,AB=3,BD=4,△BCE的面积为1S,△CDE的面积为2S,求1S:2S的值.参考答案:1.解:①将ABC绕点C顺时针旋转一定的角度α得到①DEC,E点在AC上,①CA=CD,①ECD=①BCA=30︒,(180︒−30︒)=75︒,①①CAD=①CDA=12又①①DEC=①ABC=90︒,①①ADE=90°-75︒=15︒;(2)①FBC=30︒时,四边形BFDE为平行四边形,①①FBC=①ACB=30︒,①①ABF=①A=60︒,①BF=CF=AF,①ABF是等边三角形,①BF=AB,①将ABC绕点C顺时针旋转60︒得到DEC,①DE=AB,BCE是等边三角形,①DEC=①ABC=90︒,①①CBE=①BEC=60︒,①①EBF=①EBC-①FBC=30︒,①①DEB+①EBF=180︒,①DE=BF,//DE BF,①四边形BFDE为平行四边形.2.①正方形;.理由:如图1中,∵四边形ABCD 是正方形,∴∠BCD =90°,∠BCA =45°,∵GE ⊥BC 、GF ⊥CD ,∴∠CEG =∠CFG =∠ECF =90°,∴四边形CEGF 是矩形,∠CGE =∠ECG =45°,∴EG =EC ,∴四边形CEGF 是正方形,∵AC BC ,,∴AG =AC ﹣CGBC ﹣EC ,∴AG BE(2)结论:AG ,理由:如图2中,连接CC ,∵四边形ABCD 是正方形,∴∠ABC =90°,AB =BC ,∴△ABC 为等腰直角三角形,∴AC BC由①得四边形GECF 是正方形,∴∠GEC =∠ECF =90°,GE =EC ,∴△EGC 为等腰直角三角形.∴CG CE∴AC CG BC EC=∴△ACG ∽△BCE ,∴AG CG BE EC∴线段AG 与BE 之间的数量关系为AG ;(3)如图3中,连接CG ,∵∠CEF =45°,点B 、E ,∴∠BEC =135°.∵△ACG ∽△BCE ,∴∠AGC =∠BEC =135°.∴∠AGF =∠AGC +∠CGF =135°+45°=180°,∴点A ,G ,F 三点共线,∴∠AGE =∠AGF ﹣∠EGF =180°﹣90°=90°,∴AG ⊥GE ,故答案为:AG ⊥GE .3.(1)DF =CF 且DF ①CF ;延长CF 至点M ,使CF =FM ,连接ME ,MD ,CD ,延长DE 交CB 延长线于点N ,如图1,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM=BC=AC,①FME=①FCB,①BC①EM,①①N=①MEN,在四边形ACND中,①ACB=①ADE=90°,①①N+①CAD=360°-(①ACB+①ADE)=180°,又①①MEN+①MED=180°,①①MED=①CAD,又AD=DE,EM=AC,①①MED①①CAD(SAS),①DM=DC,①MDE=①CDA,①①MDC=①NDC+①MDE=①NDC+①CDA=①ADE=90°,①①DCM为等腰直角三角形,①点F是CM中点,CM=CF,DF①CF;①DF=12(2)DF①CF且CF;延长CF至点M,使CF=FM,连接ME,MD,CD,延长ED交BC延长线于点N,如图2,①BF=EF,CF=FM,①BFC=①EFM,①①BFC①①EFM(SAS),①EM =BC =AC ,①FME =①FCB ,①BC //EM ,①①N =①NER ,①①ACB =60°,①①ACN =120°,①①ADE =120°,①①ADN =60°,①①N +①CAD =360°-(①ACN +①ADN )=180°,①①DER +①DEM =180°,①①DEM =①CAD ,又 AD =DE ,EM =AC ,①①MED ①①CAD (SAS ),①DM =DC ,①MDE =①CDA ,①①DCM 为等腰三角形,①①CDM =①ADE =120°,①F 是CM 的中点,①DF ①CF①60CDF ∠=︒①30DCF ∠=︒①CD =2DE由勾股定理得,222CE DE CD +=①2224CE DE DE +=解得,CF (负值舍去)①DF ①CF 且CF .4.(1)如图,过点D 作DE OA ⊥,垂足为E .① 0A ,B m )0m (>),① AB OA ⊥,OA =AB m =.① 30AOB ∠=︒,① 22OB AB m ==.在Rt OAB 中,由222OA AB OB +=,得2234m m +=.解得1m =.① 1AB =,2OB =.① OCD 是由OAB 旋转得到的,① 2OD OB ==,30DOC AOB ∠=∠=︒.① 60DOE DOC BOA ∠=∠+∠=︒.① 9030ODE DOE ∠=︒-∠=︒.① 112OE OD ==. 在Rt OED 中,DE =① 点D 的坐标为(.(2)如图,过点C 作CT OA ⊥,垂足为T .由已知,得45COT ∠=︒.① 9045OCT COT ∠=︒-∠=︒.① OT CT=.① OCD是由OAB旋转得到的,① OC OA==在Rt OTC△中,由222T TO C OC+=,得OT CT=① 点C的坐标为.(3)如图①中,过点D作DJ①OA于点J,在DJ上取一点K,使得DK=OK,设OJ=m.①①DOC=30°,①COT=45°,①①DOJ=75°,①①ODJ=90°-75°=15°,①KD=KO,①①KDO=①KOD=15°,①①OKJ=①KDO+①KOD=30°,①OK=DK=2m,KJ,①OD2=OJ2+DJ2,①22=m2+(2m)2,解得m=,①OJ DJ①D⎫⎪⎪⎝⎭.5.(1)证明:连接AE,DB,CB①点B 与点C 关于射线AH 对称,30HAB ∠=︒ ①CD BD =,AC AB =①30HAB HAC ∠∠==︒①260CAB HAC ∠∠==︒①ABC 为等边三角形,60ACB ∠=︒ ①60DCE ∠=︒①DCE ACD ACB ACD ∠∠∠∠-=- ECA DCB ∠=∠①在ECA △和DCB 中,EC DC ECA DCB AC BC =⎧⎪∠=∠⎨⎪=⎩①()ECA DCB SAS ≅△△①BD EA =①DC BD EC ==,①AE EC =又AB BC =①EB 垂直平分AC(2)分两种情况来讨论:第一种情况,如图,当点D 在ABE △内部时:①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠+∠=︒+∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒+∠第二种情况,如图,当点D 在ABC 外部时: ①点B 与点C 关于射线AH 对称,①90CFA ∠=︒①90ADC CFA DCB DCB ∠=∠-∠=︒-∠ ①ECA DCB ∠=∠①90ADC ECA ∠=︒-∠6.如图,即为补全的图形,根据题意可知BAC DAE α∠=∠=,①BAC CAD DAE CAD ∠+∠=∠+∠,即BAD CAE ∠=∠.(2)由旋转可知AD AE =,①在BAD 和CAE 中AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,①()BAD CAE SAS ≅,①BD CE =.①BD BC CD =+,①CE BC CD =+.①点F 为BC 中点,①2BC BF =,①2CE BF CD =+,即2CE CD BF -=.(3)如图,连接AF ,作AN DE ⊥,①AB=AC ,F 为BC 中点,①90AFD ∠=︒,12FAB FAC α∠=∠=. 根据作图可知90AND ∠=︒,①180AFD AND ∠+∠=︒,①A 、F 、D 、N 四点共圆,①AFN ADN ∠=∠.①AD AE =,AN DE ⊥,①EN DN =,11(180)9022AFN ADN DAE α∠=∠=︒-∠=︒-. ①11909022AFN FAC αα∠+∠=︒-+=︒. ①90AFH FAC ∠+∠=︒,且点H 在线段DE 上,①点H 与点N 重合,①EH DH =.7.(1)①180AOD AOB COD ∠=︒-∠-∠,3045AOB COD ∠=︒∠=︒,,①10510560=6300AOD '∠=︒=⨯.故答案为:105,6300;(2)当5t =时,即三角尺ABO 绕点O 顺时针旋转了51050⨯︒=︒,如图,ABO 即为旋转后的图形.由旋转可知50BOM ∠=︒,①180180455085BOD COD BOM ∠=︒-∠-∠=︒-︒-︒=︒,故答案为85;(3)当三角尺绕点O 顺时针旋转到如图所示的ABO 的位置时,边OD 平分①AOC .①224590AOC COD ∠=∠=⨯︒=︒,①90AOM ∠=︒①90903060BOM AOB ∠=︒-∠=︒-︒=︒, ①60610t ==; 故答案为:6;(4)①当边OA 落在直线l 上时停止运动时, ①180150=1510t -≤. 当OA 和OC 重合时,即有10418030t t +=︒-︒, 解得:757t =. ①当757t ≤时,1801030415014AOC t t t ∠=︒--︒-=︒-, 当757t >时,1030418014150AOC t t t ∠=+︒+-︒=-︒. 当OB 和OD 重合时,即有10418045t t +=︒-︒, 解得:13514t =①当13514t ≤时,1801045413514BOD t t t ∠=︒--︒-=︒-, 当13514t >时,1045418014225BOD t t t ∠=+︒+-︒=-︒. ①可根据2AOC BOD ∠=∠分类讨论,①当13514t ≤时,有15014=2(13514)t t ︒-︒-, 解得:607t =,符合题意; ①当13575147t <≤时,即有150142(14225)t t ︒-=-︒ 解得:1007t =,符合题意; ①当757t >时,即有141502(14225)t t -︒=-︒解得:150157t =>,不符合题意舍; 综上,可知当607t =或1007t =时,2AOC BOD ∠=∠. 8.(1)证明:在Rt△AOG 和Rt△ADG 中,AO AD AG AG=⎧⎨=⎩ ①AOG ①ADG (HL ).(2)在Rt ①ADP 和Rt ①ABP 中,AD AB AP AP=⎧⎨=⎩ ΔΔADP ABP ∴≅(HL ), 则DAP BAP ∠=∠;ΔΔAOG ADG ≅,1DAG ∴∠=∠;又190DAG DAP BAP ∠+∠+∠+∠=︒,2290DAG DAP ∴∠+∠=︒,45DAG DAP ∴∠+∠=︒,PAG DAG DAP ∠=∠+∠,45∴∠=︒PAG ;ΔΔAOG ADG ≅,DG OG ∴=,ΔΔADP ABP ≅,DP BP ∴=,PG DG DP OG BP ∴=+=+.(3)解:ΔΔAOG ADG ≅,AGO AGD ∴∠=∠,又190AGO ∠+∠=︒,290PGC ∠+∠=︒,12∠=∠,AGO PGC ∴∠=∠,又AGO AGD ∠=∠,AGO AGD PGC ∴∠=∠=∠,又180AGO AGD PGC ∠+∠+∠=︒,180360AGO AGD PGC ∴∠=∠=∠=︒÷=︒,12906030∴∠=∠=︒-︒=︒;∴在Rt ΔAOG 中,2,3AG OG OA ==,222AG OG OA =+∴222(2)3OG OG =+ 解得OGG ∴点坐标为0),3CG =在Rt ΔPCG 中,2PG CG =,222PG CG PC =+∴222(2)CG CG PC =+, ∴3PC =,P ∴点坐标为:(3,3),设直线PE 的解析式为:y kx b =+,则033b k b +=+=⎪⎩,解得3k b ⎧=⎪⎨=-⎪⎩∴直线PE 的解析式为3y =-.(4)①如图1,当点M 在x 轴的负半轴上时,AG MG =,点A 坐标为(0,3),∴点M 坐标为(0,3)-.①如图2,当点M 在EP 的延长线上时,由(3),可得60AGO PGC ∠=∠=︒,EP ∴与AB 的交点M ,满足AG MG =,A 点的横坐标是0,GM ∴的横坐标是3,∴点M 坐标为3).综上,可得点M 坐标为(0,3)-或3).9.(1)如图,(2)DR ①BC90RDB ∴∠=︒将线段DE 顺时针旋转90°得到线段DF ,90,EDF ED FD ∴∠=︒=BDR EDF ∴∠=∠即BDE EDR EDR RDF ∠+∠=∠+∠BDE RDF ∴∠=∠ ABC 是等腰直角三角形90BDR ∠=︒45BRD ∴∠=︒BRD ∴是等腰直角三角形BD DR ∴=∴①BDE ①①RDF ;(2)如图,当24PB AB ==时,使得对于任意的点D ,总有①BPF 为定值,证明如下,ABC 是等腰直角三角形,2AB AC ==BC ∴=DC =设DE a =,则CD =,①BDE ①①RDF ,DR BD ∴==,FR BR a == ABC 是等腰直角三角形,45EBD ∴∠=︒DR BC ⊥45BRD ∴∠=︒BDR ∴是等腰直角三角形,42BR a ∴==-()4422PR BP BR a a ∴=-=--=①BDE ①①RDF ,45FRD EBD ∴∠=∠=︒90BRF BRD DRF ∴∠=∠+∠=︒1tan 22RF a BPF RP a ∴∠=== BPF ∴∠为定值10.证明:(1)如图1,将①ABD 沿AB 折叠,得到①ABE ,连接DE ,①AB =AC ,①BAC =90°,①①ABC =45°,①将①ABD 沿AB 折叠,得到①ABE ,①①ABD ①①ABE ,①AE =AD ,BE =BD ,①ABE =①ABD =45°,①BAD =①BAE =30°,①①DBE =90°,①DAE =60°,且AD =AE ,BE =BD ,①①ADE 是等边三角形,DE =,①AD =DE =故答案为:(2)如图2,过点A 作AE ①AD ,且AE =AD ,连接DE ,①AE ①AD ,①①DAE =①BAC =90°,①①BAE =①DAC ,且AD =AE ,AB =AC ,①①BAE ①①CAD (SAS )①①ACD=①ABE,①①ACD+①DCB+①ABC=90°,①①DCB+①ABC+①ABE=90°,①①BOC=90°,①AE=AD,AE①AD,①DE=,①ADE=45°,①①BDC﹣①ADC=45°,①①BDC=①ADC+45°=①EDC,且DO=DO,①DOB=①DOE=90°,①①DOB①①DOE(ASA)①BD=DE,①BD=;(3)如图3,连接PC交AB于G点①①DAE绕A点旋转①AD=AE,AB=AC,①①DAE=①BAC=90°①①DAB=①EAC①①DAB①①EAC①①DBA=①ECA①①PGB=①AGC①①BPC=①GAC=90°①①BPC为直角三角形①点P在以BC中点M为圆心,BM为半径的圆上,连接PM交AB所在直线于点N,当PM①AB时,点P到直线AB的距离最大,①①BAC=90°①A 、P 、B 、C 四点共圆①PM ①AB ,①N 是AB 的中点①M 是BC 的中点①MN =122AC = ①AB =AC =4,①CB =22442,①BM =PM =12BC =,①PN =2 ,①点P 到AB 所在直线的距离的最大值为:PN =2 . ①①P AB的面积最大值为12AB ×PN =4. 11.(1)证明:ABC 是等边三角形60,BAC AB AC ∴∠=︒=线段DA 绕着点D 顺时针旋转60°得到线段DE , 60,DAE DA DE ∴∠=︒=ADE ∴是等边三角形DAC DAE CAE BAC CAE EAB ∴∠=∠-∠=∠-∠=∠ 即DAC EAB ∠=∠∴ADC AEB △≌△∴CD BE =(2)ABC 是等边三角形,AB =4,则60BAC ∠=︒过点A 作AM BC ⊥,则1302BAH BAC ∠=∠=︒ Rt ABH 中,122BH AB ==AH ∴=142ABC S ∴=⨯⨯△①ABC 的面积等于①ABF 面积的4倍ABF S ∴=△11sin 60422ABF S BF AB =⋅⨯︒=⨯=△ 1BF ∴= ①当F 点在B 点的左侧时,如图,60ACB ABC ∠=∠=︒120ACD ∴∠=︒ADC AEB △≌△ADC AEB ∴∠=∠,BE DC =60ABC ∠=︒60EBF ABE ABC ∴∠=∠-∠=︒60FBE FCA ∴∠=∠=︒又AFC EFB ∠=∠AFC EFB ∴∽FB BE FC AC∴= 4,1AC BC AB BF ====413FC ∴=-=14433FB AC BE FC ⋅⨯∴=== 43CD EB ∴==①当F 点在B 点的右侧时,如图,ADC AEB △≌△60ACD EBA ∴∠=∠=︒60ABC ∠=︒18060EBF ABC ABE ∴∠=︒-∠-∠=︒BE AC ∴∥FEB FAC ∴∽FB BE FC AC∴= 1,4,145FB AC FC BC BF ===+=+=45FB AC BE FC ⨯∴== 45CD EB ∴==综上所述CD 的长为43或45(3)如图,点E 关于直线AD 的对称点为点G ,ADE 是等边三角形60ADE ADG ∴∠=∠=︒,AE AD =AEN ADM ∴∠=∠60=︒60,60MAD DAB CAB EAB DAB DAE ∠+∠=∠=︒∠+∠=∠=︒MAD NAE ∴∠=∠MAD NAE ∴=AM AN ∴=60MAN ∠=︒AMN ∴是等边三角形MN AN ∴=由(2)可得45BE =,FEB FAC ∽ 445525EF BF BF AF FC BC BF ∴====+过点A 作AH BC ⊥,则AH =,2CH HB ==,3HF HB BF =+=AF ∴=425EF AF ∴==AE AF EF ∴=-==60,ABE AEN EAB NAE ∠=∠=︒∠=∠∴BEA ENA ∽BE BA EN EA∴= 则BE EA EN BA ⨯=60,ADN ABE AND ENB ∠=∠=︒∠=∠ADN EBN ∴∽AD AN EB EN∴= 即AN EB EN AD ⨯= BE EA AN EB BA AD ⨯⨯∴= EA AD AN AB⨯∴=AE AD =,4AB =2926142500AN ⎝⎭∴== 即92612500MN =12. 解:(1)如图1,过点C 作CD ①x 轴于D ,①在①ABC 中,90ACB ∠=︒,AC =BC=①4AB = ,①点B (4,0),①CD ①AB ,①AD =CD =12AB =12×4=2,①点C 的坐标为(2,2);(2)如图,把①ACM 绕点C 逆时针旋转90°得到①BCM ′,连接M ′N ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,45AM BM CM CM CAM CBM ACM BCM '''==∠=∠=︒∠=∠'、、,,①454590M BN ABC CBN ∠'=∠+∠'=︒+︒=︒ ,①①MCN =45°,①90904545M CN BCN BCM BCN ACM MCN ∠'=∠+∠'=∠+∠=︒-∠=︒-︒=︒ , ①MCN M CN ∠=∠' ,在①MCN 和①M ′CN 中,①CM CM MCN M CN CN CN ''=⎧⎪∠=∠⎨⎪=⎩,①MCN M CN SAS '≌(), ①MN M N =' ,在Rt M NB ' 中,222BM BN M N +='' ,①222AM BN MN += ,1AM =,①3MN BN AB AM +=-=,1BM '= ,设MN x =,则BN =3x -,()22213-x x ∴+=,解得:53x =, 53MN ∴=; (3)AM 2+BN 2=MN 2,证明如下:如图3,把①BCN 绕点C 顺时针旋转90°得到ACN ' ,①90ACB ∠=︒,AC =BC ,①①ABC 是等腰直角三角形,①①CAB =①CBA =45°,由旋转的性质得,135AN BN CN CN CAN CBN '='=∠'=∠=︒,, , ①1354590MAN ∠'=︒-︒=︒,①点N '在y 轴上,①①MCN =45°,①904545MCN ∠'=︒-︒=︒,①MCN MCN ∠=∠' ,在①MCN 和①MCN ′中,①CN CN MCN MCN CM CM =''⎧⎪∠=∠⎨⎪=⎩,①()MCN MCN SAS ≅' ,①MN MN =' ,在Rt AMN ' 中,222AM AN MN +''= ,①222AM BN MN += .13.(1)如图1,①90ACB ∠=︒,AE BD ⊥,①90ACB AEB ∠=∠=︒,又①12∠=∠,①CAE CBD ∠=∠;(2)①补全图形如图2;①EF BE =.理由如下:在AE 上截取AM ,使AM BE =.又①AC CB =,CAE CBD ∠=∠,①ΔΔACM BCE ≌,①CM CE =,ACM BCE ∠=∠,又①90ACB ACM MCB ∠=∠+∠=︒,①90MCE BCE MCB ∠=∠+∠=︒,①ME =,又①射线AE 绕点A 顺时针旋转45︒,后得到AF ,且90AEF ∠=︒,①EF AE AM ME BE ==+=.14.解:(1)如图:BD 与EC 的数量关系是相等,理由如下:,AB AC AD AE ==,AB AD AC AE ∴-=-,BD EC ∴=;BD 与EC 的位置关系是垂直,理由如下:AB AC ⊥, 又点,D E 分别在,AB AC 上,BD EC ⊥;(2)成立:理由分别如下:如图:根据旋转的性质可得:,,AD AE AB AC BAD CAE ==∠=∠, ()ABD ACE SAS ∴≌,BD EC ∴=,作BD 的延长线交EC 于点F ,交AC 于点G ,如下图:由ABD ACE SAS △≌△()可知,ABD ACE ∠=∠,AGB FGC ∠=∠,AGB FGC ∴∽,90GAB GFC ∴∠=∠=︒,GF CF ∴⊥,即BD EC ⊥;(3)当点D 在线段BE 上时,90BAD BAC DAC DAC ∠=∠-∠=︒-∠,90CAE DAE DAC DAC ∠=∠-∠=︒-∠,BAD CAE ∴∠=∠,又AB AC =,AD AE =,()BAD CAE SAS ∴∆≅∆,180135ADB AEC ADE ∴∠=∠=︒-∠=︒,451354590BEC AEC ∴∠=∠-︒=︒-︒=︒;(4)由题意知,点D 的轨迹在以A 为圆心,AD 为半径的圆, 在ABD ∆中,当AB 为底时,点D 到AB 的距离最大时,ABD ∆的面积最大, 故如图所示,当AD AB ⊥时,ABD ∆的面积最大,∴旋转角为90︒或270︒,故答案为:90︒或270︒.15.解:(1)在Rt ①ABC 中,BC =4,AC =2,①ACB =90°,AB ∴=在Rt ①BDE 中,BF =1,BD =2,BE ∴=121tan ,tan 242ED AC EBD ABC BD BC ∴∠==∠=== EBD ABC ∴∠=∠EBD ABD ABC ABD ∴∠-∠=∠-∠ABE CBD ∴∠=∠24AB BE BC BD ===∴①ABE ①①CBD ;(2)当A 、E 、F 三点共线时,分两种情况讨论: ①90AED ∠=︒,如图,在Rt ①AFB 中,222AB BF AF =+21(2)20AE ∴++=2(2)19AE ∴+=2AE ∴=①ABE ①①CBDAE CD ∴=CD ∴= ①如图,90AFB ∠=︒在Rt ①AFB 中,22220119AF AB BF =-=-=AF ∴=2AE AF EF ∴=+=EBD ABC ∠=∠90EBF ABC ∴∠+∠=︒EBF ABC FBC DBF FBC ∴∠+∠+∠=∠++∠24AB BE BC BD ===∴①ABE ①①CBDAE CD ∴=CD ∴=综上所述,CD =CD =(3)如图,延长EF 至点G ,使得EF =FG ,连接BG ,此时①BEG 是等腰三角形, 当G B A 、、三点共线,此时FM 最大//BD GEG DBA ∴∠=∠9090180DBA FBD GBF G FBD GBF ∴∠+∠+∠=∠+∠+∠=︒+︒=︒, 此时,G B A 、、三点共线,F M 、分别是BE 、AE 的中点,FM ∴是①EGA 的中位线,111==()222FM AG AB BG ∴+==16.解:(1)如图①中,(5,0)A ,(0,3)B ,5OA ∴=,3OB =,四边形AOBC 是矩形,3AC OB ∴==,5OA BC ==,90OBC C ∠=∠=︒,矩形ADEF 是由矩形AOBC 旋转得到,5AD AO ∴==,在Rt ADC 中,4CD ,1BD BC CD ∴=-=,(1,3)D ∴.(2)①如图①中,由四边形ADEF 是矩形,得到90ADE ∠=︒,点D 在线段BE 上,90ADB ∴∠=︒,由(①)可知,AD AO =,又AB AB =,90AOB ∠=︒,()Rt ADB Rt AOB HL ∴≌.①如图①中,由ADB AOB ∆≅∆,得到BAD BAO ∠=∠,又在矩形AOBC 中,//OA BC ,CBA OAB ∴∠=∠,BAD CBA ∴∠=∠,BH AH ∴=,设AH BH m ==,则5HC BC BH m =-=-,在Rt AHC 中,222AH HC AC =+,2223(5)m m ∴=+-,175m ∴=, 175BH ∴=, 17(5H ∴,3). (3)如图①中,当点D 在线段BK 上时,DEK ∆的面积最小,最小值113(522DE DK ==⨯⨯=当点D 在BA 的延长线上时,①D E K ''的面积最大,最大面积113(522D E KD =⨯''⨯'=⨯⨯=. 17.解:(1)∵P AB ∆'由PAC ∆绕点A 旋转得到,∴P AB PAC ∆≅∆',∴P AB PAC ∠=∠',P A PA '=,∵60BAC PAC PAB ∠=∠+∠=︒,∴60P AB PAB ∠+∠='︒,即:60P AP ∠='︒,∴旋转角度数为60︒;(2)如图所示,连接P P ',∵60P AP ∠='︒,P A PA '=,∴P AP ∆'为等边三角形,∴6P P PA '==,即点P 与点P '之间的距离为6;(3)在P PB ∆'中,由(1)得:10P B PC ='=,6P P '=,8PB =,∴222P B P P PB ''=+,∴P PB ∆'为直角三角形,∴90P PB ∠='︒,由(1)得60APP ∠='︒,∴150APB P PB APP ∠=∠+='∠'︒,∴APB ∠的度数为150︒.18.( 1 )①OA =4,①A (4,0),把A (4,0)代入34y x b =-+, 得:b =3,过点D 作DH ①AB 于点H ,则DH =DO ,BH =BO ,①当x =0时,y =3,①B (0,3),①OA =4,BO =BH =3,在Rt OAB 中,①5AB ,AD =DO +OA =DH +4, ①1122ABD S AD OB AB DH =⋅⋅=⋅⋅, ①()1143522DH DH ⨯+⨯=⨯⋅, 解得:DH =6,①OD =6,①点D 的坐标为(﹣6,0),(2)过点P 作PE ①OD 于点E ,则△DPE ①①DBO ,①点P 在直线BD 上,且点P 的横坐标为t ,①DE =t +6,①OD =6,OB =3,在Rt OBD △中,BD ==①①DPE ①①DBO , ①DP DE DB DO =,66t +,解得:)6DP t =+, ①PC ①BD , ①①PDC ①①ODB , ①PC DP OB OD=,①)6236t PC +=,①)6PC t =+,①)()1115154566=22884BCD S BD PC t t t =⋅⋅=⨯+=++; (3)作PH 垂直于x 轴于点H ,设射线EP 绕点E 逆时针旋转45°交x 轴于点K ,顺时针旋转45°交x 轴于点G .①①BPC =90°,①BOC =90°①B ,P ,C ,O 四点共圆,①PC PB =,①45PCB PBC ∠=∠=︒,①①POC =①PBC =45°,①90PHO ∠=︒,①45HPO POC ∠=∠=︒,①PH =HO ,①DH =6﹣HO =6﹣PH ,①DHP DOB ∽, ①663PH DO PH BO -==, 得PH =2,①HC =CO =1,①OE =2,①点(0,2)E -,①①KEP =①DBC ,①PEB =①BDC ,①①KEP +①PEB =①DBC +①BDC ,即①KEO =①BCO ,①OE :GK =CO :BO =1:3,①GK =6,①K (﹣6,0),设直线KE 的解析式为:y kx b =+,则62y k b b =-+⎧⎨-=⎩,解得:132k b ⎧=-⎪⎨⎪=-⎩,, ①直线KE 为:y 13=-x ﹣2, 联立方程组:123334y x y x ⎧=--⎪⎪⎨⎪=-+⎪⎩解得x =12,y =﹣6,①F 1(12,﹣6),①①KEP +①PEG =90°,①①DEG =90°,①①OEG =①ODE ,①OG :OE =OE :OD =1:3,①OG 23=; ①G (23,0), 设直线EG 的解析式为:y mx n =+, 则20=32m n n⎧+⎪⎨⎪-=⎩,解得:32m n =⎧⎨=-⎩, ①直线EG 的解析式为:y =3x ﹣2, 联立方程组:32334y x y x =-⎧⎪⎨=-+⎪⎩, 解得x 43=,y =2, ①F 2(43,2), 综上所述:F 的坐标为(12,﹣6)或(43,2). 19.证明:(1)①四边形ABCD 是菱形,①ABC =60°, ①AB =BC =AD =CD ,①ADC =①ABC =60°,①①ADC 是等边三角形,①AD =AC =AB =BC ,①①ACB 是等边三角形,①①ACB =①ACD =60°,①①ADC =①EDF =60°,①①ADE =①CDF ,①将线段DE 绕点D 逆时针旋转60︒,点E 的对应点为F , ①DE DF =,在①ADE 和①CDF 中,DA DC ADE CDF DE DF =⎧⎪∠=∠⎨⎪=⎩①①ADE ①①CDF (AAS ),①60DCF DAE ∠=∠=︒,①180DCF BCD ∠+∠=︒,①B ,C ,F 三点共线;(2)如图,过点B 作BH ①AC ,交AG 的延长线于点H ,①BH ①AC ,①①H =①GAE ,①ABH +①BAC =180°,①①ABH =120°=①ACF ,①点G 为BE 的中点,①BG =GE ,在①AGE 和①HGB 中,H GAE AGE BGH BG GE ∠=∠⎧⎪∠=∠⎨⎪=⎩,①①AGE ①①HGB (AAS ),由(1)得AE CF =,①AE =BH =CF ,AG =GH =12AH ,在①ABH 和①ACF 中,AB AC ABH ACF BH CF =⎧⎪∠=∠⎨⎪=⎩,①①ABH ①①ACF (SAS ),①AF =AH ,①AF =2AG .20.(1)如图①CDF 即为旋转之后的图形;(2)证明:由旋转旋转可知:①CAB ①①CFD ,①①CDF =①CBA ,①F =①CAB ,CA =CF ,①①CBA +①CDA =180°,①①CDF +①CDA =180°,①A 、D 、F 三点共线,①AC =CF ,①①F =①CAD ,①①CAB =①CAD ;(3)过点E 作EM ①AF 于点M ,过点C 作CN ①BD 于点N , ①①ABE =①AME =90°,在①ABE 和①AME 中,EAB EAM ABE AME AE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ①①ABE ①①AME (AAS ),①AM =AB =3,BE =ME ,①①ABD =90°,AB =3,BD =4,①5AD ==,①DM =2,设BE EM x ==,则4DN x =-,①()222x 24x +=-,解得 1.5x =,①BE =1.5,DE =2.5, ①12113::225S S BE CN DE CN =⋅⋅=.。
中考数学复习考点专题练习---图形的旋转综合一.选择题1.如图,△OAB绕点O逆时针旋转85°得到△OCD,若∠A=110°,∠D=40°,则∠α的度数为()A.55°B.75°C.85°D.90°2.下列图形:①平行四边形;②矩形;③菱形;④等边三角形中,是中心对称图形的有()A.①②③B.②③④C.①②④D.①②③④3.如图,在△ABC中,∠C=20°,将△ABC绕点A顺时针旋转60°得到△ADE,AE与BC交于点F,则∠AFB的度数是()A.60°B.70°C.80°D.90°4.如图,在Rt△ABC中,AB=AC,D,E是斜边BC上两点,且∠DAE=45°,将△ABE绕点A顺时针旋转90°后,得到△ACF,连接DF,则下列结论中有()个是正确的.①∠DAF=45°②△ABE≌△ACD③AD平分∠EDF④BE2+DC2=DE2A.4 B.3 C.2 D.15.如图,在等腰直角△ABC中,∠ACB=90°,D为△ABC内一点,将线段CD绕点C逆时针旋转90°后得到CE,连接BE,若∠DAB=10°,则∠ABE是()A.75°B.78°C.80°D.92°6.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△ABC,M是BC 的中点,P是A’B’的中点,连接PM.若BC=4,∠BAC=30°,则线段PM的最大值是()A.8 B.6 C.4 D.57.在平面直角坐标系xOy中,点O(0,0),A(2,0),B(0,),C(﹣2,0).将△OAB 绕点O顺时针旋转α(0°<α<360°)得到△OA′B′((其中点A旋转到点A′的位置),设直线AA′与直线BB′相交于点P,则线段CP长的最小值是()A.B.C.2 D.8.如图,四边形ABCD为正方形,AB=1,把△ABC绕点A逆时针旋转60°得到△AEF,连接DF,则DF的长为()A.B.C.D.9.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=116°,则∠α的大小是()A.64°B.36°C.26°D.22°10.如图①,正方形A的一个顶点与正方形B的对称中心重合,重叠部分面积是正方形A面积的,如图②,移动正方形A的位置,使正方形B的一个顶点与正方形A的对称中心重合,则重叠部分面积是正方形B面积的()A.B.C.D.二.填空题11.如图,△ABC为等边三角形,D是△ABC内一点,将△ABD绕点A按逆时针方向旋转到△ACP位置,则∠P AD=°.12.如图,在△ABC中,∠C=90°,AC=3cm,AB=5cm,将△ABC绕点B顺时针旋转60°得到△FBE,则点E与点C之间的距离是cm.13.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C顺时针旋转得到△A'B'C,D是A'B'的中点,连接BD,若BC=2,∠ABC=60°,则线段BD的最大值为.14.如图,将矩形ABCD绕点B顺时针旋转90°至EBGF的位置,连接AC,EG,取AC,EG的中点M,N连接MN,若AB=8,BC=6,则MN=.15.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC′,联结B′C′,当α+β=60°时,我们称△AB′C′是△ABC 的“双旋三角形”,如果等边△ABC的边长为a,那么它所得的“双旋三角形”中B′C′=(用含a的代数式表示).16.如图,正方形ABCD的边长为,点E是正方形ABCD内一点,将△BCE绕着点C 顺时针旋转90°,点E的对应点F和点B,E三点在一条直线上,BF与对角线AC相交于点G,若DF=6,则GF的长为.17.如图,AB=AC,∠CAB=90°,∠ADC=45°,AD=1,CD=3,则BD=.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P'(﹣y+1,x+2),我们把点P'(﹣y+1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1、P2、P3、P4、…P n、…,若点P1的坐标为(2,0),则点P2019的坐标为.19.如图,将△ABC的边AB绕着点A顺时针旋转α(0°<α<90°)得到AB′,边AC绕着点A逆时针旋转β(0°<β<90°)得到AC,连接B′C′,当α+β=60°时,我们称△AB′C’是△ABC 的“双展三角形”,已知一直角边长为2的等腰直角三角形,那么它的“双展三角形”的面积为.20.如图,将△ABC绕点C顺时针旋转90°得到△EDC,若点A、D、E在同一条直线上,∠ACD=70°,则∠EDC的度数是.三.解答题21.将一副三角尺的直角重合放置(∠B=30°,∠C=45°),如图1所示,(1)图1中∠BEC的度数为;(2)三角尺AOB的位置保持不动,将三角尺COD绕其直角顶点O顺时针方向旋转:①当旋转至图2所示位置时,恰好OD∥AB,求此时∠AOC的大小;②若将三角尺COD继续绕O旋转,直至回到图1位置,在这一过程中,是否会存在△COD其中一边能与AB平行?如果存在,请你画出图形,并直接写出相应的∠AOC的大小;如果不存在,请说明理由.22.在四边形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.(1)如图1,求△BCD的面积;(2)如图2,M是CD边上一点,将线段BM绕点B逆时针旋转60°,可得线段BN,过点N作NQ⊥BC,垂足为Q,设NQ=n,BQ=m,求n关于m的函数解析式.(自变量m的取值范围只需直接写出)23.如图,将一个直角三角形纸片AOB,放置在平面直角坐标系中,点A(3,3),点B(3,0),点O(0,0),将△AOB沿OA翻折得到△AOD(点D为点B的对应点).(Ⅰ)求OA的长及点D的坐标:(Ⅱ)点P是线段OD上的点,点Q是线段AD上的点.①已知OP=1,AQ=,R是x轴上的动点,当PR+QR取最小值时,求出点R的坐标及点D到直线RQ的距离;②连接BP,BQ,且∠PBQ=45°,现将△OAB沿AB翻折得到△EAB(点E为点O的对应点),再将∠PBQ绕点B顺时针旋转,旋转过程中,射线BP,BQ交直线AE分别为点M,N,最后将△BMN沿BN翻折得到△BGN(点G为点M的对应点),连接EG,若,求点M的坐标(直接写出结果即可).24.如图,把直角三角形ABC按逆时针方向旋转到△EBD的位置,使得A、B、D三点在一直线上.(1)旋转中心是哪一点?旋转角是多少度?(2)AC与DE的位置关系怎样?请说明理由.25.将一副直角三角尺按图1摆放,其中∠C=90°,∠EDF=90°,∠B=60°,∠F=45°,等腰直角三角尺的直角边DF恰好垂直平分AB,与AC相交于点G,BC=4cm.(1)求DG的长;(2)如图2.将△DEF绕点D按顺时针方向旋转,直角边DF经过点C,另一直角边DE 与AC相交于点H,分别过点H,D作AB,BC的垂线,垂足分别为点M,N.猜想HM 与CN之间的数量关系,并证明;(3)如图3,在旋转的过程中,若△DEF两边DE,DF与△ABC两边AC,BC分别交于K、T两点,则KT的最小值为.26.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)判断A E、BE、BC之间的数量关系(直接写出结果,不必证明);(2)如图2,过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角a(0°<a <<144°)得到△AE'F',连结CE',BF′,求证:CE'=BF':(3)在(2)的旋转过程中,当a=时,CE'∥AB?(请直接写出结果).27.如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.(1)求∠CF A度数;(2)求证:AD∥BC.28.如图1,在Rt△ABC中,∠ABC=90°,AB=BC,将△ABC绕点A逆时针旋转,得到△ADE,旋转角为α(0°<α<90°),连接BD交CE于点F.(1)如图2,当α=45°时,求证:CF=EF;(2)在旋转过程中,①问(1)中的结论是否仍然成立?证明你的结论;②连接CD,当△CDF为等腰直角三角形时,求tan的值.29.综合与实践数学活动:在综合与实践活动课上,老师让同学们以“三角形纸片的折叠、旋转”为主题开展数学活动,探究线段长度的有关问题.动手操作:如图1,在直角三角形纸片ABC中,∠BAC=90°,AB=6,AC=8.将三角形纸片ABC进行以下操作:第一步:折叠三角形纸片ABC使点C与点A重合,然后展开铺平,得到折痕DE;第二步:将△ABC沿折痕DE展开,然后将△DEC绕点D逆时针方向旋转得到△DFG,点E,C的对应点分别是点F,G,射线GF与边AC交于点M(点M不与点A重合),与边AB交于点N,线段DG与边AC交于点P.数学思考:(1)求DC的长;(2)在△DEC绕点D旋转的过程中,试判断MF与ME的数量关系,并证明你的结论;问题解决:(3)在△DEC绕点D旋转的过程中,探究下列问题:①如图2,当GF∥BC时,求AM的长;②如图3,当GF经过点B时,AM的长为;③当△DEC绕点D旋转至DE平分∠FDG的位置时,试在图4中作出此时的△DFG和射线GF,并直接写出AM的长.(要求:尺规作图,不写作法,保留作图痕迹,标记出所有相应的字母)30.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD、CE的交点.(1)判断线段BD与CE的关系,并证明你的结论;(2)若AB=8,AD=4,把△ADE绕点A旋转,①当∠EAC=90°时,求PB的长;②求旋转过程中线段PB长的最大值.参考答案一.选择题1.解:根据旋转的性质可知:∠C=∠A=110°,在△COD中,∠COD=180°﹣110°﹣40°=30°.旋转角∠AOC=85°,所以∠α=85°﹣30°=55°.故选:A.2.解:平行四边形,矩形,菱形是中心对称图形.故选:A.3.解:∵△ABC绕点A顺时针旋转60°得△ADE,∴∠CAE=60°,∵∠C=20°,∴∠AFC=100°,∴∠AFB=80°.故选:C.4.解:由旋转可知:△BAE≌△CAF,∴∠BAE=∠CAF,∴∠EAF=∠BAC=90°,∵∠EAD=45°,∴∠EAD=∠F AD=45°,∴AD平分∠EAF,∵AD=AD,AE=AF,∴△DAE≌△DAF(SAS),故①③正确,∴DE=DF,∵∠ACF∠B=∠ACB=45°,∴∠DCF=90°,∴DF2=CD2+CF2,∵DF=DE,BE=CF,∴BE2+CD2=DE2,故④正确,无法判断△ABE≌△ACD,故②错误.故选:B.5.解:∵△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°.∴∠DAC=45°﹣10°=35°.在△BEC和△ADC中∴△BCE≌△ACD(SAS).∴∠EBC=∠DAC=35°.∴∠ABE=∠EBC+∠DAC=80°.故选:C.6.解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=4,∴AB=8,根据旋转不变性可知,A′B′=AB=8,∴A′P=PB′,∴PC=A′B′=4,∵CM=BM=2,又∵PM≤PC+CM,即PM≤6,∴PM的最大值为3(此时P、C、M共线).故选:B.7.解:∵△OAB是直角三角形,点P在以AB为直径的圆上运动,∵A(2,0),B(0,),∴AB=4,AB的中点为(1,),∵C(﹣2,0),∴CP的最小值为2﹣2;故选:B.8.解:如图,连接BE,CE,过E作EG⊥BC于G,由旋转可得,AB=AE=1=AD,AC=AF,∠BAC=∠EAF=45°=∠DAC,∴∠CAE=∠F AD,∴△ADF≌△AEC(SAS),∴DF=CE,由旋转可得,AB=AE=1,∠BAE=60°,∴△ABE是等边三角形,∴BE=1,∠ABE=60°,∴∠EBG=30°,∴EG=BE=,BG=,∴CG=1﹣,∴Rt△CEG中,CE======,∴DF=,故选:A.9.解:如图设BC交C′D′于K.在四边形ABKD ′中,∵∠B =∠D ′=90°,∠BKD ′=∠1=116°,∴∠BAD ′=180°﹣116°=64°,∵∠BAD =90°,∴∠DAD ′=90°﹣64°=26°,故选:C .10.解:设正方形B 对角线的交点为O ,如图1,设正方过点O 作边的垂线,则OE =OM ,∠EOM =90°,∵∠EOF +∠EON =90°,∠MON +∠EON =90°,∴∠EOF =∠MON ,在△OEF 和△OMN 中,∴△OEF ≌△OMN (ASA ),∴阴影部分的面积=S 四边形NOEP +S △OEF =S 四边形NOEP +S △OMN =S 四边形MOEP =S 正方形CTKW ,即图1中阴影部分的面积=正方形B 的面积的四分之一,同理图2中阴影部分烦人面积=正方形A 的面积的四分之一,∵图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的,∴正方形B 的面积=正方形A 的面积的2倍,∴图2中重叠部分面积是正方形B面积的,故选:D.二.填空题(共10小题)11.解:∵△ABC为等边三角形,∴∠BAC=60°,∵将△ABD绕点A按逆时针方向旋转到△ACP,∴∠DAP=∠BAC=60°,故答案为:60.12.解:连接EC,即线段EC的长是点E与点C之间的距离,在Rt△ACB中,由勾股定理得:BC===4(cm),∵将△ABC绕点B顺时针旋转60°得到△FBE,∴BC=BE,∠CBE=60°,∴△BEC是等边三角形,∴EC=BE=BC=4cm,故答案为:4.13.解:连接CD,在Rt△ABC中,∵∠ACB=90°,BC=2,∠ABC=60°,∴∠A=30°,∴AB=A′B′=2BC=4,∵DB′=DA′,∴CD=A′B′=2,∴BD≤CD+CB=4,∴BD的最大值为4,14.解:连接BM、BN,在Rt△ABC中,利用勾股定理可得AC=10,∵M为AC中点,∴BM=AC=5.∵矩形ABCD绕点B顺时针旋转90°至EBGF的位置,∴BM=BN,且∠MBN=90°,∴MN=BM=5.故答案为5.15.解:∵△ABC为等边三角形,∴AB=AC=a,∠BAC=60°,∵△AB′C′是△ABC的“双旋三角形”,∴α+β=60°,AB′=AB=a,AC′=AC=a,∴∠B′AC=120°,∴∠B′=∠C′=30°,作AH⊥B′C′于H,如图,则B′H=C′H,在Rt△AB′H中,AH=AB′=a,∴B′H=AH=a,∴B′C′=2A′H=a.16.解:作CH⊥BF于H,GK⊥BC于K.∵四边形ABCD是正方形,∴CB=CD,∠BCD=90°,∵∠ECF=90°,∴∠BCD=∠ECF,∴∠BCE=∠DCF,∵CE=CF,∴△BCE≌△DCF(SAS),∴BE=DF=6,∵CE=CF,∠ECF=90°,CH⊥EF,∴EH=HF,∴CH=HE=HF,设CH=HE=HF=a,在Rt△BCH中,∵BC2=BH2+CH2,∴50=(6+a)2+a2,解得a=1或﹣7(舍弃),∴CH=HE=HF=1,BF=8,∵tan∠CBH===,设GK=k,BK=7k,则GK=CK=k,∴8k=5,∴k=,∴BG==5k=,∴FG=BF﹣BG=8﹣=,故答案为.17.解:如图,过点A作AE⊥AD交CD于E,连接BE.∵∠DAE=90°,∠ADE=45°,∴∠ADE=∠AED=45°,∴AE=AD=1,DE=,∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD,∵AB=AC,∴△BAE≌△CAD(SAS),∴CD=BE=3,∠AEB=∠ADC=45°,∴∠BED=90°,∴BD===.故答案为.18.解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(﹣3,3),点P4的坐标为(﹣2,﹣1),点P5的坐标为(2,0),…,而2019=4×504+3,所以点P2019的坐标与点P3的坐标相同,为(﹣3,3).故答案为(﹣3,3).19.解:如图1中,当△AB′C′是△ABC的“双展三角形”时,作C′D⊥B′A交B′A的延长线于D,在C′D上取一点F,使得F A=FC,连接AF.∵B∠B′AC′=60°+45°=105°,∴∠DAC′=75°,∵∠D=90°,∴∠DC′A=15°,∵F A=FC′,∴∠F AC=∠FC′A=15°,∴∠AFD=∠F AC+∠FC′A=30°,设AD=x,则AF=FC′=2x.DF=x,∵AB=BC=2,∠B=90°,∴AC=AC′=2,在Rt△ADC′中,则有x2+(x+2x)2=(2)2,解得x=﹣1(负根已经舍弃),∴DC′=2x+x=+1,∴S△AB′C′=•AB′•C′D=+1.如图2中,当△A′BC′是△ABC的“双展三角形”时,作C′D⊥B′A交A′B的延长线于D.由题意:∠A′BC′=60°+90°=150°,∴∠C′BD=30°,∴C′D=BC′=1,∴S△A′BC′=•BA′•C′D=1,综上所述,满足条件的+1或1.故答案为+1或1.20.解:由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.三.解答题(共10小题)21.解:(1)∠CAE=180°﹣∠BAO=180°﹣60°=120°,∴∠BEC=∠C+∠CAE=45°+120°=165°,故答案为:165°.(2)①∵OD∥AB,∴∠BOD=∠B=30°,又∠BOD+∠BOC=90°,∠AOC+∠BOC=90°,∴∠AOC=∠BOD=30°.′②存在,如图1,当AB∥OC时,则∠COB=∠B=30°,∴∠AOC=90°+30°=120°;如图2,当AB∥CD时,延长DO交AB于D′,∴∠AD′O=∠D=45°,∴∠AOD′=75°,∴∠AOC=∠AOD′+90°=165°;如图3,当AB∥OD时,∠DOB=∠B=30°,∴∠AOC=∠DOB=30°;如图4,当AB∥OD时,∠AOD=∠A=60°,∴∠AOC=90°+60°=150°;如图5,当AB∥OC时,∴∠AOC=∠A=60°;如图6,当AB∥CD时,∠1=∠A=60°,∴∠AOC=60°﹣45°=15°;综上所述,∠AOC的度数为:15°,30°,60°,120°,150°,165°.22.解:(1)过点D作DE⊥BC,则∠DEB=90°.∵AB∥CD,∴∠ABC=∠DCE=60°.∴在Rt△CDE中,∠CDE=30°.∴CE=CD=.∴DE==.∴△BCD的面积为BC•DE=×4×=(2)方法一:连接AN,∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=MB,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA(SAS).∴∠NAB=∠BCM=120°.连接AC,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∴∠NAB+∠BAC=180°.∴N,A,C三点在一条直线上.∵NQ=n,BQ=m,∴CQ=4﹣m.∵NQ⊥BC,∴∠NQC=90°.∴在Rt△NQC中,NQ=CQ•tan∠NCQ.∴n=(4﹣m).即n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).方法二:∵线段BM绕点B逆时针旋转60°得到线段BN,∴NB=BM,∠NBM=60°.∵∠MBC+∠MBA=∠MBA+∠NBA.∴∠MBC=∠NBA,∵AB=BC,∴△MBC≌△NBA.∴∠NAB=∠BCM=120°.设AB与NQ交于H点,∵NQ⊥BC,∴∠HQB=90°.∵∠ABC=60°,∴∠BHQ=∠NHA=30°.∴∠HNA=180°﹣30°﹣120°=30°.∴NA=AH.∴在Rt△BHQ中,HQ=BQ•tan∠HBQ=m.又∵BH=2m,∴AH=4﹣2m.过点A作AG⊥NH,∴NG=GH.在Rt△AGH中,GH=AH•cos∠AHN=(4﹣2m)=2﹣m,∴NH=2GH=4﹣2m.∵NQ=N H+HQ,∴n=﹣m+4.所以n关于m的函数解析式为:n=﹣m+4(≤m≤2).23.解:(Ⅰ)如图1中,∵A(3,3),B(3,0),∴AB=OB=3,∠ABO=90°,∴∠BOA=45°,∵将△AOB沿OA翻折得到△AOD,∴∠AOD=∠AOB=45°,∴∠BOD=90°,∴点D在y轴的正半轴上,∴D(0,3).(Ⅱ)①如图1中,作点P关于点O的对称点K,连接KQ交OB于R′,此时PR′+QR′的值最小.作DH⊥QK于H.由题意:K(0,﹣1),Q(,3).∴直线KQ的解析式为y=x﹣1,令y=0,得到x=,∵DH⊥KQ,∴直线KQ的解析式为y=﹣x+3,由,解得,∴H(,),∴DH==∴R′(,0),点D到直线KQ的距离为.②如图2中,易证△ABM≌△EBG(SAS),∴∠BAM=∠BEC=45°,∵∠AEB=45°,∴∠GEN=90°,∵,∴可以假设EN=12k,EG=5k,则NG=MN=13k,∵AM=EG=5k,∴5k+13k+12k=3,∴k=,作MH⊥AB于H,∵∠MAH=45°,AM=,∴AH=MH=,可得M(,).24.解:(1)直角三角形ABC按逆时针方向旋转到△EBD的位置,∴旋转中心是点B,旋转角是90°;(2)AC⊥DE,理由:延长DE交AC于F,∵把直角三角形ABC按逆时针方向旋转到△EBD的位置,∴∠C=∠D,∠DBE=∠ABC=90°,∴∠C+∠A=∠D+∠A=90°,∴∠DF A=90°,∴AC⊥DE.25.解:(1)如图1中,在Rt△ABC中,∵∠C=90°,BC=4,∠CAB=30°∴AB=2BC=8,∵DF垂直平分线段AB,∴AD=DB=4,在Rt△ADG中,DG=AD•tan30°=4×=4.(2)结论:CN=HM.理由:如图2中,∵∠ACB=90°,AD=DB,∴CD=DA=DB,∵∠B=60°,∴△BDC是等边三角形,∴∠DCB=∠CDB=60°,∵∠ACB=∠CDH=90°,∴∠MDH=∠HCD=30°,∴CD=DH,∵∠DHM=∠DCN=60°,∠DMH=∠DNC=90°,∴△DMH∽△DNC,∴==,∴CN=HM.(3)如图3中,连接CD.∵∠KCT=∠KDT=90°,∴∠KCT+∠KDT=180°,∴K,D,T,C四点共圆,∴KT是该圆的直径,当CD是该圆的直径时,KT的长最短,此时KT=CD=AB=4.26.解:(1)∵∠A=36°,AB=AC,∴∠ABC=∠C=(180°﹣36°)=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=×72°=36°,∴∠BEC=∠A+∠ABE=36°+36°=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BE=BC,故答案为:AE=BE=BC;(2)证明:∵AB=AC,EF∥BC,∴AE=AF,由旋转的性质得,∠E′AC=∠F′AB,AE′=AF′,在△CAE′和△BAF′中,,∴△CAE′≌△BAF′(SAS),∴CE′=BF′;(3)解:由(1)可知AE=BC,由旋转知,AE'=AE,∴AE'=BC,如图,在△AEF绕点A逆时针旋转过程中,点E经过的路径(圆弧)与过点C且与AB 平行的直线l相交于点M、N,①当点E'与点M重合时,∵CM∥AB,∴四边形ABCM是等腰梯形,∴∠BAM=∠ABC=72°,又∵∠BAC=36°,∴α=∠CAM=36°;②当点E′与点N重合时,∵CE′∥AB,∴∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣72°×2=36°,∴α=∠CAN=∠CAM+∠MAN=36°+36°=72°,综上所述,当旋转角为36°或72°时,CE′∥AB.故答案为:36°或72°.27.解:(1)∵△ABC是等边三角形∴∠ACB=60°,BC=AC∵等边△ABC绕点C顺时针旋转90°得到△EFC ∴CF=BC,∠BCF=90°,AC=CE∴CF=AC∵∠BCF=90°,∠ACB=60°∴∠ACF=∠BCF﹣∠ACB=30°∴∠CF A=(180°﹣∠ACF)=75°(2)∵△ABC和△EFC是等边三角形∴∠ACB=60°,∠E=60°∵CD平分∠ACE∴∠ACD=∠ECD∵∠ACD=∠ECD,CD=CD,CA=CE,∴△ECD≌△ACD(SAS)∴∠DAC=∠E=60°∴∠DAC=∠ACB∴AD∥BC28.(1)证明:如图2中,∵∠EAC=∠DAB,AE=AC,AD=AB,∴∠AEC=∠ACE=∠ADB=∠ABD,∵∠ADB=∠CDF,∴∠FDC=∠FCD,∴FD=FC,∵∠EDC=90°,∴∠DEF+∠ECD=90°,∠FDE+∠FDC=90°,∴∠FED=∠FDE,∴FE=FD,∴EF=FC.(2)①解:如图1中,结论仍然成立.理由:连接AF.∵∠FCA=∠ABF,∴A,B,C,F四点共圆,∴∠AFC+∠ABC=180°,∵∠ABC=90°,∴∠AFC=90°,∴AF⊥EC,∵AE=AC,∴EF=CF.②如图3﹣1中,当CF=CD,∠FCD=90°时,连接AF,作CH⊥BF于H.设CF=CD =a.则DE==a,DF=a,∵CF=CD,CH⊥DF,∴HF=HD,∴CH=DF=a,∴BC=DE=a,∴BH==a,∵AE=AC,EF=CF,∴AF平分∠EAC,∵A,B,C,F四点共圆,∴∠CAF=∠CBH=α,∴tanα===.如图3﹣2中,当DF=DC,∠CDF=90°时,作DH⊥CF于H,连接AF.设CD=DF=m.则CF=EF=a,DH=CF=a,∴DE=BC==a,∴BD==2a,∴tanα==.29.解:(1)如图1中,∵DE⊥AC,∴∠DEC=∠A=90°,∴DE∥AB,∵AE=EC,∴BD=DC,在Rt△ABC中,∵AB=6,AC=8,∴BC===10,∴CD=BC=5.(2)结论:MF=ME.理由:如图1中,连接DM,∵∠DFM=∠DEM=90°,DM=DM,DF=DE,∴Rt△DMF≌Rt△DME(HL),∴MF=ME.(3)①如图2中,作AH⊥BC于H,交FG于K.易知AH==,四边形DFKH是矩形,∴DF=KH=3,∴AK=AH﹣KH=,∵KM∥CH,∴=,∴=,∴AM=3.②如图3中,∵DG=DB=DC,∴∠G=∠DBG,∵∠G=∠C,∴∠MBC=∠C,∴BM=MC,设BM=MC=x,在Rt△ABM中,∵BM2=AB2+AM2,∴62+(8﹣x)2=x2,∴x=,∴AM=AC﹣CM=8﹣=.故答案为.③尺规作图如图4﹣1所示.作DR平分∠CDF,在DR上截取DG=DC,分别以D,G 为圆心,DE,CE为半径画弧,两弧交于点F,△DFG即为所求.如图4﹣1中,连接DM,设DG交AC于T,作TH⊥CD于H,作DK平分∠CDG交TH 于K,作KJ⊥DG于J.易证△DEM≌△DHK(AAS),推出EM=HK,只要求出HK即可.∵TE⊥DE,TH⊥DC,DG平分∠CDE,∴TE=TH,设TE=TH=x,在Rt△TCH中,x2+22=(4﹣x)2,∴x=,∴DT==,∵DK平分∠CDT,KJ⊥DT,KH⊥CD,∴KJ=KH,设KJ=KH=y,在Rt△KTJ中,y2+(﹣3)2=(﹣y)2,∴y=3﹣6,∴EM=3﹣6,∴AM=AE﹣EM=4﹣(3﹣6)=10﹣3.30.解:(1)结论:BD=CE,BD⊥CE.理由如图1中,∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS),∴BD=CE.∠ACE=∠ABD设CP与AB交于点O,∵∠AOC=∠BOP∴∠BPC=∠OAC=90°∴BD⊥CE;(2)解:a:如图2中,当点E在AB上时,BE=AB﹣AE=4.∵∠EAC=90°,∴CE===4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB=,b:如图3中,当点E在BA延长线上时,BE=AB+AE=12.∵∠EAC=90°,∴CE==4,同(1)可证△ADB≌△AEC.∴∠DBA=∠ECA.∵∠PEB=∠AEC,∴△PEB∽△AEC.∴=,∴=,∴PB =,∴PB 的长为或.(3)a 、如图4中,以A 为圆心AD 为半径画圆,当CE 在⊙A 下方与⊙A 相切时,PB 的值最小.理由:此时∠BCE 最小,因此PB 最小,(△PBC 是直角三角形,斜边BC 为定值,∠BCE 最小,因此PB 最小)∵AE ⊥EC ,∴EC ==4,由(1)可知,△ABD ≌△ACE ,∴∠ADB =∠AEC =90°,BD =CE =4,∴∠ADP =∠DAE =∠AEP =90°,∴四边形AEPD 是矩形,∴PD =AE =4,∴PB =BD ﹣PD =4﹣4.b 、如图5中,以A 为圆心,AD 为半径画圆,当CE 在⊙A 上方与⊙A 相切时,PB 的值最大.理由:此时∠BCE最大,因此PB最大,(△PBC是直角三角形,斜边BC为定值,∠BCE 最大,因此PB最大)∵AE⊥EC,∴EC===4,同(1)可证△ADB≌△AEC∴∠ADB=∠AEC=90°,BE=CE=4,∴∠ADP=∠DAE=∠AEP=90°,∴四边形AEPD是矩形,∴P D=AE=4,∴PB=BD+PD=4+4.∴PB最大值是4+4;。
《旋转》全章复习与巩固(提高)知识讲解【学习目标】1、通过具体实例认识旋转,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等的性质.2、通过具体实例认识中心对称,探索它的基本性质,理解对应点所连线段被对称中心平分的性质,了解平行四边形、圆是中心对称图形.3、能够按要求作出简单平面图形旋转后的图形,欣赏旋转在现实生活中的应用.4、探索图形之间的变化关系(轴对称、平移、旋转及其组合),灵活运用轴对称、平移和旋转的组合进行图案设计.【知识网络】【要点梳理】要点一、旋转1.旋转的概念:把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.2.旋转的性质: (1)对应点到旋转中心的距离相等(OA= OA′);(2)对应点与旋转中心所连线段的夹角等于旋转角;''').(3)旋转前、后的图形全等(△ABC≌△A B C要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.3.旋转的作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.要点诠释:作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.要点二、特殊的旋转—中心对称1.中心对称:把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.这两个图形中的对应点叫做关于中心的对称点.要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .2.中心对称图形:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.要点诠释:(1)中心对称图形指的是一个图形;(2)线段,平行四边形,圆等等都是中心对称图形.要点三、平移、轴对称、旋转【典型例题】类型一、旋转1.如图1,ΔACB与ΔADE都是等腰直角三角形,∠ACB 和∠ADE都是直角,点C在AE上,如果ΔACB经逆时针旋转后能与ΔADE重合.①请指出其旋转中心与旋转角度;②用图1作为基本图形,经过怎样的旋转可以得到图2?【答案与解析】①旋转中心:点A;旋转角度:45°(逆时针旋转)②以点A为旋转中心,将图1顺时针(或逆时针)旋转90°三次得到图2.【总结升华】此类题型要把握好旋转的三个要素:旋转中心、旋转方向和旋转角度.举一反三:【变式】如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B、C、D在x轴上,点A、E、F在y轴上,下面判断正确的是()A.△DEF是△ABC绕点O顺时针旋转90°得到的.B.△DEF是△ABC绕点O逆时针旋转90°得到的.C.△DEF是△ABC绕点O顺时针旋转60°得到的.D.△DEF是△ABC绕点O顺时针旋转120°得到的.【答案】A.类型二、中心对称2. 如图,△ABC中A(-2,3),B(-3,1),C(-1,2).⑴将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;⑵画出△ABC关于x轴对称的△A2B2C2;⑶画出△ABC关于原点O对称的△A3B3C3;⑷在△A1B1C1,△A2B2C2,△A3B3C3中,△______与△______成轴对称,对称轴是______;△______与△______成中心对称,对称中心的坐标是______.【答案与解析】⑷△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).【总结升华】注意观察中心对称和旋转对称的关系.举一反三:【变式】如图是正方形网格,请在其中选取一个白色的单位正方形并涂黑,使图中黑色部分是一个中心对称图形.【答案】类型三、平移、轴对称、旋转3.(2015•北京校级模拟)如图所示,△ABC,△ADE为等腰直角三角形,∠ACB=∠AED=90°.(1)如图1,点E在AB上,点D与C重合,F为线段BD的中点.则线段EF与FC的数量关系是;∠EFD的度数为;(2)如图2,在图1的基础上,将△ADE绕A点顺时针旋转到如图2的位置,其中D、A、C在一条直线上,F为线段BD的中点.则线段EF与FC是否存在某种确定的数量关系和位置关系?证明你的结论;(3)若△ADE绕A点任意旋转一个角度到如图③的位置,F为线段BD的中点,连接EF、FC,请你完成图3,并直接写出线段EF与FC的关系(无需证明).【思路点拨】(1)易得△EFC是等腰直角三角形,那么EF=FC,∠EFD=90°.(2)延长线段CF到M,使CF=FM,连接DM、ME、EC,易证△BFC≌△DFM,进而可以证明△MDE≌△CAE,即可证明EF=FC,EF⊥FC;(3)基本方法同(2).【答案与解析】解:(1)EF=FC,90°.(2)延长CF到M,使CF=FM,连接DM、ME、EC,如下图2∵FC=FM,∠BFC=∠DFM,DF=FB,∴△BFC≌△DFM,∴DM=BC,∠MDB=∠FBC,∴MD=AC,MD∥BC,∵ED=EA,∠MDE=∠EAC=135°,∴△MDE≌△CAE,∴ME=EC,∠DEM=∠CEA,∴∠MEC=90°,∴EF=FC,EF⊥FC(3)图形如下,结论为:EF=FC,EF⊥FC.【总结升华】延长过三角形的中线构造全等三角形是常用的辅助线方法,证明线段相等的问题可以转化为证明三角形全等的问题解决.举一反三:(1)求∠ABC的度数.(2)以点A为中心,把△ABD顺时针旋转60°,画出旋转后的图形.(3)求BD的长度.【答案】∴BC=4,∴∠ABC=30°(2)如图所示:(3)连接BE.由(2)知:△ACE≌△ADB,∴AE=AB,∠BAE=60°,BD=EC,∴∠EBC=90°,又BC=2AC=4,4.(2015•东西湖区校级模拟)如图,Rt△ABC中,AC=BC,∠ACB=90°,点E在线段AB上,CF⊥CE,CE=CF,EF交AC于G,连接AF.(1)填空:线段BE、AF的数量关系为,位置关系为;(2)当=时,求证:=2;(3)若当=n时,=,请直接写出n的值.【思路点拨】(1)在Rt△ABC中,AC=BC,∠ACB=90°,CF⊥CE,可推出∠ECB=∠ACF,且CE=CF,由此可得△ECB≌△FCA,即得BE=AF,∠CBE=∠CAF,且∠CBE+∠CAB=90°,故∠CAF+∠CAB=90°,即BE⊥AF;(2)作GM⊥AB于M,GN⊥AF于N,可得出GM=GN,从而有S△AEG=2S△AFG,即证=2;(3)根据(2)的推理过程,知S△AEG=nS△AFG,则,即可求得n的值.【答案与解析】(1)解:∵∠ACB=90°,CF⊥CE,∴∠ECB=∠ACF.又AC=BC,CE=CF,∴△ECB≌△FCA.∴BE=AF,∠CBE=∠CAF,又∠CBE+∠CAB=90°,∴∠CAF+∠CAB=90°,即BE=AF,BE⊥AF.(2)证明:作GM⊥AB于M,GN⊥AF于N,∵△ACF可由△BCE绕点C顺时针方向旋转90°而得到,∴AF=BE,∠CAF=∠CBE=45°.∴AE=2AF,∠CAF=∠CAB,∴GM=GN.∴S△AEG=2S△AFG,∴EG=2GF,∴=2.(3)解:由(2),得当=n时,S△AEG=nS△AFG,则,∴当n=时,=.【总结升华】此题综合运用了全等三角形的判定和性质、旋转的性质,能够从特殊推广到一般发现规律.5.已知:点P是正方形ABCD内的一点,连结PA、PB、PC,(1)若PA=2,PB=4,∠APB=135°,求PC的长.(2)若2222PB PC PA =+,请说明点P 必在对角线AC 上.∴AE=PC∵BE=BP,∠PBE=90°,PB=4 ∴∠BPE=45°,PE=又∵∠APB=135° ∴∠APE=90° ∴222AE AP EP =+ 即AE=6, 所以PC=6.(2)由(1)证得:∵2222PB PC PA =+ ∴222PA AE PE += ∴∠PAE=90° 即∠PAB+∠BAE=90° 又∵由(1)证得∠BAE=∠BCP ∴∠PAB+∠BCP=90 又∵∠ABC=90° ∴点A,P,C 三点共线, 即P 必在对角线AC 上.【总结升华】注意勾股定理及逆定理的灵活运用. 举一反三:【变式】如图,在四边形ABCD 中,AB=BC ,,K 为AB上一点,N为BC上一点.若的周长等于AB的2倍,求的度数.【答案】显然,绕点D顺时针方向旋转至6如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得它们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,使点B、C、F、D在同一条直线上,且点C与点F重合(在图3~图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.⑴将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;⑵将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;⑶将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请证明:AH=DH.【答案与解析】⑴平移的距离为5cm(即)⑵⑶证明:在△AHE与△DHB1中∴△AHE≌△DHB1(AAS)∴AH=DH.【总结升华】注意平移和旋转综合运用时找出不变量是解题的关键.。
最新中考数学几何旋转综合题专题练习1、如图,已知∆ABC是等边三角形.(1)如图(1),点E 在线段AB 上,点D 在射线CB 上,且ED=EC.将∆BCE 绕点C 顺时针旋转60°至∆ACF , 连接 EF.猜想线段 AB,DB,AF 之间的数量关系;(2)点E 在线段BA 的延长线上,其它条件与(1)中一致,请在图(2)的基础上将图形补充完整,并猜想线段AB,DB,AF 之间的数量关系;(3)请选择(1)或(2)中的一个猜想进行证明.第 1 题图(2)第1 题图(1)2、如图1,△ACB、△AED 都为等腰直角三角形,∠AED=∠ACB=90°,点D 在AB 上,连CE,M、N 分别为BD、CE 的中点(1)求证:MN⊥CE(2)如图2 将△AED 绕A 点逆时针旋转30°,求证:CE=2MNPA C 1 1O C图 3B 1A 1O图 2C A 13、在等腰 Rt △A B C 和等腰 Rt △A 1B 1C 1 中,斜边 B 1C 1 中点 O 也是 B C 的中点。
(1)如图 1,则 AA 1 与 CC 1 的数量关系是 ;位置关系是 。
(2)如图 2,将△A 1B 1C 1 绕点 O 顺时针旋转一定角度,上述结论是否仍然成立,请证明你的结论。
(3)如图 3,在(2)的基础上,直线 AA 1、CC 1 交于点 P ,设 A B =4,则 P B 长的最小值是。
AAABB 1O图 1BCC 1C B1B 14、已知,正方形 ABCD 的边长为 4,点 E 是对角线 BD 延长线上一点,AE =BD .将△ABE 绕点 A 顺时针旋转α度 (0°<α<360°)得到△AB ′E ′,点 B 、E 的对应点分别为 B ′、E ′ (1) 如图 1,当α=30°时,求证:B ′C =DE(2) 连接 B ′E 、DE ′,当 B ′E =DE ′时,请用图 2 求α的值 (3) 如图 3,点 P 为 AB 的中点,点 Q 为线段 B ′E ′上任意一点,试探究,在此旋转过程中,线段 PQ 长度的取值范围为14 PF ABFPF5、如图 P 为等边△ABC 外一点,AH 垂直平分 PC 于点 H ,∠BAP 的平分线交 PC 于点 D (1) 求证:DP =DB(2) 求证:DA +DB =DC(3) 若等边△ABC 边长为 ,连接 BH ,当△BDH 为等边三角形时,请直接写出 CP 的长度为6、如图,四边形 ABCD 为正方形,△BEF 为等腰直角三角形(∠BFE=900,点 B 、E 、F ,按逆时针排列),点 P 为 DE 的中点,连 PC ,PF(1)如图①,点 E 在 BC 上,则线段 PC 、PF 有何数量关系和位置关系?请写出你的结论,并证明.(2)如图②,将△BEF 绕点 B 顺时针旋转 a(O<a<450),则线段 PC ,PF 有何数量关系和位置关系?请写出你的结论,并证明.(3)如图③,若 AB=1,△AEF 为等腰直角三角形,且∠A EF=90°,△AEF 绕点 A 逆时针旋转过程中,能使点 F 落在 BC 上,且 AB 平分 EF ,直接写出 AE 的值是 .ADADDEBCBECE图① 图② 图③C2 7、已知等腰 Rt △ABC 和等腰 Rt △EDF ,其中 D 、G 分别为斜边 AB 、EF 的中点,连 CE ,又 M 为 BC 中点,N 为 CE 的中点,连 MN 、MG(1) 如图 1,当 DE 恰好过 M 点时,求证:∠NMG =45°,且 MG = MN(2) 如图 2,当等腰 Rt △EDF 绕 D 点旋转一定的度数时,第(1)问中的结论是否仍成立,并证明 (3) 如图 3,连 BF ,已知 P 为 BF 的中点,连 CF 与 PN ,直接写出PN=CF8、已知:如图,在 Rt △ABC 中,AC=BC ,CD ⊥AB 于 D ,AB=10,将 CD 绕着 D 点顺时针旋转 a (0°<a<90°) 到 DP 的位置,作 PQ ⊥CD 于 Q ,点 I 是△PQD 角平分线的交点,连 IP ,IC ,(1)如图 1,在 PD 旋转的过程中,线段 IC 与 IP 之间是否存在某种确定不变的关系?请证明你的猜想。
旋转一.选择题(共10小题)1.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.42.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半3.第24届冬季奥林匹克运动会,将于2022年02月04日~2022年02月20日在中华人民共和国北京市和张家口市联合举行.在会徽的图案设计中,设计者常常利用对称性进行设计,下列四个图案是历届会徽图案上的一部份图形,其中不是轴对称图形的是()A.B.C.D.4.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影凃在图中标有数字()的格子内.A.1B.2C.3D.45.下列车标,可看作图案的某一部分经过平移所形成的是()A.B.C.D.6.下列图形中可由其中的部分图形经过平移得到的是()A.B.C.D.7.如图所示的各组图形中,表示平移关系的是()A.B.C.D.8.在下列四个图案中,能用平移变换来分析其形成过程的图案是()A.B.C.D.9.下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪10.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OF A 的度数是()A.20°B.25°C.30°D.35°二.填空题(共10小题)11.如图,在棋盘中建立直角坐标系xOy,三颗棋子A,O,B的位置分别是(0,1),(0,0)和(1,﹣1).如果在其它格点位置添加一颗棋子C,使A,O,B,C四颗棋子成为一个轴对称图形,请写出所有满足条件的棋子C的位置的坐标:.12.如图,正方形网格中,已有两个小正方形被涂黑,再将图其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有个.13.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.14.如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.15.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有个.16.从3点整开始,分针至少顺时针旋转度才能与时针重合.17.如图,在矩形ABCD中,AB=8,BC=6,E为AD上一点,将△BAE绕点B顺时针旋转得到△BA′E′,当点A′,E′分别落在BD,CD上时,则DE的长为.18.把一个正五边形绕着它的中心旋转,至少旋转度,才能与原来的图形重合.19.在平面直角坐标系xOy中,若点B与点A(﹣2,3)关于点O中心对称,则点B的坐标为.20.图1和图2中所有的小正方形都全等,将图1的正方形放在图2中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是.三.解答题(共10小题)21.有这样一道题:用四块如图甲所示的瓷砖拼成一个正方形,形成轴对称图案,和你的同伴比一比,看谁的拼法多.某同学设计了如图的两个图案,请你也用如图乙所示的瓷砖拼成一个正方形,形成轴对称图案.(至少设计四种图案)22.如图是由5个同样的小正方形所组成的,请再补上一个同样的小正方形,使6个小正方形组成的图形成为一个轴对称图形,请至少画出三种方法.23.在4×4的方格中有五个同样大小的正方形如图1摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,请在下面网格中(图2至图5)画出四种互不全等的新图形.24.图1,图2,图3是在4×4的网格中有七个小正方形被涂黑,请你用三种不同的方法,在图1,图2,图3中分别涂黑三个小正方形,使整个图形成为轴对称图形(涂黑后的三个阴影部分图形不全等)25.如图,经过平移,小船上的A点到了点B.(1)请画出平移后的小船.(2)该小船向平移了格,向平移了格.26.按要求画图:(1)如图(1)所示,网格内每个小正方形的边长都为1个单位长度,试画出小船向右平移4 个单位长度,向上平移4个单位长度后的图形.(2)如图(2)过点P分别画直线m、n的垂线.27.为迎接全运会,体育迷小强利用网格设计了一个“火炬”图案,请你帮帮他:(1)将“火炬”图案先向右平移7格,再向上平移6格,画出平移后的图案;(2)如果图中每个小正方形的边长是1,求其中一个火炬图案的面积.28.如图是由边长为1的小正方形构成的格点图形,A、B、C在格点上,将三角形ABC向右平移3个单位,再向上平移2个单位得到三角形A1B1C1.(1)在网格中画出三角形A1B1C1;(2)求线段AB在变换到A1B1过程中扫过的区域面积(重叠部分不重复计算).29.如图,在△ABC中,AB=AC,∠BAC=30°,将△ABC绕点A逆时针旋转α度(30<α<150)得到△AB′C′,B、C两点的对应点分别为点B′、C′,连接BC′,BC 与AC、AB′相交于点E、F.(1)当α=70时,∠ABC′=°,∠ACB′=°.(2)求证:BC′∥CB′.30.如图,正方形ABCD边长为2cm,以各边中心为圆心,1cm为半径依次作圆,将正方形分成四部分.(1)这个图形旋转对称图形(填“是”或“不是”);若是,则旋转中心是点,最小旋转角是度.(2)求图形OBC的周长和面积.旋转参考答案与试题解析一.选择题(共10小题)1.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.2.【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.3.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项正确;故选:D.4.【分析】从阴影部分图形的各顶点向虚线作垂线并延长相同的距离找对应点,然后顺次连接各点可得答案.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故选:C.5.【分析】根据平移的性质:不改变图形的形状和大小,不可旋转与翻转,将题中所示的图案通过平移后可以得到的图案是D.【解答】解:可看作图案的某一部分经过平移所形成的是D选项所示图形,故选:D.6.【分析】根据平移的性质,平移不改变图形的形状和大小对各选项分析判断即可得解.【解答】解:A、可由其中的部分图形经过平移得到,故本选项正确;B、不可由其中的部分图形经过平移得到,故本选项错误;C、不可由其中的部分图形经过平移得到,故本选项错误;D、不可由其中的部分图形经过平移得到,故本选项错误.故选:A.7.【分析】根据平移、旋转、对称的定义即可判断【解答】解:A、表示对称关系.B、表示旋转关系.C、表示旋转关系.D、表示平移关系.故选:D.8.【分析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是B.【解答】解:观察图形可知图案B通过平移后可以得到.故选:B.9.【分析】根据旋转的定义分别判断得出即可.【解答】解:A、在空中上升的氢气球是平移,故此选项错误;B、飞驰的火车投是平移,故此选项错误;C、时钟上钟摆的摆动,属于旋转,故此选项正确;D、运动员掷出的标枪传是平移,故此选项错误.故选:C.10.【分析】由旋转的性质和正方形的性质可得∠FOC=40°,AO=OD=OC=OF,∠AOC =90°,再根据等腰三角形的性质可求∠OF A的度数.【解答】解:∵正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,∴∠FOC=40°,AO=OD=OC=OF,∠AOC=90°∴∠AOF=130°,且AO=OF,∴∠OF A=25°故选:B.二.填空题(共10小题)11.【分析】根据轴对称的概念求解可得.【解答】解:如图所示,棋子C的位置为(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0),故答案为:(﹣1,﹣1)或(2,﹣1)或(1,2)或(﹣1,0).12.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,选择的位置共有5处.故答案为:513.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.14.【分析】根据轴对称图形的定义求解可得.【解答】解:如图所示,共有4种涂黑的方法,故答案为:4.15.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.16.【分析】设分针顺时针旋转xmin才能与时针重合,根据分针和时针间角度关系得出方程6x=90+0.5x,解之可得.【解答】解:设分针顺时针旋转xmin才能与时针重合,∵分针旋转速度为6°/min,时针旋转的速度为0.5°/min,∴6x=90+0.5x,解得:x=,则分针旋转的度数为6×=度,故答案为:.17.【分析】根据勾股定理可求BD=10,由旋转的性质可得AE=A'E,AB=A'B=8,∠BA'E'=90°,由△BCD∽△E'A'D,可得,可得A'E'=AE=,即可求DE的长.【解答】解:∵四边形ABCD是矩形∴∠DAB=∠C=90°,AD=BC=6,AB=CD=8,∴BD==10,∵将△BAE绕点B顺时针旋转得到△BA′E′,∴AE=A'E,AB=A'B=8,∠BA'E'=90°∴A'D=BD﹣BA'=2,∵∠BDC=∠BDC,∠DA'E'=∠C=90°,∴△BCD∽△E'A'D∴即∴A'E'==AE∴DE=AD﹣AE=故答案为18.【分析】根据旋转的性质,最小旋转角即为正五边形的中心角.【解答】解:∵正五边形被半径分为5个全等的三角形,且每个三角形的顶角为72°,正五边形绕着它的中心旋转后与它本身重合,最小的旋转角度数是72°.故答案为:72.19.【分析】直接利用关于原点对称点的特点得出答案.【解答】解:∵点A(﹣2,3)与点A关于原点O中心对称,∴点B的坐标为:(2,﹣3).故答案为:(2,﹣3).20.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而得出答案.【解答】解:当正方形放在③的位置,即是中心对称图形.故答案为:③.三.解答题(共10小题)21.【分析】根据轴对称定义及特点拼图即可.【解答】解:如图所示.22.【分析】利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.23.【分析】根据轴对称的性质画出图形即可.【解答】解:如图所示:.24.【分析】根据轴对称的定义添加合适的小正方体即可得.【解答】解:如图所示.25.【分析】(1)将所给图形的各个顶点按平移条件找出它的对应点,顺次连接,即得到平移后的图形;(2)观察图形即可数出.【解答】解:(1)如图所示,(2)由图形可知,该小船向下平移了4格、向左平移了3格,故答案为:下、4、左、3.26.【分析】(1)根据平移的性质作图;(2)利用尺规作图作出直线m、n的垂线.【解答】解:(1)如图(1):(2)如图(2):a⊥n,b⊥m.27.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用网格结合火炬形状进而得出答案.【解答】解:(1)如图所示:(2)一个火炬图案的面积为:9+×3+(4﹣1﹣×1×2﹣×1×2)=11.5.28.【分析】(1)将点A、B、C分别向右平移3个单位,再向上平移2个单位得到对应点,再顺次连接可得;(2)根据扫过的区域面积=+,据此列式计算可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)线段AB在变换到A 1B1过程中扫过的区域面积=+=3×2+×1×2=7.29.【分析】(1)由旋转的性质可得AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC =30°,由等腰三角形的性质可求解;(2)由旋转的性质和等腰三角形的性质可得∠ABC'=,∠ACB'=,由三角形的外角性质可得∠AEF==∠ACB',即可得BC'∥CB'.【解答】解:(1)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=70°,∠B'AC'=∠BAC=30°,∴∠BAC'=100°,且AB=AC',∴∠ABC'=40°,∵∠CAB'=∠CAC'﹣∠B'AC'=40°,且AC=AB'∴∠ACB'=70°故答案为40,70(2)∵将△ABC绕点A逆时针旋转α度得到△AB′C′,且AB=AC,∠BAC=30°,∴AB=AC=AB'=AC',∠CAC'=α,∠B'AC'=∠BAC=30°,∴∠BAC'=30°+α,∠CAB'=α﹣30°,且AB=AC=AB'=AC',∴∠ABC'=,∠ACB'=∵∠AEF=∠ABE+∠BAC∴∠AEF=∴∠AEF=∠ACB',∴BC'∥B'C30.【分析】(1)旋转对称图形的定义,结合图形即可作出判断;(2)图形OBC的周长为BC+圆的周长,面积=S正方形ABCD.【解答】解:(1)这个图形是旋转对称图形,旋转中心是点O,最小旋转角为90°.(2)图形OBC的周长=BC+圆的周长=2+π;面积=S正方形ABCD=×4=1cm2.。
中考数学总复习之图形的旋转综合训练(30题)1.如图,点A在射线OX上,OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′,那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法,若a=3,n=37,则点A′的位置可以表示为;(2)在(1)的条件下,已知点B的位置用(3,74°)表示,连接A′A、A′B.求证:A′A=A′B.2.如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接F A,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.3.如图,点M是∠ABC的边BA上的动点,BC=6,连接MC,并将线段MC绕点M逆时针旋转90°得到线段MN.(1)作MH⊥BC,垂足H在线段BC上,当∠CMH=∠B时,判断点N是否在直线AB上,并说明理由;(2)若∠ABC=30°,NC∥AB,求以MC、MN为邻边的正方形的面积S.4.如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.(1)求证:四边形MEB1N是平行四边形;(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E 是否全等,并说明理由.5.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为△ABC内一点,将线段AD绕点A逆时针旋转90°得到AE,连接CE,BD的延长线与CE交于点F.(1)求证:BD=CE,BD⊥CE;(2)如图2,连接AF,DC,已知∠BDC=135°,判断AF与DC的位置关系,并说明理由.6.下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为G1,关于x轴的对称图形为G2.则将图形G1绕点顺时针旋转度,可以得到图形G2.(2)在图2中分别画出G关于y轴和直线y=x+1的对称图形G1,G2.将图形G1绕点(用坐标表示)顺时针旋转度,可以得到图形G2.(3)综上,如图3,直线l1:y=﹣2x+2和l2:y=x所夹锐角为α,如果图形G关于直线l1的对称图形为G1,关于直线l2的对称图形为G2,那么将图形G1绕点(用坐标表示)顺时针旋转度(用α表示),可以得到图形G2.7.如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC的顶点均为格点(网格线的交点).(1)将△ABC向上平移6个单位,再向右平移2个单位,得到△A1B1C1,请画出△A1B1C1;(2)以边AC的中点O为旋转中心,将△ABC按逆时针方向旋转180°,得到△A2B2C2,请画出△A2B2C2.8.如图,是边长为1的小正方形组成的8×8方格,线段AB的端点在格点上.建立平面直角坐标系,使点A、B的坐标分别为(2,1)和(﹣1,3).(1)画出该平面直角坐标系xOy;(2)画出线段AB关于原点O成中心对称的线段A1B1;(3)画出以点A、B、O为其中三个顶点的平行四边形.(画出一个即可)9.如图,在2×6的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转180°后的图形.10.如图所示的方格纸(1格长为一个单位长度)中,△AOB的顶点坐标分别为A(3,0),O(0,0),B(3,4).(1)将△AOB沿x轴向左平移5个单位,画出平移后的△A1O1B1(不写作法,但要标出顶点字母);(2)将△AOB绕点O顺时针旋转90°,画出旋转后的△A2O2B2(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点B绕点O旋转到点B2所经过的路径长(结果保留π).11.如图是由小正方形组成的9×6网格,每个小正方形的顶点叫做格点.△ABC的三个顶点都是格点.仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示.(1)在图(1)中,D,E分别是边AB,AC与网格线的交点.先将点B绕点E旋转180°得到点F,画出点F,再在AC上画点G,使DG∥BC;(2)在图(2)中,P是边AB上一点,∠BAC=α.先将AB绕点A逆时针旋转2α,得到线段AH,画出线段AH,再画点Q,使P,Q两点关于直线AC对称.12.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC与△DEF关于点O成中心对称,△ABC与△DEF的顶点均在格点上,请按要求完成下列各题.(1)在图中画出点O的位置.(2)将△ABC先向右平移4个单位长度,再向下平移2个单位长度,得到△A1B1C1,请画出△A1B1C1;(3)在网格中画出格点M,使A1M平分∠B1A1C1.13.如图,方格纸上每个小正方形的边长均为1个单位长度,△ABC的顶点A、B、C都在格点上(两条网格线的交点叫格点).请仅用无刻度的直尺按下列要求画图,并保留画图痕迹(不要求写画法).(1)将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B1,点C的对应点为C1,画出△AB1C1;(2)连接CC1,△ACC1的面积为;(3)在线段CC1上画一点D,使得△ACD的面积是△ACC1面积的.14.如图,在平面直角坐标系中,线段AB的两个端点的坐标分别是A(﹣1,4),B(﹣3,1).(1)画出线段AB向右平移4个单位后的线段A1B1;(2)画出线段AB绕原点O旋转180°后的线段A2B2.15.数学活动课上,张老师组织同学们设计多姿多彩的几何图形,如图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.(规定:凡通过旋转能重合的图形视为同一种图形)16.如图,在△ABC中,,D,E,F分别为AC,AB,BC的中点,连接DE,DF.(1)如图1,求证:;(2)如图2,将∠EDF绕点D顺时针旋转一定角度,得到∠PDQ,当射线DP交AB于点G,射线DQ交BC于点N时,连接FE并延长交射线DP于点M,判断FN与EM的数量关系,并说明理由;(3)如图3,在(2)的条件下,当DP⊥AB时,求DN的长.17.在△ABC中,∠BAC=90°,AB=AC,线段AB绕点A逆时针旋转至AD(AD不与AC 重合),旋转角记为α,∠DAC的平分线AE与射线BD相交于点E,连接EC.(1)如图①,当α=20°时,∠AEB的度数是;(2)如图②,当0°<α<90°时,求证:BD+2CE=AE;(3)当0°<α<180°,AE=2CE时,请直接写出的值.18.在△ABC中,点D,E分别是AB,AC边上的点,DE∥BC.基础理解:(1)如图1,若AD=4,BD=3,求的值;证明与拓展:(2)如图2,将△ADE绕点A逆时针旋转度,得到△AD1E1,连接BD1,CE1.①求证:=;②如图3,若∠BAC=90°,AB<AC,AD=6,△ADE在旋转过程中,点D1恰好落在DE上时,连接EE1,=,则△E1D1E的面积为.19.【特例感知】(1)如图1,△AOB和△COD是等腰直角三角形,∠AOB=∠COD=90°,点C在OA 上,点D在BO的延长线上,连接AD,BC,线段AD与BC的数量关系是;【类比迁移】(2)如图2,将图1中的△COD绕着点O顺时针旋转α(0°<α<90°),那么第(1)问的结论是否仍然成立?如果成立,证明你的结论;如果不成立,说明理由.【方法运用】(3)如图3,若AB=8,点C是线段AB外一动点,AC=3,连接BC.①若将CB绕点C逆时针旋转90°得到CD,连接AD,则AD的最大值是;②若以BC为斜边作Rt△BCD(B,C,D三点按顺时针排列),∠CDB=90°,连接AD,当∠CBD=∠DAB=30°时,直接写出AD的值.20.在Rt△ABC中,AC=BC,将线段CA绕点C旋转α(0°<α<90°),得到线段CD,连接AD、BD.(1)如图1,将线段CA绕点C逆时针旋转α,则∠ADB的度数为;(2)将线段CA绕点C顺时针旋转α时①在图2中依题意补全图形,并求∠ADB的度数;②若∠BCD的平分线CE交BD于点F,交DA的延长线于点E,连结BE.用等式表示线段AD、CE、BE之间的数量关系,并证明.21.【问题情境】在一次数学兴趣小组活动中,小昕同学将一大一小两个三角板按照如图1所示的方式摆放.其中∠ACB=∠DEB=90°,∠B=30°,BE=AC=3.【问题探究】小昕同学将三角板DEB绕点B按顺时针方向旋转.(1)如图2,当点E落在边AB上时,延长DE交BC于点F,求BF的长.(2)若点C、E、D在同一条直线上,求点D到直线BC的距离.(3)连接DC,取DC的中点G,三角板DEB由初始位置(图1),旋转到点C、B、D 首次在同一条直线上(如图3),求点G所经过的路径长.(4)如图4,G为DC的中点,则在旋转过程中,点G到直线AB的距离的最大值是.22.在△ABC中,∠BAC=90°,AB=AC=2,D为BC的中点,E,F分别为AC,AD 上任意一点,连接EF,将线段EF绕点E顺时针旋转90°得到线段EG,连接FG,AG.(1)如图1,点E与点C重合,且GF的延长线过点B,若点P为FG的中点,连接PD,求PD的长;(2)如图2,EF的延长线交AB于点M,点N在AC上,∠AGN=∠AEG且GN=MF,求证:AM+AF=AE;(3)如图3,F为线段AD上一动点,E为AC的中点,连接BE,H为直线BC上一动点,连接EH,将△BEH沿EH翻折至△ABC所在平面内,得到△B′EH,连接B′G,直接写出线段B′G的长度的最小值.23.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点O在线段AB上(点O不与点A,B重合),且OB=kOA,点M是AC延长线上的一点,作射线OM,将射线OM绕点O 逆时针旋转90°,交射线CB于点N.(1)如图1,当k=1时,判断线段OM与ON的数量关系,并说明理由;(2)如图2,当k>1时,判断线段OM与ON的数量关系(用含k的式子表示),并证明;(3)点P在射线BC上,若∠BON=15°,PN=kAM(k≠1),且<,请直接写出的值(用含k的式子表示).24.如图,在△ABC中,AB=AC,∠BAC=120°,点D在直线AC上,连接BD,将DB 绕点D逆时针旋转120°,得到线段DE,连接BE,CE.(1)求证:BC=AB;(2)当点D在线段AC上(点D不与点A,C重合)时,求的值;(3)过点A作AN∥DE交BD于点N,若AD=2CD,请直接写出的值.25.如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数并说明理由.26.如图,在矩形ABCD中,AD=nAB(n>1),点E是AD边上一动点(点E不与A,D 重合),连接BE,以BE为边在直线BE的右侧作矩形EBFG,使得矩形EBFG∽矩形ABCD,EG交直线CD于点H.【尝试初探】(1)在点E的运动过程中,△ABE与△DEH始终保持相似关系,请说明理由.【深入探究】(2)若n=2,随着E点位置的变化,H点的位置随之发生变化,当H是线段CD中点时,求tan∠ABE的值.【拓展延伸】(3)连接BH,FH,当△BFH是以FH为腰的等腰三角形时,求tan∠ABE的值(用含n 的代数式表示).27.如图,在锐角△ABC中,∠A=60°,点D,E分别是边AB,AC上一动点,连接BE 交直线CD于点F.(1)如图1,若AB>AC,且BD=CE,∠BCD=∠CBE,求∠CFE的度数;(2)如图2,若AB=AC,且BD=AE,在平面内将线段AC绕点C顺时针方向旋转60°得到线段CM,连接MF,点N是MF的中点,连接CN.在点D,E运动过程中,猜想线段BF,CF,CN之间存在的数量关系,并证明你的猜想;(3)若AB=AC,且BD=AE,将△ABC沿直线AB翻折至△ABC所在平面内得到△ABP,点H是AP的中点,点K是线段PF上一点,将△PHK沿直线HK翻折至△PHK所在平面内得到△QHK,连接PQ.在点D,E运动过程中,当线段PF取得最小值,且QK⊥PF时,请直接写出的值.28.在△ABC中,AB=AC,D是边BC上一动点,连接AD,将AD绕点A逆时针旋转至AE的位置,使得∠DAE+∠BAC=180°.(1)如图1,当∠BAC=90°时,连接BE,交AC于点F.若BE平分∠ABC,BD=2,求AF的长;(2)如图2,连接BE,取BE的中点G,连接AG.猜想AG与CD存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接DG,CE.若∠BAC=120°,当BD>CD,∠AEC =150°时,请直接写出的值.29.在△ABC中,AB=AC,△CDE中,CE=CD(CE≥CA),BC=CD,∠D=α,∠ACB+∠ECD=180°,点B,C,E不共线,点P为直线DE上一点,且PB=PD.(1)如图1,点D在线段BC延长线上,则∠ECD=,∠ABP=(用含α的代数式表示);(2)如图2,点A,E在直线BC同侧,求证:BP平分∠ABC;(3)若∠ABC=60°,BC=+1,将图3中的△CDE绕点C按顺时针方向旋转,当BP⊥DE时,直线PC交BD于点G,点M是PD中点,请直接写出GM的长.30.如图,在△ABC中,AB=AC,∠BAC=α(0°<α<180°),过点A作射线AM交射线BC于点D,将AM绕点A逆时针旋转α得到AN,过点C作CF∥AM交直线AN于点F,在AM上取点E,使∠AEB=∠ACB.(1)当AM与线段BC相交时,①如图1,当α=60°时,线段AE,CE和CF之间的数量关系为.②如图2,当α=90°时,写出线段AE,CE和CF之间的数量关系,并说明理由.(2)当tanα=,AB=5时,若△CDE是直角三角形,直接写出AF的长.。
图形的旋转专题提高训练
1、如图,直角梯形ABCD 中,∠BCD=90°,AD∥BC,BC =CD ,E 为梯形内一点,且∠BEC=90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF,连EF 交CD 于M .已知BC =5, CF =3,则DM:MC 的值为 ( )
A.5:3
B.3:5
C.4:3
D.3:4
2、如图,已知Rt △ABC ≌Rt △DEC ,∠E =30°,D 为AB 的中点,AC =1,若△DEC 绕 点D 顺时针旋转,使ED 、CD 分别与Rt △ABC 的直角边BC 相交于M 、N ,则当△DMN 为等边三角形时,AM 的值为( )
A .3
B .233
C .33
D .1
3、将直角边长为5cm 的等腰直角ΔABC 绕点A 逆时针旋转15°后,得到ΔAB’C’,则图中阴 影部分的面积是 cm 2
4、在矩形ABCD 中,2AD AB ,E 是AD 的中点,一块三角板的直角顶点与点E 重合, 将三角板绕点E 按顺时针方向旋转.当三角板的两直角边与AB BC ,分别交于点M N ,时, 观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论.
N C D
E A
M
B
(4题图) F A D
B C
E F
M
第一题
5、在矩形ABCD 中,AB =2,AD =3.
(1)在边CD 上找.
一点E ,使EB 平分∠AEC ,并加以说明;(3分) (2)若P 为BC 边上一点,且BP =2CP ,连接EP 并延长交AB 的延长线于F .
①求证:点B 平分线段AF ;(3分)
②△P AE 能否由△PFB 绕P 点按顺时针方向旋转而得到,若能,加以证明,并求出旋转度数;若不能,请说明理由.(4分)
6、含30°角的直角三角板ABC (∠B=30°)绕直角顶点C 沿逆时针方向旋转角α(90α∠<),再沿A ∠的对边翻折得到A B C ''△,AB 与B C '交于点M ,A B ''与BC 交于点N ,A B ''与AB 相交于点E .
(1)求证:ACM A CN '△≌△.
(2)当30α∠=时,找出ME 与MB '的数量关系,并加以说明.
E
B M
A
C A '
N B '
7、如图①,已知在△ABC 中,AB =AC ,P 是△ABC 内部任意一点,将AP 绕A 顺时针旋 转至AQ ,使∠QAP =∠BAC ,连接BQ 、CP ,
(1)判断线段BQ 与CP 的数量关系,并证明你的结论。
(2)若将点P 移到等腰三角形ABC 之外,原题中的条件不变,线段BQ 与CP 的数量关 系是否仍然成立,请你就图②给出证明.
8、
已知:如图,在正方形ABCD 中,G 是CD 上一点,延长BC 到E ,使CE=CG , 连接BG 并延长交DE 于F .
(1)求证:△BCG ≌△DCE ;
(2)将△DCE 绕点D 顺时针旋转90°得到△DAE ′,判断四边形E ′BGD 是什 么特殊四边形?并说明理由.
图① Q P C B A A Q B P C
图②
9. 已知:正方形ABCD 中,45MAN ∠=,MAN ∠绕点A 顺时针旋转,它的两边分别交 CB DC ,(或它们的延长线)于点M N ,. 当MAN ∠绕点A 旋转到BM DN =时(如图1),易证BM DN MN +=.
(1)当MAN ∠绕点A 旋转到BM DN ≠时(如图2),线段BM DN ,和MN 之间有怎样的 数量关系?写出猜想,并加以证明.
(2)当MAN ∠绕点A 旋转到如图3的位置时,线段BM DN ,和MN 之间又有怎样的 数量关系?请直接写出你的猜想.
B B M B
C N C N M C
N
M 图1
图2 图3 A A A D D D。