1、方程和方程组的应用-中考数学复习知识讲解+例题解析+强化训练
- 格式:doc
- 大小:131.40 KB
- 文档页数:12
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
中考数学专题复习《整式方程(组)的应用》经典题型讲解类型之一一元一次方程的应用【经典母题】汽车队运送一批货物.若每辆车装4 t,还剩下8 t未装;若每辆车装4.5 t,恰好装完.这个车队有多少辆车?解:设这个车队有x辆车,依题意,得4x+8=4.5x,解得x=16.答:这个车队有16辆车.【思想方法】利用一元一次方程解决实际问题是学习二元一次方程组、分式方程、一元二次方程、一元一次不等式(组)等的基础,是课标要求,也是热门考点.【中考变形】1.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,今年购置计算机的数量是(C) A.25台B.50台C.75台D.100台【解析】设今年购置计算机的数量是x台,去年购置计算机的数量是(100-x)台,根据题意可得x=3(100-x),解得x=75.2.[2016·盐城校级期中]小明的妈妈在菜市场买回3斤萝卜、2斤排骨,准备做萝卜排骨汤.妈妈说:“今天买这两样菜共花了45元,上月买同重量的这两种菜只要36元”.爸爸说:“报纸上说了萝卜的单价上涨50%,排骨单价上涨20%”.小明说:爸爸、妈妈,我想知道今天买的萝卜和排骨的单价分别是多少?请你通过列一元一次方程求解这天萝卜、排骨的单价(单位:元/斤).解:设上月萝卜的单价是x 元/斤,则排骨的单价36-3x 2元/斤,根据题意,得3(1+50%)x +2(1+20%)⎝ ⎛⎭⎪⎫36-3x 2=45, 解得x =2,则36-3x 2=36-3×22=15. ∴这天萝卜的单价是(1+50%)×2=3(元/斤),这天排骨的单价是(1+20%)×15=18(元/斤).答:这天萝卜的单价是3元/斤,排骨的单价是18元/斤.【中考预测】[2016·株洲模拟]根据如图Z4-1的对话,分别求小红所买的笔和笔记本的价格.图Z4-1解:设笔的价格为x 元/支,则笔记本的价格为3x 元/本,由题意,得10x +5×3x =30,解得x =1.2,∴3x =3.6.答:笔的价格为1.2元/支,笔记本的价格为3.6元/本.类型之二 二元一次方程组的应用【经典母题】用如图Z4-2①中的长方形和正方形纸板做侧面和底面,做成如图②的竖式和横式两种无盖纸盒.现在仓库里有1 000张正方形纸板和2 000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?图Z4-2解:设做竖式纸盒x 个,横式纸盒y 个,可恰好将库存的纸板用完.根据题意,得⎩⎪⎨⎪⎧4x +3y =2 000,x +2y =1 000,解得⎩⎪⎨⎪⎧x =200,y =400.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.【思想方法】 利用方程(组)解决几何计算问题,是较好的方法,体现了数形结合思想.【中考变形】1.小华写信给老家的爷爷,问候“八·一”建军节.折叠长方形信纸,装入标准信封时发现:若将信纸按图Z4-3①连续两次对折后,沿着信封口边线装入时宽绰3.8 cm ;若将信纸按图②三等分折叠后,同样方法装入时宽绰1.4 cm.试求出信纸的纸长与信封的口宽.①②图Z4-3解:设信纸的纸长为x cm ,信封口的宽为y cm.由题意,得⎩⎪⎨⎪⎧y =x 4+3.8,y =x 3+1.4,解得⎩⎪⎨⎪⎧x =28.8,y =11. 答:信纸的纸长为28.8 cm ,信封的口宽为11 cm.2.某中学新建了一栋四层的教学楼,每层楼有10间教室,进出这栋教学楼共有4个门,其中两个正门大小相同,两个侧门大小也相同.安全检查中,对4个门进行了测试,当同时开启一个正门和两个侧门时,2 min 内可以通过560名学生;当同时开启一个正门和一个侧门时,4 min 内可以通过800名学生.(1)求平均每分钟一个正门和一个侧门各可以通过多少名学生?(2)检查中发现,出现紧急情况时,因学生拥挤,出门的效率将降低20%,安全检查规定:在紧急情况下全楼的学生应在5 min 内通过这4个门安全撤离,假设这栋教学大楼每间教室最多有45名学生,问:该教学楼建造的这4个门是否符合安全规定?请说明理由.解:(1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得⎩⎪⎨⎪⎧2x +4y =560,4x +4y =800,解得⎩⎪⎨⎪⎧x =120,y =80.答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生;(2)由题意得共有学生45×10×4=1 800(人),学生通过的时间为1 800÷[(120+80)×0.8×2]=458(min).∵5<458,∴该教学楼建造的这4个门不符合安全规定.【中考预测】随着“互联网+”时代的到来,一种新型的手机打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/km 计算,耗时费按q 元/min 计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如下表:(1)求p ,q 的值; (2)如果小华也用该打车方式,车速55 km/h ,行驶了11 km ,那么小华的打车总费用为多少?解:(1)小明的里程数是8 km ,时间为8 min ;小刚的里程数为10 km ,时间为12 min.由题意得⎩⎪⎨⎪⎧8p +8q =12,10p +12q =16,解得⎩⎨⎧p =1,q =12;(2)小华的里程数是11 km ,时间为12 min.则总费用是11p +12q =17(元).类型之三 一元二次方程的应用【经典母题】某租赁公司拥有汽车100辆,据统计,当每辆车的月租金为3 000元时,可全部租出,每辆车的月租金每增加50元,未租出的车将会增加1辆.租出的车每辆每月需要维护费为150元,未租出的车每辆每月只需要维护费50元.(1)当每辆车的月租金定为3 600元时,能租出多少辆?(2)当每辆车的月租金定为多少元时,租赁公司的月收益(租金收入扣除维护费)可达到306 600元?解:(1)100-3 600-3 00050=88(辆). 答:当每辆车的月租金定为3 600元时,能租出88辆.(2)设每辆车的月租金定为(3 000+x )元,则⎝ ⎛⎭⎪⎫100-x 50[(3 000+x )-150]-x 50×50=306 600, 解得x 1=900,x 2=1 200,∴3 000+900=3 900(元),3 000+1 200=4 200(元).答:当每辆车的月租金为3 900元或4 200元时,月收益可达到306 600元.【思想方法】利润=收入-支出,即利润=租出去车辆的租金-租出去车辆的维护费-未租出去车辆的维护费.【中考变形】1.[2017·眉山]东坡某烘焙店生产的蛋糕礼盒分为6个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1 080元,该烘焙店生产的是第几档次的产品?解:(1)设此批次蛋糕属第a 档次产品,则10+2(a -1)=14,解得a =3. 答:此批次蛋糕属第3档次产品.⎝⎛⎭⎪⎫或:∵14-102+1=3,∴此批蛋糕属第3档次产品. (2)设该烘焙店生产的是第x 档次的产品,根据题意,得[10+2(x -1)][76-4(x -1)]=1 080,解得x 1=5,x 2=11(舍去).答:该烘焙店生产的是第5档次的产品.2.[2017·重庆B 卷]某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400 kg ,其中枇杷的产量不超过樱桃的产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100 kg,销售均价为30元/kg,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200 kg,销售均价为20元/kg,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.【解析】(1)根据“枇杷的产量不超过樱桃的产量的7倍”即可列出不等式求得今年收获樱桃的质量;(2)抓住关键语句,仔细梳理,根据去年、今年樱桃销售量、销售均价,求出各自的销售额,可以用一张表格概括其中数量关系:然后根据“今年樱桃和枇杷的销售总金额与去年樱桃和枇杷的市场销售总金额相同”可列方程求解.解:(1)设该果农今年收获樱桃至少x kg,今年收获枇杷(400-x)kg,依题意,得400-x≤7x,解得x≥50.答:该果农今年收获樱桃至少50 kg.(2)由题意,得3 000×(1-m %)+4 000×(1 +2m%)×(1-m%)=7 000,解得m1=0(不合题意,舍去),m2=12.5.答:m的值为12.5.【中考预测】某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400 kg.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20 kg.(1)当每千克涨价多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4 420元,同时又可使顾客得到实惠,每千克应涨价多少元?解:(1)设每千克涨价x元,总利润为y元.则y=(10+x)(400-20x)=-20x2+200x+4 000=-20(x-5)2+4 500.当x=5时,y取得最大值,最大值为4 500元.答:当每千克涨价5元时,每天的盈利最多,最多为4 500元;(2)设每千克应涨价a元,则(10+a)(400-20a)=4 420.解得a=3或a=7,为了使顾客得到实惠,∴a=3.答:每千克应涨价3元.。
备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作时间等等.列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.3.一元一次不等式的应用(1)由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.(2)列不等式解应用题需要以“至少”、“最多”、“不超过”、“不低于”等词来体现问题中的不等关系.因此,建立不等式要善于从“关键词”中挖掘其内涵.(3)列一元一次不等式解决实际问题的方法和步骤:①弄清题中数量关系,用字母表示未知数.②根据题中的不等关系列出不等式.③解不等式,求出解集.④写出符合题意的解.4.一元一次不等式组的应用对具有多种不等关系的问题,考虑列一元一次不等式组,并求解.一元一次不等式组的应用主要是列一元一次不等式组解应用题,其一般步骤:(1)分析题意,找出不等关系;(2)设未知数,列出不等式组;(3)解不等式组;(4)从不等式组解集中找出符合题意的答案;(5)作答.5.一次函数的应用(1)分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)概括整合①简单的一次函数问题:a建立函数模型的方法;b分段函数思想的应用.②理清题意是采用分段函数解决问题的关键.6.二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.五年中考1.(2019•成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p x来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?2.(2018•成都)为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉,经市场调查,甲种花卉的种植费用y(元)与种植面积x(m2)之间的函数关系如图所示,乙种花卉的种植费用为每平方米100元.(1)直接写出当0≤x≤300和x>300时,y与x的函数关系式;(2)广场上甲、乙两种花卉的种植面积共1200m2,若甲种花卉的种植面积不少于200m2,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?3.(2017•成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表:地铁站A B C D Ex(千米)8 9 10 11.5 13y1(分钟)18 20 22 25 28(1)求y1关于x的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x的影响,其关系可以用y2x2﹣11x+78来描述,请问:李华应选择在那一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.4.(2016•成都)某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?5.(2015•成都)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求,商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润不低于25%(不考虑其他因素),那么每件衬衫的标价至少是多少元?一年模拟6.(2019•成华区模拟)随着人们生活水平的提高,对饮水品质的需求也越来越高,某商场购进甲、乙两种型号的净水器,每台甲型净水器比每台乙型净水器进价多200元,已知用5万元购进甲型净水器与用4.5万元购进乙型净水器的数量相等.(1)求每台甲型,乙型净水器的进价各是多少元?(2)该商场计划花费不超过9.8万元购进两种型号的净水器共50台进行销售,甲型净水器每台销售2500元,乙型净水器每台售价2200元,商场还将从销售甲型净水器的利润中按每台a元(70<a<80)捐献给贫困地区作为饮水改造扶贫资金.设该公司售完50台净水器并捐献扶贫资金后获得的利润为W元,求W的最大值.7.(2019•邛崃市模拟)某健身馆普通票价为40元/张,6﹣9月为了促销,新推出两种优惠卡:①金卡售价1200元/张,每次凭卡不再收费.②银卡售价300元/张,每次凭卡另收10元.普通票正常出售,两种优惠卡仅限6﹣9月使用,不限次数.设健身x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.8.(2019•武侯区模拟)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.9.(2019•锦江区模拟)十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b a2+12a ﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?10.(2019•武侯区模拟)成都市某商场购进甲、乙两种商品,甲商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l1所示,乙商品的购进总价y(元)与购进数量x(件)之间的函数关系如图l2所示.(1)请分别求出直线l1,l2的函数表达式,并直接写出甲、乙两种商品的购进单价各是多少元?(2)现该商场购进甲、乙两种商品各100件,甲、乙商品的销售单价均为70元,销售一段时间后,商场对甲商品搞促销活动,打八折继续销售剩余甲商品,乙商品的销售单价始终保持不变.若商场规定甲商品打折前的销售数量不得多于甲商品打折后的销售数量的,那么甲商品应接原销售单价销售多少件,才能使得甲、乙两种商品全部销售完后商场获得最大利润?最大利润为多少元?11.(2019•双流区模拟)某文具店出售一种文具,每个进价为2元,根据长期的销售情况发现:这种文具每个售价为3元时,每天能卖出500个,如果售价每上涨0.1元,其销售量将减少10个.物价局规定售价不能超过进价的240%.(1)如果这种文具要实现每天800元的销售利润,每个文具的售价应是多少?(2)该如何定价,才能使这种文具每天的利润最大?最大利润是多少?12.(2016•荆州)为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.13.(2019•郫都区模拟)某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?14.(2019•郫都区模拟)某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)求果园增种橙子树x(棵)与果园橙子总产量y(个)的函数关系式;(2)多种多少棵橙子,可以使橙子的总产量在60420个以上?15.(2019•成都模拟)某商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件,经调查发现,这种商品的销售单价每提高1元,其销售量相应减少10件.(1)求销售量y件与销售单价x(x>10)元之间的关系式;(2)当销售单价x定为多少,才能使每天所获销售利润最大?最大利润是多少?精准预测1.天水某景区商店销售一种纪念品,这种商品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,市场调查发现,该商品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?2.八(1)班为了配合学校体育文化月活动的开展,同学们从捐助的班费中拿出一部分钱来购买羽毛球拍和跳绳.已知购买一副羽毛球拍比购买一根跳绳多20元.若用200元购买羽毛球拍和用80元购买跳绳,则购买羽毛球拍的副数是购买跳绳根数的一半.(1)求购买一副羽毛球拍、一根跳绳各需多少元?(2)双11期间,商店老板给予优惠,购买一副羽毛球拍赠送一根跳绳,如果八(1)班需要的跳绳根数比羽毛球拍的副数的2倍还多10,且该班购买羽毛球拍和跳绳的总费用不超过350元,那么八(1)班最多可购买多少副羽毛球拍?3.已知A、B两地相距2.4km,甲骑车匀速从A地前往B地,如图表示甲骑车过程中离A地的路程y(km)与他行驶所用的时间x(min)之间的关系.根据图象解答下列问题:(1)甲骑车的速度是km/min;(2)若在甲出发时,乙在甲前方0.6km处,两人均沿同一路线同时出发匀速前往B地,在第3分钟甲追上了乙,两人到达B地后停止.请在下面同一平面直角坐标系中画出乙离A地的距离y乙(km)与所用时间x(min)的关系的大致图象;(3)乙在第几分钟到达B地?(4)两人在整个行驶过程中,何时相距0.2km?4.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地如图,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数图象;折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数图象;请根据图象解答下到问题:(1)货车离甲地距离y(干米)与时间x(小时)之间的函数式为;(2)当轿车与货车相遇时,求此时x的值;(3)在两车行驶过程中,当辆车与货年相距20千米时,求x的值.5.某水果店经销一种高档水果,售价为每千克60元(1)连续两次降价后售价为每千克48.6元,若每次下降的百分率相同.求平均下降的百分率;(2)已知这种水果的进价为每千克48元,每天可售出80千克,经市场调查发现,若售价每涨价1元,日销售量将减少4千克,设每千克涨价t元,每天获得的利润为w元.①当售价为多少元时,每天获得的利润为最大?最大为多少元?②水果店老板为保证每天的利润不低于988元,请直接写出t的取值范围是.6.某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?7.我国为了实现到达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w (万元)的范围.8.合肥享有“中国淡水龙虾之都”的美称,甲、乙两家小龙虾美食店,平时以同样的价格出售品质相同的小龙虾.“龙虾节”期间,甲、乙两家店都让利酬宾,在人数不超过20人的前提下,付款金额y甲、y乙(单位:元)与人数之间的函数关系如图所示.(1)直接写出y甲,y乙关于x的函数关系式;(2)小王公司想在“龙虾节”期间组织团建,在甲、乙两家店就餐,如何选择甲、乙两家美食店吃小龙虾更省钱?9.某公司生产的一种商品其售价是成本的1.5倍,当售价降低5元时商品的利润率为25%.若不进行任何推广年销售量为1万件.为了获得更好的利益,公司准备拿出一定的资金做推广,根据经验,每年投入的推广费x万元时销售量y(万件)是x的二次函数:当x为1万元时,y是1.5(万件).当x为2万元时,y是1.8(万件).(1)求该商品每件的的成本与售价分别是多少元?(2)求出年利润与年推广费x的函数关系式;(3)如果投入的年推广告费为1万到3万元(包括1万和3万元),问推广费在什么范同内,公司获得的年利润随推广费的增大而增大?10.永农化工厂以每吨800元的价格购进一批化工原料,加工成化工产品进行销售,已知每1吨化工原料可以加工成化工产品0.8吨,该厂预计销售化工产品不超过50吨时每吨售价为1600元,超过50吨时,每超过1吨产品,销售所有的化工产品每吨价格均会降低4元,设该化工厂生产并销售了x吨化工产品.(1)用x的代数式表示该厂购进化工原料吨;(2)当x>50时,设该厂销售完化工产品的总利润为y,求y关于x的函数关系式;(3)如果要求总利润不低于38400元,那么该厂购进化工原料的吨数应该控制在什么范围?11.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式,并求出自变量x的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)12.为满足市场需求,某超市在新年来临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?13.潮州旅游文化节开幕前,某凤凰茶叶公司预测今年凤凰茶叶能够畅销,就用32000元购进了一批凤凰茶叶,上市后很快脱销,茶叶公司又用68000元购进第二批凤凰茶叶,所购数量是第一批购进数量的2倍,但每千克凤凰茶叶进价多了10元.(1)该凤凰茶叶公司两次共购进这种凤凰茶叶多少千克?(2)如果这两批茶叶每千克的售价相同,且全部售完后总利润率不低于20%,那么每千克售价至少是多少元?14.某运动品商场欲购进篮球和足球共100个,两种球进价和售价如下表所示,设购进篮球x个(x为正整数),且所购进的两种球能全部卖出,获得的总利润为w元.(1)求总利润W关于x的函数关系式.(2)如果购进两种球的总费用不低于5800元且不超过6000元,那么该商场如何进货才能获利最多?并求出最大利润.(3)在(2)的条件下,若每个篮球的售价降低a元,请分析如何进货才能获得最大利润.篮球足球进价(元/个)62 54售价(元/个)76 6015.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?备考中考一轮复习点对点必考题型题型26 应用题考点解析1.一元二次方程的应用(1)列方程解决实际问题的一般步骤是:审清题意设未知数,列出方程,解所列方程求所列方程的解,检验和作答.(2)列一元二次方程解应用题中常见问题:①数字问题:个位数为a,十位数是b,则这个两位数表示为10b+a.②增长率问题:增长率=增长数量/原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.③形积问题:①利用勾股定理列一元二次方程,求三角形、矩形的边长.②利用三角形、矩形、菱形、梯形和圆的面积,以及柱体体积公式建立等量关系列一元二次方程.③利用相似三角形的对应比例关系,列比例式,通过两内项之积等于两外项之积,得到一元二次方程.④运动点问题:物体运动将会沿着一条路线或形成一条痕迹,运行的路线与其他条件会构成直角三角形,可运用直角三角形的性质列方程求解.【规律方法】列一元二次方程解应用题的“六字诀”a.审:理解题意,明确未知量、已知量以及它们之间的数量关系.b.设:根据题意,可以直接设未知数,也可以间接设未知数.c.列:根据题中的等量关系,用含所设未知数的代数式表示其他未知量,从而列出方程.d.解:准确求出方程的解.e.验:检验所求出的根是否符合所列方程和实际问题.f.答:写出答案.2.分式方程的应用(1)列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.(2)要掌握常见问题中的基本关系,如行程问题:速度=路程时间;工作量问题:工作效率=工作量工作。
中考复习-方程和方程组篇内容讲解【学生总结】等式的性质:①性质1:等式两边都加(减) 所得结果仍是等式,即:若a=b,那么a±c=②性质2:等式两边都乘以或除以 (除数不为0)所得结果仍是等式即:若a=b,那么a c= ,若a=b (c≠o )那么ac=二、方程的有关概念:1、含有未知数的 叫做方程2、使方程左右两边相等的 的值,叫做方程的组3、 叫做解方程4、一个方程两边都是关于未知数的 ,这样的方程叫做整式方程【解一元一次方程】一元一次方程:1、定义:只含有一个未知数,并且未知数的次数都是 的 方程叫做一元一次方程,一元一次方程一般可以化成 的形式。
2、解一元一次方程的一般步骤: 1。
2。
3。
4。
5。
概念考点:(1)若关于x 的方程22(2)10()a a x x ---+=是一元一次方程,求a 的值.(2)若关于x 的方程5413524n x -+=是一元一次方程,求n 的值.解方程:(1) 3131=+-x x (2)x x x -=--+22132(3)53210232213+--=-+x x x (4)32116110412xx x --=+++*带小数方程4x 1.55x 0.8 1.2x0.50.20.1----=【二元一次方程组】二元一次方程组及解法:1、二元一次方程的一般形式:ax+by+c=0(a.b.c 是常数,a≠0,b≠0);2、由几个含有相同未知数的 合在一起,叫做二元一次方程组;3、 二元一次方程组中两个方程的 叫做二元一次方程组的解;4、 解二元一次方程组的基本思路是: ;5、 二元一次方程组的解法:① 消元法 ② 消元法例1 解方程组: 213211x y x y +=⎧⎨-=⎩①②.对应训练(1)解方程组: 2()134123()2(2)3x y x yx y x y -+⎧-=-⎪⎨⎪+--=⎩.3(2)3814x y x y -=⎧⎨-=⎩23(3)253s t t s =⎧⎪+⎨=⎪⎩356(4)415x y x y -=⎧⎨+=-⎩43(1)4(4)(5)(6)35115(1)3(5)7525x x y x y y x y x +-⎧-=-=⎧⎪⎨⎨-=+⎩⎪=+⎩152343(1)4(4)(4)(5)(6)3532115(1)3(5)7525x x yx y x y x y y x y x +-⎧+=-=-=⎧⎧⎪⎨⎨⎨-=-=+⎩⎩⎪=+⎩*含参方程组.已知关于x、y的方程组52111823128x y ax y a+=+⎧⎨-=-⎩①②的解满足x>0,y>0,求实数a的取值范围.【一元一次不等式组】掌握有关概念的含义,并能翻译成式子.(1)和、差、积、商、幂、倍、分等运算.(2)“至少”、“最多”、“不超过”、“不少于”等词语.例题:用不等式表示:①a为非负数,a为正数,a不是正数解:②(2)8与y的2倍的和是正数;(3)x与5的和不小于0;(5)x的4倍大于x的3倍与7的差;【学生总结:】基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a-c b-c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )例题:①解不等式 31(1-2x )>2)12(3 x②一本有300页的书,计划10天内读完,前五天因各种原因只读完100页.问从第六天起,每天至少读多少页? 解:(1) 在数轴上表示解集:“大右小左”“” (2) 写出下图所表示的不等式的解集3、不等式组:求解集口诀:同大取大,同小取小,交叉中间,分开两边例题:①不等式组⎩⎨⎧-<<,3,2x x ⎩⎨⎧->>,3,2x x ⎩⎨⎧-<>,3,2x x ⎩⎨⎧-><,3,2x x 数轴表示解集考点二:在数轴上表示不等式(组)的解 例2 把不等式组1215x x >⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .对应训练 2.不等式组2(5)65212x x x+≥⎧⎨->+⎩的解集在数轴上表示正确的是( )A .B .C .D .考点三:不等式(组)的解法例3 不等式2x-1>3的解集是 . 例4 解不等式组23 120x x +>⎧⎨-≥⎩,并把解集在数轴上表示出来.对应训练3.不等式2x-4<0的解集是.4.解不等式组2 11 00x xx+>⎧⎨-<⎩①②,并把它的解集在数轴上表示出来.考点四:不等式(组)的特殊解例5 不等式组21312xx-<⎧⎪⎨-≤⎪⎩的整数解有()个.A.1 B.2 C.3 D.4 对应训练5.求不等式组21025xx x+>⎧⎨>-⎩的正整数解.考点五:确定不等式(组)中字母的取值范围例6 若不等式组122x ax x+≥⎧⎨->-⎩有解,则a的取值范围是.对应训练6.已知x=3是关于x的不等式3x-22ax+>23x的解,求a的取值范围.课堂总结:针对练习【分式方程】1.解分式方程1x -1-2=31-x,去分母得( )A .1-2(x -1)=-3B .1-2(x -1)=3C .1-2x -2=-3D .1-2x +2=32. 分式方程x x -1-1=3(x -1)(x +2)的解为( )A .x =1B .x =-1C .无解D .x =-23. 分式方程2x +13-x =32的解是___________ __.4. 分式方程4x -3-1x=0的根是____________.5. 关于x 的分式方程m x 2-4-1x +2=0无解,则m =_____________.解方程:=0.6.①解方程:2﹣=1;②利用①的结果,先化简代数式(1+)÷,再求值.。
考向07一元二次方程、分式方程的解法及应用—基础巩固【知识梳理】考点一、一元二次方程1.一元二次方程的定义只含有一个未知数,并且未知数的最高次数是2的整式方程,叫做一元二次方程. 它的一般形式为20ax bx c ++=(a ≠0).2.一元二次方程的解法(1)直接开平方法:把方程变成2x m =的形式,当m >0时,方程的解为x =;当m =0时,方程的解1,20x =;当m <0时,方程没有实数解.(2)配方法:通过配方把一元二次方程20ax bx c ++=变形为222424b b ac x a a -⎛⎫+= ⎪⎝⎭的形式,再利用直接开平方法求得方程的解.(3)公式法:对于一元二次方程20ax bx c ++=,当240b ac -≥时,它的解为x =. (4)因式分解法:把方程变形为一边是零,而另一边是两个一次因式积的形式,使每一个因式等于零,就得到两个一元一次方程,分别解这两个方程,就得到原方程的解.方法指导:直接开平方法和因式分解法是解一元二次方程的特殊方法,配方法和公式法是解一元二次方程的一般方法.3.一元二次方程根的判别式一元二次方程根的判别式为ac 4b 2-=∆.△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根.上述由左边可推出右边,反过来也可由右边推出左边.方法指导: △≥0⇔方程有实数根.4.一元二次方程根与系数的关系如果一元二次方程0c bx ax 2=++(a ≠0)的两个根是21x x 、,那么a c x x a b x x 2121=⋅-=+,.考点二、分式方程1.分式方程的定义分母中含有未知数的有理方程,叫做分式方程.方法指导:(1)分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量.(2)分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和都是分式方程,而关于的方程和都是整式方程.2.分式方程的解法去分母法,换元法.3.解分式方程的一般步骤(1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程;(2)解这个整式方程;(3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公分母等于零的根是原方程的增根.口诀:“一化二解三检验”.方法指导:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.考点三、一元二次方程、分式方程的应用1.应用问题中常用的数量关系及题型(1)数字问题(包括日历中的数字规律)关键会表示一个两位数或三位数,对于日历中的数字问题关键是弄清日历中的数字规律.(2)体积变化问题关键是寻找其中的不变量作为等量关系.(3)打折销售问题其中的几个关系式:利润=售价-成本价(进价),利润率=利润成本价×100%.明确这几个关系式是解决这类问题的关键.(4)关于两个或多个未知量的问题重点是寻找到多个等量关系,能够设出未知数,并且能够根据所设的未知数列出方程.(5)行程问题对于相遇问题和追及问题是列方程解应用题的重点问题,也是易出错的问题,一定要分析其中的特点,同向而行一般是追及问题,相向而行一般是相遇问题.注意:追及和相遇的综合题目,要分析出哪一部分是追及,哪一部分是相遇.(6)和、差、倍、分问题增长量=原有量×增长率;现有量=原有量+增长量;现有量=原有量-降低量.2.解应用题的步骤(1)分析题意,找到题中未知数和题给条件的相等关系;(2)设未知数,并用所设的未知数的代数式表示其余的未知数;(3)找出相等关系,并用它列出方程;(4)解方程求出题中未知数的值;(5)检验所求的答数是否符合题意,并做答.方法指导:方程的思想,转化(化归)思想,整体代入,消元思想,分解降次思想,配方思想,数形结合的思想用数学表达式表示与数量有关的语句的数学思想.注意:①设列必须统一,即设的未知量要与方程中出现的未知量相同;②未知数设出后不要漏棹单位;③列方程时,两边单位要统一;④求出解后要双检,既检验是否适合方程,还要检验是否符合题意.【基础巩固训练】一、选择题1. 用配方法解方程2250x x--=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=2.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 3.关于x 的一元二次方程kx 2+2x+1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k≥﹣1C .k≠0D .k <1且k≠04.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ).A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=6.甲、乙两地相距S 千米,某人从甲地出发,以v 千米/小时的速度步行,走了a 小时后改乘汽车,又过b 小时到达乙地,则汽车的速度( ) A. S a b + B. S av b - C. S av a b -+ D. 2S a b+ 二、填空题7.方程﹣=0的解是 . 8.如果方程ax 2+2x +1=0有两个不等实根,则实数a 的取值范围是___ ___.9. 某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 __ .10.当m 为 时,关于x 的一元二次方程02142=-+-m x x 有两个相等的实数根;此时这两个实数根是 .11.如果分式方程1+x x =1+x m 无解, 则 m = . 12.已知关于x 的方程 x 1 - 1-x m = m 有实数根,则 m 的取值范围是 .三、解答题13. (1)解方程:x x x x 4143412+-=---;(2)解方程:x x x x 221103+++=.14.一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度.15.已知关于x 的方程x 2+(2m ﹣1)x+m 2=0有实数根,(1)求m 的取值范围;(2)若方程的一个根为1,求m 的值;(3)设α、β是方程的两个实数根,是否存在实数m使得α2+β2﹣αβ=6成立?如果存在,请求出来,若不存在,请说明理由.16.如图,利用一面墙,用80米长的篱笆围成一个矩形场地(1)怎样围才能使矩形场地的面积为750平方米?(2)能否使所围的矩形场地面积为810平方米,为什么?答案与解析一、选择题1.【答案】B;【解析】根据配方法的步骤可知在方程两边同时加上一次项系数一半的平方, 整理即可得到B 项是正确的.2.【答案】C ;【解析】∵22127x x += ∴221212)22(21)7x x x x m m +-=--=(, 解得m=5(此时不满足根的判别式舍去)或m=-1.原方程化为230x x +-=,212()x x -=21212()411213.x x x x +-=+=3.【答案】D ;【解析】依题意列方程组,解得k <1且k≠0.故选D .4.【答案】B ;【解析】有题意2320,10m m m -+=-且≠,解得2m =.5.【答案】B ;【解析】(80+2x )(50+2x )=5400,化简得2653500+-=x x .6.【答案】B ;【解析】由已知,此人步行的路程为av 千米,所以乘车的路程为()S av -千米。
第9讲方程(组)的应用考试内容考试要求一元一次方程的应用应用一元一次方程的关键就是找等量关系,其实质是将同一个量或等量两种方式表达出来.c二元一次方程组的应用通过分析题意抽象出数学问题,找到两个等量关系是用二元一次方程组解决问题的关键,要注意培养自己的阅读能力和处理信息的能力.一元二次方程的应用正确列出一元二次方程的前提是准确理解题意、找出等量关系,进而达到求解的目的.在此过程中往往要借助于图示法、列表法等手段帮助我们分析数量关系,并能根据具体问题的实际意义检验结果是否合理.分式方程的应用由实际问题抽象出分式方程,要正确理解题意,找出题目中的等量关系,再列出方程,求出解后,还需检验.考试内容考试要求基本思想建模思想,根据实际问题,找出数量及数量关系,建立方程组的模型,求解后要根据问题的实际意义检验结果的合理性.c基本方法1.列方程(组)解应用题的关键是把已知量和未知量联系起来,找出题目中的等量关系,一般来说,有几个未知量就要列出几个方程,所列方程必须注意:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.2.求出未知数的解后,要进行两次检验:(1)检验是否为方程的解;(2)检验是否符合客观事实.3.分析问题中的等量关系的方法一般有:图示法,列表法.1.(·杭州)某景点的参观人数逐年增加,据统计,为10.8万人次,为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1-x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.82.(·台州)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费运途费单价 1.8元/公里0.3元/分钟0.8元/公里注:车费由里程费、时长费、运途费三部分组成,其中里程费按行车的实际里程计费;时长费按行车的实际时间计算,运途费的收取方式为:行车7公里以内(含7公里)不收运途费,超过7公里的,超出部分每公里收0.8元.小王与小张各自乘坐滴滴快车,行车里程分别为6公里和8.5公里,如果下车时所付车费相同,那么这两辆滴滴快车的行车时间相差()A.10分钟B.13分钟C.15分钟D.19分钟【问题】小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.(1)按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?(2)通过(1)解答,请你谈谈方程应用性问题,应注意哪些方面?解题的一般步骤怎样?【归纳】通过开放式问题,归纳、疏理应用题的分析方法,读懂题目的意思,根据题目给出的条件,找出数量、数量关系求解;解应用题的一般步骤.类型一一元一次方程的应用例1(1)七年级(2)班有46人报名参加文学社或书画社.已知参加文学社的人数比参加书画社的人数多10人,两社都参加的有20人,则参加书画社的有________人.(2)有两根同样长度但粗细不同的蜡烛,粗蜡烛可以燃烧6小时,细蜡烛可以燃烧4小时,一次停电,同时点燃两根蜡烛,来电后同时吹灭,发现剩下的粗蜡烛长度是细蜡烛长度的两倍,则停电时间是________小时.(3)一件商品成本为x元,商店按成本价提高40%后作为标价出售,节日期间促销,按标价打8折后售价为1232元,则成本价x=________元.(4)自来水公司为鼓励节约用水,对水费按以下方式收取:用水不超过10吨,每吨按0.8元收费,超过10吨的部分按每吨1.5元收费,王老师三月份平均水费为每吨1.0元,则王老师家三月份用水________吨.【解后感悟】(1)此题关键是设参加书画社的有x人,再用x表示出参加文学社的人数;(2)根据两支蜡烛的可燃烧时间结合同时点燃相同时间后粗蜡烛长度是细蜡烛长度的两倍列出关于x的一元一次方程是解题的关键;(3)对于一元一次方程的应用,找准等量关系,列出关于x的一元一次方程是解题的关键;(4)本题的关键是设出用水量,以水费作为等量关系列方程求解.1.(1)(·聊城)在如图的6月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是()日一二三四五六1 2 3 45 6 7 8 9 10 1112 13 14 15 16 17 1819 20 21 22 23 24 2526 27 28 29 30A.27 B.51 C.69 D.72(2)(·丽水模拟)诗云:“远望巍巍塔七层,灯光点点倍加增,共灯三百八十一,试问尖头几盏灯?”请回答:____________________.(3)如图是由若干个粗细均匀的铁环最大限度地拉伸组成的链条.已知铁环粗0.8厘米,每个铁环长5厘米.设铁环间处于最大限度的拉伸状态.若要组成1.75米长的链条,则需要____________________个铁环.类型二二元一次方程组的应用例2(1)若买3支圆珠笔、1本日记本共需10元;买1支圆珠笔、3本日记本共需18元,则日记本的单价比圆珠笔的单价多________元.(2)如图,将图1的正方形剪掉一个小正方形,再沿虚线剪开,拼成如图2的长方形.已知长方形的宽为6,长为12,则图1正方形的边长为________.(3)商店里把塑料凳整齐地叠放在一起,据图的信息,当有10张塑料凳整齐地叠放在一起时的高度是________cm.【解后感悟】找出题目蕴含的数量关系与不等关系是解决问题的关键.设元方法有两种:(1)直接设元法.在全面透彻的理解问题的基础上,根据题中求什么就设什么是未知数,或要求几个量,可直接设出其中一个为未知数,这种设未知数的方法叫做直接设元法.(2)间接设元法:如果对某些题目直接设元不易求解,便可将并不是直接要求的某个量设为未知数,从而使问题变得容易解答,我们称这种设未知数的方法为间接设元法.2.(1)(·安徽模拟)如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,买5束鲜花和5个礼盒的总价为____________________元.(2)如图,10块相同的长方形墙砖拼成一个矩形,设长方形墙砖的长和宽分别为x厘米和y厘米,则依题意列方程组是____________________.(3)为了合理使用电力资源,缓解用电紧张状况,我国电力部门出台了使用“峰谷电”的政策及收费标准(如图表).已知王老师家4月份使用“峰谷电”95千瓦时,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少千瓦时?设王老师家4月份“峰电”用了x千瓦时,“谷电”用了y千瓦时,根据题意可列方程组____________________.用电时间段收费标准峰电08:00~22:00 0.56元/千瓦时谷电22:00~08:00 0.28元/千瓦时类型三一元二次方程的应用例3(1)如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.(2)某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.(3)美化环境,改善居住环境已成为城乡建设的一项重要内容,某区计划用两年时间使全区绿化面积增加21%,则这两年全区绿化面积的年平均增长率应是________.【解后感悟】解题关键是要读懂题目的意思,根据题目给出的条件,找到关键描述语,找到等量关系,准确地列出一元二次方程.判断所求的解是否符合题意,舍去不合题意的解.3.(1)(·宁海模拟)某次商品交易会上,所有参加会议的商家每两家之间都签订了一份合同,共签订合同36份.共有____________________家商家参加了交易会.(2)平行四边形ABCD的边长如图所示,四边形ABCD的周长为____________________.(3)(·杭州模拟)两年前生产1吨甲种药品的成本是5000元.随着生产技术的进步,成本逐年下降,第2年的年下降率是第1年的年下降率的2倍,现在生产1吨甲种药品成本是2400元.为求第一年的年下降率,假设第一年的年下降率为x,则可列方程____________________.类型四分式方程的应用例4(1)(·慈溪模拟)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务,原来每天制作________件.(2)(·瑞安模拟)在“校园文化”建设中,某校用8000元购进一批绿色植物,种植在礼堂前的空地处.根据建设方案的要求,该校又用7500元购进第二批绿色植物.若两次所买植物的盆数相同,且第二批每盆的价格比第一批的少10元.则第二批绿植每盆的价格为________元.(3)(·宁波模拟)某感冒药用来计算儿童服药量y的公式为y=axx+12,其中a为成人服药量,x为儿童的年龄(x≤13).如果一个儿童服药量恰好占成人服药量的一半,那么他的年龄是________.【解后感悟】正确理解题意,找到合适的等量关系是解决问题的关键,如(1)的等量关系是原来用的时间-现在用的时间=10;(3)的等量关系抓住题目中的关键语句“儿童服药量占成人服药量的一半时”.注意分式方程要检验.4.(1)(·淄博)某快递公司的分拣工小王和小李,在分拣同一类物件时,小王分拣60个物件所用的时间与小李分拣45个物件所用的时间相同.已知小王每小时比小李多分拣8个物件,设小李每小时分拣x个物件,根据题意列出的方程是____________________.(2)某班在“世界读书日”开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为____________________.(3)(·绍兴模拟)目前,步行已成为人们最喜爱的健身方法之一,通过手机可以计算行走的步数与相应的能量消耗.对比手机数据发现:小琼步行13500步与小刚步行9000步消耗的能量相同,若每消耗1千卡能量小琼行走的步数比小刚多15步,求小刚每消耗1千卡能量需要行走____________________步.【实际应用题】(·衢州)根据衢州市统计局发布的统计数据显示,衢州市近5年国民生产总值数据如图1所示,国民生产总值中第一产业,第二产业,第三产业所占比例如图2所示.请根据图中信息,解答下列问题:(1)求第一产业生产总值;(精确到1亿元)(2)比的国民生产总值增加了百分之几?(精确到1%)(3)若要使的国民生产总值达到1573亿元,求至我市国民生产总值的年平均增长率.(精确到1%)【方法与对策】试题通过统计图给出信息数据,构建方程模型:一元二次方程的应用中增长率的问题.该题型是中考命题趋势.【寻找等量关系欠仔细】要组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A .12x(x +1)=28 B .12x(x -1)=28 C .x(x +1)=28 D .x(x -1)=28参考答案第9讲 方程(组)的应用【考题体验】 1.C 2.D 【知识引擎】【解析】(1)设购买了x 件这种服装,根据题意小丽一次性购买多于10件,∴[80-2(x -10)]x =1200,解得:x 1=20,x 2=30,当x =30时,80-2(30-10)=40(元)<50不合题意舍去;答:她购买了20件这种服装; (2)解题关键是要读懂题目的意思,根据题目给出的条件,找出数量、数量关系求解;解应用题的一般步骤:①审题:读题,明确哪些是已知量,哪些是未知量,以及它们之间的关系;②设元:就是设未知数,根据题意,选择适当的未知量,并用字母表示出来,设元又分直接设元和间接设元;③列方程(组):根据题目中给出的等量关系,列出符合题意的方程(组);④解方程(组):求出所列方程(组)的解;⑤检验:检验未知数的值是否符合题意;⑥写出答案.【例题精析】例1 (1)设参加书画社的有x 人,得(46+20-x)-x =10,得x =28;(2)设停电时间为x 小时,得1-x6=2⎝⎛⎭⎫1-x 4,得x =3;(3)(1+40%)×0.8x =1232,得x =1100;(4)设王老师家3月份用水x 吨,得10×0.8+1.5(x -10)=1.0x ,得x =14. 例2 (1)设圆珠笔的单价为x 元/支,日记本的单价为y 元/本,得⎩⎪⎨⎪⎧3x +y =10,x +3y =18,得⎩⎪⎨⎪⎧x =1.5,y =5.5,∴y -x =5.5-1.5=4.故答案为:4.(2)设图1正方形的边长为x ,剪掉的小正方形的边长为y ,得⎩⎪⎨⎪⎧x -y =6,x +y =12,得⎩⎪⎨⎪⎧x =9,y =3,所以图1正方形的边长为9.故答案为:9.(3)设塑料凳凳面的厚度为x cm ,腿高h cm ,得⎩⎪⎨⎪⎧3x +h =29,5x +h =35,得⎩⎪⎨⎪⎧x =3,h =20,则10张塑料凳整齐地叠放在一起时的高度是20+3×10=50cm . 例3 (1)设人行通道的宽度为x 米,将两块矩形绿地合在一起长为(30-3x)m ,宽为(24-2x)m ,得(30-3x)·(24-2x)=480,得x 1=2,x 2=20(舍去),故答案为2; (2)设应将每千克小型西瓜的售价降低x 元.得[(3-2)-x]⎝⎛⎭⎫200+40x0.1-24=200,得x 1=0.2,x 2=0.3.故答案为0.3或0.2. (3)设这两年全区绿化面积的年平均增长率为x ,得1×(1+x)2=1+21%,得x 1=0.1,x 2=-2.1(不符合题意舍去).故答案为10%. 例4 (1)设原来每天制作x 件,得480x -480(1+50%)x =10,得x =16,经检验x =16是原方程的解,故答案为16; (2)设第一批绿植的价格是每盆x 元,则第二批绿植的价格是每盆(x -10)元,得8000x =7500x -10,得x =160.经检验,x =160是所列方程的解.则x -10=160-10=150(元).故答案为150; (3)当儿童服药量占成人服药量的一半时,即a 2=axx +12,得x =12,检验得:当x =12时,x +12≠0,∴x =12是原方程的根,故答案是12岁.【变式拓展】1.(1)D (2)3盏灯 (3)51 2. (1)440 (2)⎩⎪⎨⎪⎧x +2y =75x =3y(3)⎩⎪⎨⎪⎧x +y =950.56x +0.28y =43.43.(1)9 (2)42 (3)5000(1-x)(1-2x)=24004.(1)60x +8=45x(2)6 (3)30 【热点题型】【分析与解】(1)1300×7.1%≈92(亿元).答:第一产业生产总值大约是92亿元; (2)(1300-1204)÷1204×100%=96÷1204×100%≈8%.答:比的国民生产总值大约增加了8%; (3)设至我市国民生产总值的年平均增长率为x ,依题意得1300(1+x)2=1573,∴1+x =±1.1,∴x =0.1或x =-2.1(不符合题意,故舍去).答:至我市国民生产总值的年平均增长率约为10%.【错误警示】 B .。
中考总复习:《一次方程及方程组》知识网络及经典例题解析【考纲要求】1.了解等式、方程、一元一次方程的概念,会解一元一次方程;2.了解二元一次方程组的定义,会用代入消元法、加减消元法解二元一次方程组;3.能根据具体问题中的数量关系列出方程(组),体会方程思想和转化思想.【知识网络】【考点梳理】考点一、一元一次方程 1.等式性质(1)等式的两边都加上(或减去)同一个数(或式子),结果仍是等式. (2)等式的两边都乘以(或除以)同一个数(除数不为零),结果仍是等式. 2.方程的概念(1)含有未知数的等式叫做方程.(2)使方程两边相等的未知数的值,叫做方程的解(一元方程的解也叫做根). (3)求方程的解的过程,叫做解方程. 3.一元一次方程(1)只含有一个未知数,且未知数的次数是一次的整式方程叫做一元一次方程.(2)一元一次方程的一般形式:0(0)ax b a +=≠.(3)解一元一次方程的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤系数化成1;⑥检验(检验步骤可以不写出来). 要点诠释:解一元一次方程的一般步骤 步骤名 称 方 法依 据注 意 事 项1去分母在方程两边同时乘以所有分母的最小公倍数(即把每个含分母的部分和不含分母的部分都乘以所有分母的最小公倍数)等式性质21、不含分母的项也要乘以最小公倍数;2、分子是多项式的一定要先用括号括起来.2 去括号 去括号法则(可先分配再去括号)乘法分配律 注意正确的去掉括号前带负数的括号3移项把未知项移到方程的一边(左边),常数项移到另一边等式性质1移项一定要改变符号说明:(1)上表仅说明了在解一元一次方程时经常用到的几个步骤,但并不是说,解每一个方程都必须经过六个步骤;(2)解方程时,一定要先认真观察方程的形式,再选择步骤和方法;(3)对于形式较复杂的方程,可依据有效的数学知识将其转化或变形成我们常见的形式,再依照一般方法解.考点二、二元一次方程组 1. 二元一次方程组的定义两个含有两个未知数,且未知数的次数是一次的整式方程组成的一组方程,叫做二元一次方程组. 要点诠释:判断一个方程组是不是二元一次方程组应从方程组的整体上看,若一个方程组内含有两个未知数,并且未知数的次数都是1次,这样的方程组都叫做二元一次方程组. 2.二元一次方程组的一般形式111222a xb yc a x b y c +=⎧⎨+=⎩ 要点诠释:a 1、a 2不同时为0,b 1、b 2不同时为0,a 1、b 1不同时为0,a 2、b 2不同时为0. 3. 二元一次方程组的解法(1) 代入消元法; (2) 加减消元法. 要点诠释:(1)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.(2)一元一次方程与一次函数、一元一次不等式之间的关系:当二元一次方程中的一个未知数的取值确定范围时,可利用一元一次不等式组确定另一个未知数的取值范围,由于任何二元一次方程都可以转化为一次函数的形式,所以解二元一次方程可以转化为:当y =0时,求x 的值.从图象上看,这相当于已知纵坐标,确定横坐标的值.考点三、一次方程(组)的应用列方程(组)解应用题的一般步骤:1.审:分析题意,找出已知、未知之间的数量关系和相等关系;2.设:选择恰当的未知数(直接或间接设元),注意单位的统一和语言完整;3.列:根据数量和相等关系,正确列出代数式和方程(组);4.解:解所列的方程(组);5.验: (有三次检验 ①是否是所列方程(组)的解;②是否使代数式有意义;③是否满足实际意义);6.答:注意单位和语言完整.要点诠释:列方程应注意:(1)方程两边表示同类量;(2)方程两边单位一定要统一;(3)方程两边的数值相等.【典型例题】类型一、一元一次方程及其应用1.如果方程2n 731x 157--=是关于x 的一元一次方程,则n 的值为( ). A.2 B.4 C.3 D.1 【思路点拨】未知数x 的指数是1即可. 【答案】B ;【解析】由题意可知2n-7=1,∴n=4.【总结升华】根据一元一次方程的定义求解. 举一反三:【变式1】已知关于x 的方程4x-3m=2的解是x=5,则m 的值为 . 【答案】由题意可知4×5-3m =2,∴m=6.【变式2】若a ,b 为定值,关于x 的一元一次方程2632=--+bxx x ka 无论k 为何值时,它的解总是1,求a ,b 的值.【答案】a=0,b=11.2.一收割机收割一块麦田,上午收割了麦田的25%,下午收割了剩下麦田的20%,结果还剩下6公顷麦田未收割.这块麦田一共有多少公顷?【思路点拨】设这块麦田一共有x 公顷,根据上午收割了麦田的25%,则剩余x (1﹣25%)公顷,再利用下午收割了剩下麦田的20%,则剩余x (1﹣25%)(1﹣20%)公顷,进而求出即可. 【答案与解析】解:设这块麦田一共有x 公顷, 根据题意得出:x (1﹣25%)(1﹣20%)=6, 解得:x=10,答:这块麦田一共有10公顷.【总结升华】此题主要考查了一元一次方程的应用,正确表示出两次剩余小麦的亩数是解题关键.举一反三:【变式】“五一”期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( ) A .()130%80%2080x +⨯= B . 30%80%2080x ⋅⋅= C . 208030%80%x ⨯⨯= D . 30%208080%x ⋅=⨯【答案】成本价提高30%后标价为()130%x +,打8折后的售价为()130%80%x +⨯.根据题意,列方程得()130%80%2080x +⨯=,故选A .类型二、二元一次方程组及其应用3.解下列方程组. (1)(2).【思路点拨】代入消元法或加减消元法均可. 【答案与解析】 解:(1),将②代入①得:2(﹣2y+3)+3y=7, 去括号得:﹣4y+6+3y=7, 解得:y=﹣1,将y=﹣1代入②得:x=2+3=5, 则方程组的解;(2),①×4+②×3得:17m=34, 解得:m=2,将m=2代入①得:4+3n=13, 解得:n=3, 则方程组的解为.【总结升华】解方程组要善于观察方程组的特点,灵活选用适当的方法,提高解题速度.举一反三:① ②【变式1解方程组【答案】方程②化为,再用加减法解,答案:【变式2】解方程组⎩⎨⎧=++=.36,5:4:3::c b a c b a【答案】a=9,b=12,c=15.4.小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示.根据图中的数据(单位:m ),解答下列问题:(1)写出用含x 、y 的代数式表示的地面总面积;(2)已知客厅面积比卫生间面积多21m 2,且地面总面积是卫生间面积的15倍,铺1m 2地砖的平均费用为80元,求铺地砖的总费用为多少元?【思路点拨】根据题意找出等量关系式,列出方程或方程组解题. 【答案与解析】(1)地面总面积为:(6x +2y +18)m 2; (2)由题意,得6221,6218152.x y x y y -=⎧⎨++=⨯⎩解之,得4,3.2x y =⎧⎪⎨=⎪⎩∴地面总面积为:6x +2y +18=6×4+2×32+18=45(m 2). ∵铺1m 2地砖的平均费用为80元,∴铺地砖的总费用为:45×80=3600(元). 【总结升华】注意不要丢掉题中的单位. 举一反三:【变式】利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A.73cm B.74cm C.75cm D.76cm【答案】设桌子高度为acm,木块竖放为bcm,木块横放为ccm.则80,a=7570a b ca c b+-=⎧⎨+-=⎩解得.故选C.类型三、一次方程(组)的综合运用5.某县为鼓励失地农民自主创业,在2012年对60位自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【思路点拨】根据失地农民自主创业连续经营一年以上的给予1000元奖励:自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励列方程求解.【答案与解析】方法一:设失地农民中自主创业连续经营一年以上的有x人,则根据题意列出方程 1000x+(60–x)(1000+2000)=100000,解得:x=40,∴60-x =60-40=20答:失地农民中自主创业连续经营一年以上的有40人,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.方法二:设失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民有分别有x,y人,根据题意列出方程组:601000(10002000)100000 x yx y+=⎧⎨++=⎩解得:2040 yx=⎧⎨=⎩答:失地农民中自主创业连续经营一年以上的有40,自主创业且解决5人以上失业人员稳定就业一年以上的农民有20人.【总结升华】本题考查理解题意的能力,关键是找到人数和钱数作为等量关系.举一反三:【变式】某公园的门票价格如下表所示:购票人数1~50人51~100人100人以上票价10元/人8元/人5元/人某校七年级甲、乙两班共100多人去该公园举行联欢活动,其中甲班50多人,乙班不足50人.如果以班为单位分别买票,两个班一共应付920元;如果两个班联合起来作为一团体购票,一共只要付515元.问:甲、乙两班分别有多少人? 【答案】设甲班有x 人,乙班有y 人,由题意得:8109205()515x y x y +=⎧⎨+=⎩ 解得:5548x y =⎧⎨=⎩. 答:甲班有55人,乙班有48人.6.在社会实践活动中,某校甲、乙、丙三位同学一同调查了高峰时段北京的二环路、三环路、四环路的车流量(每小时通过观测点的汽车车辆数),三位同学汇报高峰时段的车流量情况如下:甲同学说:“二环路车流量为每小时10000辆”; 乙同学说:“四环路比三环路车流量每小时多2000辆”;丙同学说:“三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”; 请你根据他们所提供的信息,求出高峰时段三环路、四环路的车流量各是多少? 【思路点拨】根据甲、乙、丙三位同学提供的信息找出等量关系列出方程组求解. 【答案与解析】设高峰时段三环路的车流量为每小时辆,四环路的车流量为每小时辆,根据题意得:解得答:高峰时段三环路的车流量为每小时11000辆,四环路的车流量为每小时13000辆. 【总结升华】通过甲、乙、丙三位同学调查结果找到车流量的等量关系式是解题的关键.。
方程及其应用一、学习目标1.能够识别一次方程(组)、分式方程、一元二次方程,并熟练掌握各类方程(组)的解法;2.理解方程(组)的解的意义,探究含字母参数的方程的解的问题;3.会列方程(组)求解实际问题、数学问题.二、典型例题题型一、方程(组)有关的概念及解法例题1.关于x 的方程(m +1)x |m |+1+(m -3)x -1=0.(1)m 取何值时,方程是一元二次方程,并求出此方程的解;(2)m 取何值时,方程是一元一次方程.例题2.解方程:x x -1=4 x 2-1 +1借题发挥:1.用加减消元法解二元一次方程组 ⎩⎨⎧ x +3y =4 ①, 2x -y =1 ②,时,下列方法中无法消元....的是( ) A . ①×2-② B .②×(-3) -① C . ①×(-2)+② D .①-②×32.用配方法解一元二次方程2x 2-3x -1=0,配方正确的是( )A .(x - 3 4 )2= 17 16B .(x - 3 4 )2= 1 2C .(x - 3 2 )2= 13 4D .(x - 3 2 )2= 11 4题型二、方程的解的意义例题3.已知关于x 、y 的方程组⎩⎨⎧ a x +23y =-103 x +y =4与⎩⎨⎧ x -y =2 x +b y =15 的解相同.求a 、b 的值.例题4.已知关x 的一元一次方程 1 2021 x +3=2x +m 的解为x =2, 那么关于y 的一元一次方程 1 2021(y +1)+3=2 (y +1)+m 的解为 . 借题发挥:1.学校计划用200元钱购买A 、B 两种奖品,A 种每个15元,B 种每个25元,在钱全部用完的情况下,有多少种购买方案( )A .2种B .3种C .4种D .5种2.甲、乙二人同时解方程组⎩⎨⎧ a x +y =3 2x -b y =1 ,甲看错了a ,解得⎩⎨⎧ x =1 y =-1 ;乙看错了b ,解得⎩⎨⎧ x =-1 y =3.求a 、b 的值.题型三、含字母参数的方程的解的问题例题5.若关于x 的分式方程3x x -2=m 2-x+5的解为正数,则m 的取值范围为( ) A .m <-10 B .m ≤-10C .m ≥-10且m ≠-6D .m >-10且m ≠-6例题6.等腰三角形的一边长是3,另两边的长是关于x 的方程x 2-4x +k =0的两个根,则k 的值为( )A .3B .4C .3或4D .7借题发挥:关于x 的方程kx 2﹣6x +9=0有实数根,k 的取值范围是( )A .k <1且k ≠0B .k <1C .k ≤1且k ≠0D .k ≤1题型四、用方程思想解决问题例题7.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?。
中考专题09 二元一次方程组及其应用1.二元一次方程:含有两个未知数,并且未知数的指数都是1的方程整式方程叫做二元一次方程.一般形式是ax+by=c(a≠0,b≠0)。
2.二元一次方程组:把两个二元一次方程合在一起,就组成一个二元一次方程组。
3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。
4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组的解。
5.解二元一次方程组的方法将未知数的个数由多化少,逐一解决的想法,叫做消元思想。
(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。
(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。
6.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出标准答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等【经典例题1】(2020年•嘉兴)用加减消元法解二元一次方程组{x +3y =4,①2x −y =1ㅤ②时,下列方法中无法消元的是( )A .①×2﹣②B .②×(﹣3)﹣①C .①×(﹣2)+②D .①﹣②×3【标准答案】D【分析】方程组利用加减消元法变形即可.【答案剖析】 A.①×2﹣②可以消元x ,不符合题意;B.②×(﹣3)﹣①可以消元y ,不符合题意;C.①×(﹣2)+②可以消元x ,不符合题意;D.①﹣②×3无法消元,符合题意.【知识点练习】(2020年年广州模拟)解方程组:.【标准答案】见答案剖析。
2012年中考数学复习教材回归知识讲解+例题解析+强化训练方程和方程组的应用◆知识讲解1.行程问题的几种类型及等量关系:(1)相遇问题:全路程=甲走的路程+乙走的路程.(2)追及问题:若甲为快者,则被追路程=甲走的路程-乙走的路程.(3)流水问题:船速+水速,逆流航速=船速-水速.2.工程问题的基本等量关系:甲的工作量+乙的工作量=甲乙合作的工作总量,•工程问题通常把总工作量看作“1”,解工程问题的关键是先找出单位时间内的工作效率.3.浓度问题的基本等量关系:浓度=溶质质量溶液质量×100% 溶液质量=溶质质量+溶剂质量.4.数学问题的等量关系: n位数12na a a=a1×10n-1+a2×10n-2+…+a n.5.增长率等量关系: 增长率=(增量÷基础量)×100%.6.利润问题:利润=销售价-进货价;利润率=利润进货价;销售价=(1+利润率)×进货价.7.利息问题: 利息=本金×利率×期数;本息和=本金+利息.8.其他经济类问题◆例题解析例1 (2004,黄冈市)某超市对顾客实行优惠购物,规定如下:(1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠;(3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元?【分析】首先要求出小李两次去超市购物付款198元和554元的实际购物所值金额,因为付款198元时,小李购物可能不超过200元,也可能超过200元,而付款554元时,小李购物肯定超过554元,所以小李两次购物中,第一次购物有两种情况,•因此本题应分类求解.【解答】(1)小李第一次购物付款198元.①当小李购买的物品不超过200元时,不予优惠,此时实际购买198元的物品;②当小李购买的物品超过200元时,设小李购买x元的物品,依题意可得:x×90%=198,解之,得x=220即小李实际购买220元的物品.(2)小李第二次购物付款554元,因为554>500,故第二次小李购物超过500元,•设第二次小李购物y元,依题意可得:(y-500)×80%+500×90%=554,解之得y=630,即小李实际购买630元的物品.当小张决定一次性购买和小李分两次购买同样多的物品时,•小张应购买的物品为:198+630=828(元)或者220+630=850(元),此时应付款为:500×90%+(828-500)×80%=712.4(元)或者:500×90%+(850-500)×80%=730(元)答:小张应付款712.4元或730元.【点评】解答本例要注意三点:(1)由于超市实际购物优惠,•所以顾客购买物品时,所付金额数与购物金额数不一定相等;(2)•要根据付款金额数正确确定顾客购物时所符合的优惠条款,从而利用该条款求出该顾客的购物金额;(3)•若顾客所付金额数属于两种或两种以上优惠条款时,应分情况讨论求解,切忌遗漏.例2 (2004,哈尔滨市)某通信器材商场,计划用60000元从厂家购进若干部新型手机,以满足市场需求,已知该厂家生产三种不同型号的手机,•出厂价分别为甲种手机每部1800元,乙种手机每部600元,丙种手机每部1200元.(1)若商场同时购进其中两种不同型号的手机共40部,并将60000元恰好用完,请你帮助商场计算一下如何购买;(2)若商场同时购进三种不同型号的手机共40部,并将60000元恰好用完,并且要求乙种型号手机的购买数量不少于6部且不多于8部,•请你求出商场每种型号的手机的购买数量.【分析】(1)题中将60000元恰好用完容易理解,•即所选的两种手机的总钱数等于60000元;共有三种不同型号的手机,购其中两种不同型号的手机共40部,需要分三种情况考虑:①选甲,丙两种手机共40部;②选甲,丙两种手机共40部;③选乙,丙两种手机共40部;(2)题中告诉了乙种手机买数的范围,•可得乙种手机的购买数量可能的取值为6,7,8,若设甲种手机购x 部,丙种手机购y 部,则可列3个不同的方程组,即①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩ 【解答】(1)①选购甲,乙两种型号的手机,设甲种手机购x 部,乙种手机购y 部.•依题意:40180060060000x y x y +=⎧⎨+=⎩,解这个方程组得30,10.x y =⎧⎨=⎩②选购甲,丙两种型号的手机,设甲种手机购a 部,丙种手机购b 部.依题意,得401800120060000a b a b +=⎧⎨+=⎩解这个方程组,得20,20.a b =⎧⎨=⎩ ③选购乙,丙两种型号的手机,设购乙种手机m 部,购丙种手机n 部,依题意得 40600120060000m n m n +=⎧⎨+=⎩解这个方程组,得20,60.m n =-⎧⎨=⎩(不合实际,舍去). 答:有两种购买方案:①甲种手机购30部,乙种手机购买10部;②甲种手机购20部,丙种手机购20部.(2)由乙种手机的购买数量不少于6部且不多于8部,则乙种手机的购买数量有三种可能,即6部,7部,8部.设购甲种手机x 部,丙种手机y 部,由以上分析可列三个方程组:①64018006006120060000x y x y ++=⎧⎨+⨯+=⎩ ②74018006007120060000x y x y ++=⎧⎨+⨯+=⎩③74018006008120060000x y x y ++=⎧⎨+⨯+=⎩解方程组①得:268xy=⎧⎨=⎩,解方程组②:得276xy=⎧⎨=⎩,解方程组③得:284xy=⎧⎨=⎩.答:若购买乙种手机6部,则甲种手机购26部,丙种手机购8部;•若购买乙种手机7部,则甲种手机购27部,丙种手机购6部;若购买乙种手机8部,则甲种手机购28部,•丙种手机购4部.【点评】在现有的可能条件下,运用所学知识探寻最佳、最优方案,以获取最佳效益,是每个经营者所追求的目标,也是每个学生走进社会后所应具备的基本素质,这类题体现了素质教育的要求,必奖是今后中考的热点题型.同时,本题只有题设条件,结论不具体、不唯一,这对解题思路的探寻也是一种挑战,解题者必须具备创造性思维,不能囿于传统解法的限制.本例的解题关键在于依题合理分类考虑,不能漏掉存在的任何一种可能,其次是对所得的结果检验,看其是否满足生活实际.例3 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?【分析】这是一道工程问题.本题提供的关键信息有:①甲班种150•棵树所用的天数=乙班种120棵树所用的天数+2天;②甲班每天植树的棵树+10棵=•乙班每天植树的棵树.我们可以从不同的角度入手.【解答】(1)从工作时间入手,寻求解题的途径(直接设解法):设甲班每天植树x棵,那么乙班每天植树(x+10)棵.由①中的数量关系列方程,得150x=12010x++2.150(x+10)=120x+2x(x+10).150x+1500=120x+2x+20x.2x2-10x-1500=0.x2-5x-750=0.(x-30)(x+25)=0,x1=30,x2=-25.经检验知:x1=30,x2=-25都是原方程的解.但x=-25不符合题意舍去.∴当x=30时,x+10=40.(2)从工作效率入手,寻求解题途径(间接设解法):设乙班植树x天,那么甲班植树(x+2)天,甲班每天植树1502x+棵,乙班每天植树120x棵.由②中的数量关系列方程得1502x++10=120x.去分母,整理,得x2+5x-24=0.解得x1=-8,x2=3,经检验:x1=-8,x2=3都是原方程的解.又∵x>0,∴x=-8舍去,只取x=3.∴1502x+=30(棵),120x=40(棵).答:甲班每天植树30棵;乙班每天植树40棵.◆强化训练一、填空题1.某班学生为希望工程共捐款131元,比每人平均2元还多35元,设这个班的学生有x 人,根据题意,列方程为_______.2.一种药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是_______.3.轮船顺水航行40km所需的时间和逆水航行30km所需的时间相同,•已知水流速度为3km/h,设轮船在静水中的速度xkm/h,可列方程_______.4.杉杉打火机厂生产某种型号的打火机.每只的成本为2元,毛利润为25%.•工厂通过改进工艺,降低成本,在售价不变的情况下,毛利率增加了15%,•则这种打火机每只的成本降低了_____元(精确到0.01元,毛利率=-售价成本成本×100%).5.高温煅烧石灰石(CCO3)可以制取生石灰(CaO)和二氧化碳(CO2),•如果不考虑杂质及损耗,生产生石灰14t就需要煅烧石灰石25t.那么生产生石灰224t,•需要石灰石_______t.6.为了绿色北京,北京市在执行严格的机动车尾气排放标准,同时正在不断设法减少工业及民用燃料所造成的污染.随着每年10亿m3的天然气输到北京,•北京每年将少烧300万t煤,这样,到2006年底,北京的空气质量将会基本达到发达国家城市水平.某单位1个月用煤30t,若改用天然气,1年大约要用_______m2的天然气.7.李明计划在一定日期内读完200页的一本书,读了5天后改变了计划,每天多读5页,结果提前一天读完,求他原计划平均每天读几页书.解题方案设李明原计划平均每天读书x页,用含x的代数式表示:(1)李明原计划读完这本书需用_____天;(2)改变计划时,已读了_____页,还剩____页;(3)读了5天后,每天多读5页,读完剩余部分还需______天;(4)根据问题中的相等关系,列出相应方程________;(5)李明原计划平均每天读书_______页(用数字作答).8.依法纳税是公民应尽的义务,根据我国税法规定,工资所得不超过1600元不必纳税,超过1600元的部分为全月应纳税所得额,此项税款按下表累加计算:某人本月纳税150.1元,则他本月的工资收入为______元.二、选择题9.一件商品按成本价提高40%后标价,再打8折(标价的80%)销售,售价为240元.•设这件商品的成本价为x元,根据题意,下面所列的方程正确的是()A.x×40%×80%=240 B.x(1+40%)×80%=240C.240×40%×80%=x D.x×40%=240×80%10.刘刚同学买了两种不同的贺卡共8张,单价分别是1元和2元,共用10元,•设刘刚买的两种贺卡分别为x张,y张,则下面的方程组正确的是()A.1028yxx y⎧+=⎪⎨⎪+=⎩B.128210x yx y⎧+=⎪⎨⎪+=⎩C.1028x yx y+=⎧⎨+=⎩D.8210x yx y+=⎧⎨+=⎩11.小萍要在一幅长90cm,宽40cm的风景画的四周外围,•镶上一条宽度相同的金色纸边,制成一幅挂图(图4-5),使风景画的面积是整个挂图面积的54%.•设金色纸边的宽为xcm,根据题意所列方程为()A.(90+x)(40+x)×54%=90×40B.(90+2x)(40+2x)×54%=90×40C.(90+x)(40+2x)×54%=90×40D.(90+2x)(40+x)×54%=90×4012.某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x,则依题意列方程为()A.25(1+x)2=82.75 B.25+50x=82.75C.25+75x=82.75 D.25[1+(1+x)+(1+x)]=82.7513.为了贫困家庭子女能完成初中作业,国家给他们免费提供教科书,•下表是某中学免费提供教科书补助的部分情况:若设获得免费提供教科书补助的七年级为x人,八年级为y人,根据题意列出方程组为()A.4012010994190010095x yx y++=⎧⎨++=⎩B.1201099410095x yx y+=⎧⎨+=⎩C.40109941900x yx y+=⎧⎨+=⎩D.1099440120190010095x yx y++=⎧⎨++=⎩14.古代有这样一个寓言故事:驴和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,•那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”那么驴原来所驮货物的袋数是()A.5 B.6 C.7 D.815.A,B两地相距450km,甲,乙两车分别从A,B两地同时出发,相向而行,已知甲车速度为120km/h,乙车速度为80km/h,经过th两车相距50km,则t的值是()A.2或2.5 B.2或0 C.10或12.5 D.2或12.516.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,给九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某厂因库容原因,第一次在该供应商处购买原料付示7800•元,•第二次购买付款26100元,如果他是一次购买同样数量的原料,可少付金额为()A.1460元B.1540元C.1560元D.2000元三、解答题17.(2005,湘潭市)2004年年底,东南亚地区发生海啸,给当地人民带来了极大的灾难,听到这个消息,某校初中毕业班中的30名同学踊跃捐款,支援灾区人民.其中女同学共捐款150元,男同学共捐款120元,男同学比女同学平均每人少捐款2元,男,•女同学平均每人各捐款多少元?18.(2008,温州)某皮鞋专卖店老板对第一季度男女皮鞋的销售收入进行统计,•并绘制了扇形统计图(图4-6),由于三月份开展促销活动,男,女皮鞋的销售收入分别比二月份增长了40%,64%,已知第一季度男女皮鞋的销售总收入为200万元.(1)一月份销售收入___万元,二月份销售收入____•万元,•三月份销售收入____万元;(2)二月份男,女皮鞋的销售收入各是多少万元?19.(2005,海南省)在当地农业技术部门指导下,小明家增加种植菠萝的投资,使今年的菠萝喜获丰收.图4-7所示是小明爸爸,妈妈的一段对话.请你用学过的知识帮助小明算出他们家今年菠萝的收入.(收入-投资=净赚)20.(2005,武汉市)武汉江汉一桥维修工程中,拟由甲,乙两个工程队共同完成某项目.从两个工程队的资料可以知道:若两个工程队合做24天恰好完成;•若两个工程队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲,乙两个工程队单独完成该项目各需多少天?(2)又已知甲工程队每天的施工费为0.6万元,乙工程队每天的施工费为0.35•万元,要使该项目总的施工费不超过22万元,则乙工程队最少施工多少天?21.(2008,连云港)“爱心”帐篷集团的总厂和分厂分别位于甲,乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,•该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,•总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍,1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这批帐篷用卡车一次性运送到该地震灾区的A,B两地,•由于两市通往A,B两地道路的路况不同,卡车的运载量也不同,已知运送帐篷每千顶所需的车辆数,两地所急需的帐篷数如表所示:请设计一种运送方案,使所需的车辆总数最少.说明理由,并求出最少车辆总数.22.(2008,广州市)2008年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.答案1.2x+35=131 2.10% 3.403x+=303x-4.0.21 5.400 6.1.2×1057.(1)200x(2)5x,200-5x (3)20055xx-+(4)200x-(20055xx-++5)=1(5)208.3101 9.B 10.D 11.B 12.D 13.A 14.A 15.A 16.A 17.设男同学平均每人捐款x元,则女同学平均每人捐款为(x+2)元依题得:1501202x x++=30化简得:x2-7x-8=0解之得x=-1或x=8经检验它们都是原方程的根,但x=-1<0(舍去)答:男同学平均每人捐款8元,女同学平均每人捐款10元.18.(1)50;60;90(2)解:设二月份男,女皮鞋的销售收入分别为x 万元,y 万元,根据题意,得 60(140%)(164%)90x y x y +=⎧⎨+++=⎩解得3525x y =⎧⎨=⎩ 答:二月份男,女皮鞋的销售收入分别为35万元,25万元.19.设小明家去年种植菠萝的收入为x 元,投资y 元,依题意,得8000(135%)(110%)11800x y x y -=⎧⎨+-+=⎩解方程组,得120004000x y =⎧⎨=⎩ ∴小明家今年菠萝的收入应为:(1+35%)x=1.35×12000=16200元20.(1)设甲工程队单独完成该项目需x 天,乙工程队单独完成该项目需y 天.依题意得242411818101x y x y x⎧+=⎪⎪⎨⎪++=⎪⎩,解之得4060x y =⎧⎨=⎩ 经检验4060x y =⎧⎨=⎩是原方程的解,并且符合题意.答:甲,乙两工程队单独完成此项目各需40天,60天.(2)设甲工程队施工a 天,乙工程队施工b 天时总的施工费用不超过22万元,• 根据题意得140600.60.3522a b a b ⎧+=⎪⎨⎪+≤⎩解之得b ≥40答:要使该项目总的施工费用不超过22万元,乙工程队最少施工40天.21.(1)设总厂原来每周制作帐篷x 千顶,分厂原来每周制作帐篷y 千顶.由题意,得9,1.6 1.514,x y x y +=⎧⎨+=⎩ 解得5,4.x y =⎧⎨=⎩ 所以1.6x=8(千顶),1.5y=6(千顶).答:在赶制帐篷的一周内,总厂,分厂各生产帐篷8千顶,6千顶.(2)设从(甲市)总厂调配m 千顶帐篷到灾区的A 地,则总厂调配到灾区B •地的帐篷为(8-m )千顶,(乙市)分厂调配到灾区,A ,B 两地的帐篷分别为(9-m )千顶和(m -3)千顶.甲,乙两市所需运送帐篷的车辆总数为n 辆.由题意,得n=4m+7(8-m )+3(9-m )+5(m -3)(3≤m ≤8),即n=-m+68(3≤m≤8).因为-1<0,所以n随m的增大而减小.所以,当m=8时,n有最小值60.答:从总厂运送到灾区A地帐篷8千顶,从分厂运送到灾区A,B两地帐篷分别为1千顶,5千顶时所用车辆最少,最少的车辆为60辆.22.设抢修车的速度为xkm/h,则吉普车的速度为1.5xkm/h.由题意得1515151.560x x-=,解得x=20.经检验,x=20是原方程的解,且x=20,1.5x=30都符合题意.答:抢修车的速度为20km/h,吉普车的速度为30km/h.。