初一数学基本平面图形
- 格式:doc
- 大小:100.50 KB
- 文档页数:2
初一数学讲义复习内容:第6章平面图形的认识(一)—线段、射线、直线、平行线、垂直 一、知识点复习及例题选讲 1、知识点1 :(1)线段、射线、直线的异同点:(2)线段的统计方法:看线上端点的个数为n 个,则有n(n-1)/2条线段。
射线的统计方法:直线上端点的个数为n 个,则有2n 条射线;其中有2条不好用图中字母表示。
射线上端点的个数为n 个,则有n 条射线;其中有1条不好用图中字母表示。
例 1、已知点A 、点B 、点C 是直线上的三个点,则下图中有_____条线段,它们是 ,有____射线,能用图中字母表示的有 ,有_________条直线,它们是 ,。
ABC例 2、判断题:射线AB 与射线BA 表示同一条直线. ( )例 3、根据图形,下列说法:①直线AC 和直线BD 是不同的直线;②直线AD=AB+BC+CD ;③射线DC 和射线DB 不是同一条射线;④射线AB 和射线BD 不是同一条射线;⑤线段AB 和线段BA 是同一条线段。
其中正确..的是 ( ) A 、1个 B 、2个 C 、3个 D 、4个2、知识点2 :(1)两点之间的所有连线中,线段最短。
(2)两点之间线段的长度叫做这两点之间的距离。
(3)直线外一点与直线上各点连接的所有线段中,垂线段最短。
直线外一点到这条直线的垂线段的长度叫做这点到这条直线的距离。
例 1、下列四个生活、生产现象:①用两个钉子就可以把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A 地到B 地架设电线,总是尽可能沿着线段AB 架设④把弯曲的道路改直,就能缩短路程。
其中可用“两点之间,线段最短.........”的道理来解释的现象有__________.例 2、判断题:连结两点的线段叫做两点之间的距离.( )例 3、 如图,从A 地到B 地有①、②、③三条路可以走,每条路长分别为n m l 、、(图中、表示直角),则第_________条路最短,另两条路的长短例4、如图3,CD ⊥OB 于D ,EF ⊥OA 于F ,则C 到OB 的距离是______,E 到OA 的距离是______,O 到CD 的距离是______,O到EF 的距离是______.例5、直线l 外一点P 与直线l 上三点的连线段长分别为cm cm cm 654,,, 则点P 到直线l 的距离是( )A 、cm 4B 、cm 5C 、不超过cm 4D 、大于cm 63、知识点3 :(1)过一个点可以画无数条直线(2)经过两点有一条直线,并且只有一条直线(3)过同一平面上的三个点可以画一或三条直线(不在一直线上可画3条直线,在一直线上可画1条直线)例 1、如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了____________________________________。
北师大版初中数学初一上第四章基本平面图形1线段、射线、直线(1)直线有三个特征:一是直的,二是没有端点,三是向两方无限延伸;(2)射线有三个特征:一是直的,二是有一个端点,三是向一方无限延伸;(3)线段有两个特征:一是直的,二是有两个端点。
(4)直线、射线、线段的表示方法(5)线段、射线、直线的区别与联系2直线的性质(1)直线公理:经过两个点有且只有一条直线。
(两点确定一条直线。
)(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
3线段的性质(1)线段公理:两点之间的所有连线中,线段最短。
(两点之间线段最短。
)(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
4线段的中点:点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
AM = BM =1/2AB (或AB=2AM=2BM)。
5角:有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。
或:角也可以看成是一条射线绕着它的端点旋转而成的。
6角的四种表示方法①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
7角的度量角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”8角的平分线从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
第四章:基本平面图形◆4.1 线段、射线、直线■课后作业 家长签字:1、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB ,则AB 盖住的整数点的个数共有( )个A .13或14个 B.14或15个 C.15或16个 D.16或17个2、如下图是某风景区的旅游路线示意图,其中,,B C D 为风景点,E 为两条路的交叉点,图中数据为相应两点的路程(单位:千米).一学生从A 处出发,以2千米/时的速度步行观览景色,每个景点的逗留时间约为0.5小时.(1)当他沿着路线A B C E A ----游览回到A 处时,共用了3小时,求CE 的长;(2)若此学生打算从A 处出发,步行速度与在景点的逗留时间保持不变,且在最短时间内游览完三个景点返回A 处,请你为他设计一条步行路线,并说明这样设计的理由.(不考虑其他因素)3、如图,从A 到B 最短的路线是( )A. A —G —E —BB. A —C —E —BC. A —D —G —E —BD. A —F —E —B4、已知线段AB=10cm ,直线AB 上有点C ,且BC=4cm ,M 是线段AC 的中点,则AM = cm 。
5、平面内有三个点,过任意两点画一条直线,则可以画直线的条数是( )A.2条B.3条C.4条D.1条或3条6、在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段AC 的中点,那么线段OB的长度是( )A 、0.5㎝ B 、1㎝ C 、1.5㎝ D 、2㎝7、点P 是直线l 外一点,,,A B C 为直线l 上三点,4,5,2PA cm PB cm PC cm ===,则点P 到直线l 的距离是( )A 、2cm B 、小于2cm C 、不大于2cm D 、4cm8、如图所示, 把一根绳子对折成线段AB , 从P 处把绳子剪断, 已知12AP PB =, 若剪断后的各段绳子中最长的一段为40cm, 则绳子的原长为( )A. 30 cmB. 60 cmC. 120 cmD. 60 cm 或120 cm9、下列说法不正确的是( )A.若点C 在线段BA 的延长线上,则BA AC BC =-B.若点C 在线段AB 上,则AB AC BC =+C.若AC BC AB +>,则点C 一定在线段AB 外D.若,,A B C 三点不在一直线上,则AB AC BC <+二、填空题10、若线段AB=10㎝,在直线AB 上有一点C ,且BC=4㎝,M 是线段AC 的中点,则AM= ㎝.11、在边长都是1的正方形方格纸上画有如图所示的折线,它们的各段依次标着①,②,③,④,…的序号.那么序号为24的线段长度是 .12、在直线上取A 、B 、C 三点,使得AB = 9 厘米,BC = 4 厘米,如果O 是线段AC 的中点,则线段OA的长为 厘米.13、往返于甲、乙两地的火车中途要停靠三个站,则有 种不同的票价(来回票价一样),需准备 种车票.14、如图,从学校A 到书店B 最近的路线是①号路线,其道理用几何知识解释应是________________。
第十七讲几何图形(相关知识点精讲,标题加粗,正文宋体5号,单倍行距,首行缩进2字符)一、平面图形1、概念:图形所表示的各个部分都在同一平面内的图形,如直线、三角形等。
2、常见的平面图形(1)多边形:由线段围成的封闭图形叫做多边形。
多边形中三角形是最基本的图形。
(2)圆:一条线段绕它的端点旋转一周而形成的图形。
(3)扇形:由一条弧和经过这条弧的端点的两条半径围成的图形叫做扇形。
二、立体图形1、概念:图形所表示的各个部分不在同一平面内的图形,如圆柱体。
2、常见的立体图形(1)柱体:A棱柱---有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边互相平行,由这些面围成的几何体叫做棱柱。
B 圆柱---以矩形的一边所在直线为旋转轴,其余各边围绕它旋转一周二形成的曲面所围成的集合体叫做圆柱。
(2)椎体:A棱锥—有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
B圆锥—以直角三角形的一条直角边所在的直线为旋转轴,其余各边旋转一周而形成的曲面围成的几何体叫做圆锥。
(3)球体:半圆以它的直径为旋转轴,旋转一周而形成的曲面所围成的几何体叫做球体。
(4)多面体:围成棱柱和棱锥的面都是平的面,想这样的立体图形叫做多面体。
三、从不同方向观察几何体从正面、上面、左面三个不同方向看一个物体,然后描出三张所看到的图(分别叫做正视图、俯视图、侧视图),这样就可以把立体图形转化为平面图形。
四、展开图1、立体图形的展开图有些立体图形是有一些平面图形围成的,把它们的表面适当剪开后在平面上展开得到的平面图形称为立体图形的展开图。
2、根据展开图判断立体图形的规律:A展开图全是长方形或正方形时------正方体或长方体;B展开图中含有三角形时-----棱锥或棱柱;若展开图中含有2个三角形3个长方形---- 三棱柱;若展开图中全是三角形(4个)-----三棱锥。
C展开图中含有圆和长方形-----圆柱;D展开图中含有扇形------圆锥。
初一数学常见几何形及其性质总结几何形是数学中的一个重要内容,它们是我们生活中无处不在的。
在初一的数学学习过程中,学生需要学习并掌握常见的几何形及其性质。
本文将对初一数学中常见的几何形进行总结,包括平面图形和立体图形。
一、平面图形1. 点(Point):点是几何的基本概念,用大写字母表示,如A、B等。
它没有长度、宽度和厚度,只有位置。
2. 直线(Line):直线是由无穷多个点组成的,可以无限延伸的平面图形。
用一对平行线表示,如AB。
3. 射线(Ray):射线是起点不变,但可向一个方向无限延伸的线段。
用起点和一个点表示,如∠ABC。
4. 线段(Line Segment):线段是由两个端点限定的线段。
用起点和一个点表示,如AB。
5. 角(Angle):角是由两条射线共享一个端点而形成的图形。
通过两条射线的夹角大小可分为锐角、直角、钝角等。
6. 三角形(Triangle):三角形是由三条线段组成的,形成了一个封闭的图形。
按照边长可分为等边三角形、等腰三角形和普通三角形等。
7. 四边形(Quadrilateral):四边形是由四个线段组成的封闭图形。
按照边的性质可分为矩形、正方形、平行四边形和菱形等。
8. 多边形(Polygon):多边形是由多个线段组成的封闭图形。
按照边的个数可分为三边形、四边形、五边形等。
二、立体图形1. 圆柱体(Cylinder):圆柱体是以一个圆为底面,由一个平行于底面的圆柱面和两个平行于底面的圆面组成的立体图形。
其性质包括底面积和侧面积等。
2. 球体(Sphere):球体是由所有离一个点的距离相等的点组成,具有球心、半径等性质。
3. 正方体(Cube):正方体是六个正方形组成的立体图形,具有六个面、八个顶点和十二条棱。
4. 圆锥体(Cone):圆锥体是以一个固定的点为顶点,边界为圆锥面的立体图形。
5. 圆环(Torus):圆环是由一个圆绕着与其平面不相交的轴旋转一周形成的立体图形。
初一下数学知识点总结之平面图形和立体图形2023年即将到来,对于刚刚进入初中阶段的学生来说,平面图形和立体图形是数学中重要的知识点。
在这篇文章中,我们将重点总结初一下平面图形和立体图形的知识点,并提供一些相关的例题和解析。
希望可以帮助大家更好的理解和掌握这些知识。
一、平面图形的基本知识平面图形是指在同一平面上的图形,比如说:三角形、四边形、多边形等。
在初一下学习的平面图形知识点主要有以下几点:1. 三角形的性质三角形是指包含3个顶点和3条边的平面图形。
三角形的性质有以下几点:(1)三角形的内角和为180°,即所有角的度数相加等于180°。
(2)三角形中,较长的一边对应较大的角,较短的一边对应较小的角。
(3)等边三角形三条边长度相等,每个角的度数均为60°;等腰三角形有两边相等,两个对应的角也相等。
2. 四边形的性质四边形是指包含4个顶点和4条边的平面图形,比如:矩形、正方形、菱形、平行四边形等。
四边形的性质有以下几点:(1)四边形的对角线相互垂直,具体来说就是两条相交的对角线互相垂直。
(2)矩形和正方形的对角线长度相等。
(3)平行四边形的对边互相平行且长度相等。
3. 多边形的分类多边形是指有多个边的平面图形,比如三角形、四边形等都是多边形。
多边形可以按照顶角个数和边数进行分类,具体来说有以下几种多边形:(1)三角形:拥有3个顶角和3条边。
(2)四边形:拥有4个顶角和4条边。
(3)五边形:拥有5个顶角和5条边。
(4)六边形:拥有6个顶角和6条边。
(5)七边形:拥有7个顶角和7条边。
(6)正多边形:拥有相等边长和相等内角的多边形,比如正三角形、正四边形等。
二、立体图形的基本知识立体图形是指在三维坐标系中的图形,比如说:立方体、棱锥、棱台等。
在初一下学习的立体图形知识点主要有以下几点:1. 立方体的性质立方体是指拥有6个面、12个边和8个顶点的立体图形,并且六个面都是正方形。
初一数学知识点上册人教版精选初一数学知识点上册人教版图形的初步认识一、立体图形与平面图形1、长方体、正方体、球、圆柱、圆锥等都是立体图形。
此外棱柱、棱锥也是常见的立体图形。
2、长方形、正方形、三角形、圆等都是平面图形。
3、许多立体图形是由一些平面图形围成的,将它们适当地剪开,就可以展开成平面图形。
二、点和线1、经过两点有一条直线,并且只有一条直线。
2、两点之间线段最短。
3、点C线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。
类似的还有线段的三等分点、四等分点等。
4、把线段向一方无限延伸所形成的图形叫做射线。
三、角1、角是由两条有公共端点的射线组成的图形。
2、绕着端点旋转到角的终边和始边成一条直线,所成的角叫做平角。
3、绕着端点旋转到终边和始边再次重合,所成的角叫做周角。
4、度、分、秒是常用的角的度量单位。
把一个周角360等分,每一份就是一度的角,记作1°;把1度的角60等分,每份叫做1分的角,记作1′;把1分的角60等分,每份叫做1秒的角,记作1″。
四、角的比较从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。
类似的,还有叫的三等分线。
五、余角和补角1、如果两个角的和等于90(直角),就说这两个角互为余角。
2、如果两个角的和等于180(平角),就说这两个角互为补角。
3、等角的补角相等。
4、等角的余角相等。
六、相交线1、定义:两条直线相交,所成的四个角中有一个角是直角,那么这两条直线互相垂直。
其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
2、注意:⑴垂线是一条直线。
⑵具有垂直关系的两条直线所成的4个角都是90。
⑶垂直是相交的特殊情况。
⑷垂直的记法:a⊥b,AB⊥CD。
3、画已知直线的垂线有无数条。
4、过一点有且只有一条直线与已知直线垂直。
5、连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
6、直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
第五章基本平面图形复习学案复习目标:
1、掌握本章基本知识,正确列出章节知识网络图。
2、理解所学概念,并能举例说明。
3、能运用所学知识解决生活中的实际问题。
4、熟练计算线段的和与差,角的和与差,实现线段、角度的相互转化。
复习重点:
1、本章所学的概念(线段、射线、直线、线段的中点、角、角的平分线。
)
2、公理“两点确定一条以直线”“两点之间线段最短”的理解与应用。
3、线段与角度之间的转化与计算。
复习难点:
线段与角度之间的转化与计算,以及知识的应用与问题解决。
复习过程:
一、看课本2-17页,找出以下问题(提问)
1、线段、射线、直线的特征与表示方法。
2、线段大小的比较方法,线段中点的定义,
3、尺规作图“做一条线段等于已知线段”的方法。
4、角的定义和表示方法,周角、平角的定义。
5、角的度量单位,及答案为之间的换算关系。
6、方位角的表示和钟表中的角度。
7、比较两个角的大小的方法,结果的表示。
8、角平分线的意义和应用,用折叠的方法画出角的平分线。
9、多边形和正多边形的概念,及相关概念。
10、圆的概念(圆心、半径、圆弧、圆心角、扇形、圆的周长和面积)
二、知识网络图线段、射线、直线的意义和特征
线段、射线、直线的表示方法
“两点确定一条以直线”“两点之间线段最短”
线段、射线、直线
线段的比较和线段的中点的意义
用尺规作图“做一条线段等于已知线段”
角的定义和表示方法(始边、终边)
角的度量单位及各单位之间的关系
基
角方位角和钟表中的夹角
本
比较两个角的大小的方法
平
角平分线的意义,应用角的平分线进行计算
面
多边形的定义(边、内角、顶点)
图
多边形多边形的对角线(n边形的对角线的条数)
形
正多边形
圆的定义(两种不同的方法)
与圆有关的概念(圆心、半径、圆弧、扇形、圆心角)
圆的面积与周长
圆心角的计算
三、应用举例:
例1,说出图中的线段、射线、直线
例2,已知两条线段的差是10 cm,这两条线段的比是2∶3,求这两条线段的长.
例3, 已知线段AB ,延长AB 到C ,使BC= 2
1
AB ,反向延长AC 到D , 使DA=
2
1
AC ,若AB=8㎝,求DC 的长。
(要求:先画出图形)
例4,如图所示,O 是直线AB 上的点,OD 是∠AOC 的平分线,OE 是∠COB 的平分线, ∠COD =28,°,求∠EOB 的度数. ,
例6,如图所示,已知OC 平分∠AOD ,且∠2: ∠3:∠4 =1:2:4,求∠1的度数.
例7,
如图,∠AOC 与∠AOB 的和为180,°,OM 、ON 分别是∠AOC 、∠AOB 的平分线,∠MON=40°,求∠AOC 和∠AOB 的度数.
四、集中练习 (一)填空题
1、 连结_______的_______叫作两点间的距离.
2、 点B 把线段AC 分成两条相等的线段,点B 就叫做线段AC 的_______,这时,有AB=_______,AC=_______BC ,AB=BC=_______AC.点B 和点C 把线段AD 分成三条相等的线段,则点B 和点C 就叫做AD 的_______.
3、如图,点C 分AB 为2∶3,点D 分AB 为1∶4, 若AB 为5 cm, 则AC=_____cm, BD=_____cm,CD=__ ____cm.
4、若线段AB=a,C 是线段AB 上任一点,MN 分别是AC 、BC 的中点,则
MN=_______+_______=_______AC+_______BC=_______.
5、 已知线段AB ,在AB 的延长线上取一点C ,使BC=2AB ,再在BA 的延长线上取一点D ,
使DA=AC ,则线段DC=______AB ,BC=_____CD
6、如图,∠AOB_____∠AOC ,∠AOB____∠BOC.(填“>”、“=”或“<”)
第6题图 第7题图 第10题图 第11题图 7、 如图,∠AOC=______+__ ____=______-_____;∠BOC=______-_____=______-______ 8、OC 是∠AOB 内部的一条射线,若∠AOC= ______,则OC 平分∠AOB ;若OC 是∠AOB
的角平分线,则____= 2∠AOC.
9、平角=______直角, 周角=_____平角=______直角,
10、如图,∠AOB = ∠COD =900,∠AOD= 1460,则∠BOC=_______0.
11、如图,∠AOB=900,OD 平分∠BOC ,∠DOE=450,则∠AOE____∠COE.(填“>”、“=”
或“<”) 二、解答题 1、已知: AE=
21 EB ,F 是BC 的中点,BF= 5
1
AC=1.5㎝,求EF 的长。
2、已知如图,点C 在线段AB 上,线段AC =10,BC =6,点M 、N 分别是AC 、BC 的中点,
(1)求MN 的长度。
(2)根据⑴的计算过程与结果,设AC +BC = ,其它条件不变,你能猜想出MN 的长度吗?
请用一句简洁的语言表达你发现的规律。
(3)若把⑴中的“点C 在线段AB 上”改为“点C 在直线AB 上”,结论又如何?请说明理由。
3、如图,∠BAE =750,∠DAE= 150
,AC 是∠BAD 的平分线,求∠CAD 的度数.。