2015春人教版七年级数学下8.3 实际问题与二元一次方程组(3)
- 格式:ppt
- 大小:1.39 MB
- 文档页数:11
8.3实际问题与二元一次方程组(1)【学习目标】1使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3体会列方程组比列一元一次方程容易4进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力【学习重、难点】1、能根据题意列二元一次方程组;根据题意找出等量关系;2、正确发找出问题中的两个等量关系把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量(2)同类量的单位要()(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()新课探究看一看课本99页探究1问题:1 题中有哪些已知量?哪些未知量?2 题中等量关系有哪些?3 如何解这个应用题?本题的等量关系是(1)()(2)()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。
(“有”或“没有”)当堂训练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?1、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人?2、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?8.3实际问题与二元一次方程组(2)【学习目标】1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力【学习重、难点】1、能根据题意列二元一次方程组;根据题意找出等量关系;2、正确发找出问题中的两个等量关系1. 甲乙两人的年收入之比为4:3,支出之比为8:5,一年间两人各存了5000元(两人剩余的钱都存入了银行),则甲乙两人的年收入分别为( )元和( )元。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组复习题(含答案) 已知:23x y ++与()22x y +的和为零,则x y -=( ) A .7B .5C .3D .1【答案】C【解析】【分析】 利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可求出x −y 的值.【详解】根据题意得:|x +2y +3|+()22x y +=0, ∴2320x y x y +=-⎧⎨+=⎩①②, 由②得:y =−2x ③,③代入①得:x −4x =−3,即x =1,把x =1代入③得:y =−2,则x −y =1−(−2)=1+2=3.故选:C .【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元方法与加减消元法.22. 铭铭要用20元钱购买笔和本,两种物品都必须都买,20元钱全部用尽,若每支笔3元,每个本2元,则共有几种购买方案( )A.2 B.3 C.4 D.5【答案】B【解析】【分析】设购买x支笔,y个本,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结x,y均为正整数即可求出结论.【详解】解:设购买x支笔,y个本,依题意,得:3x+2y=20,∴y=10-32 x.∵x,y均为正整数,∴112 7x y =⎧⎨=⎩,2244xy=⎧⎨=⎩,3361xy=⎧⎨=⎩,∴共有3种购买方案.故选:B.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的基础,用一个变量表示另一个变量,进行整数解的讨论是解题的关键.二、解答题23.列方程组解应用题:《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”其大意是:今有人合伙买一只羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?【答案】合伙人是21人,羊价是150元.【解析】【分析】设合伙买羊的有x 人,羊价为y 钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设合伙人数是x 人、羊价是y 元,依题意得:54573x y x y +=⎧⎨+=⎩, 解得:21150x y =⎧⎨=⎩答:合伙人数是21人,羊价是150元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.24.李师傅负责修理我校课桌椅,现知道李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟.(1)请问李师傅修理1张课桌和1把椅子各需多少分钟(2)现我校有12张课桌和14把椅子需要修理,要求1天做完,李师傅每天工作8小时,请问李师傅能在上班时间内修完吗?【答案】(1)李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟;(2)李师傅能在上班时间内修完.【解析】【分析】(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,根据“李师傅修理2张课桌和3把椅子共需86分钟,修理5张课桌和2把椅子共需149分钟”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)求出李师傅修理12张课桌和14把椅子所需时间,将其与8小时(480分钟)比较后即可得出结论.【详解】解:(1)设李师傅修理1张课桌需要x分钟,修理1把椅子需要y分钟,依题意,得:2386 52149x yx y+=⎧⎨+=⎩,解得:2512 xy=⎧⎨=⎩.答:李师傅修理1张课桌需要25分钟,修理1把椅子需要12分钟.(2)25×12+12×14=468(分钟),8小时=480分钟,∵468<480,∴李师傅能在上班时间内修完.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.甲、乙两人同解方程组232ax by cx y +=⎧⎨-=-⎩,甲正确解得11x y =⎧⎨=-⎩,乙因抄错c ,解得23x y =⎧⎨=-⎩,求a 2﹣b +c 的值. 【答案】9.【解析】【分析】把11x y =⎧⎨=-⎩代入②得出c +3=﹣2,求出c ,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得出2232a b a b -=⎧⎨-=⎩,求出a ,b ,再求出a 2﹣b +c 的值即可. 【详解】解:232ax by cx y +=⎧⎨-=-⎩①② 把11x y =⎧⎨=-⎩代入②得:c +3=﹣2, 解得:c =﹣5,把11x y =⎧⎨=-⎩和23x y =⎧⎨=-⎩代入①得:2232a b a b -=⎧⎨-=⎩, 解得:42a b =⎧⎨=⎩, 所以a 2﹣b +c =42﹣2﹣5=9.【点睛】本题考查了解二元一次方程组和二元一次方程组的解,根据方程解的概念将方程的解代入未抄错的方程中得出关于c 的方程和得出关于a 、b 的方程组是解此题的关键.26.如图,在平面直角坐标系xOy 中,把一个点P 的横、纵坐标都乘以同一个实数a ,然后将得到的点先向右平移m 个单位,再向上平移n 个单位(0,0)m n >>,得到点P '(1)若(2,1)P -,5a =,1m =,2n =,则点P '坐标是_____;(2)对正方形ABCD 及其内部的每个点进行上述操作,得到正方形A B C D ''''及其内部的点,其中点,A B 的对应点分别为,A B ''.求,,m n a ;(3)在(2)的条件下,己知正方形ABCD 内部的一个点F 经过上述操作后得到的对应点F '与点F 重合,求点F 的坐标.【答案】(1)(11,3)-;(2)12a =,12m =,2n =;(3)()1,4 【解析】【分析】 (1)根据题意和平移的性质求点P '坐标;(2)由正方形的性质,结合题意列方程组求解;(3)设点F 的坐标为(,)x y ,根据平移规律列方程组求解.【详解】(1)∵(2,1)P -,5a =,1m =,2n =,∴(251,152)P '⨯+-⨯+∴(11,3)P '-故答案为:(11,3)-;(2)根据题意得:313202a m a m a n -+=-⎧⎪+=⎨⎪⋅+=⎩解得12122a m n ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩即12a =,12m =,2n =; (3)设点F 的坐标为(,)x y ,根据题意得1122122x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩ 解得14x y =⎧⎨=⎩ ∴F 的坐标为()1,4.【点睛】本题主要考察平移变换,关键是掌握坐标系中平移变换与横、纵坐标的变化规律.27.我国古代有这样一个数学问题:以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺,绳长、井深各几何?大意是:用绳测量井深,若将绳子折成三等分(如图1),则一份绳长比并深多5尺;若将绳子折成四等分(如图2),则一份绳长比井深多1尺,求绳长和井深各是多少尺.【答案】绳长是48尺,井深是11尺【解析】【分析】设绳长是x 尺,井深是y 尺,根据绳子折叠后的长度与井深可列写2个方程,然后解二元一次方程可得.【详解】解:设绳长是x 尺,井深是y 尺 依据题意,得5,314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 解这个方程组,得48,11.x y =⎧⎨=⎩苍:绳长是48尺,井深是11尺.【点睛】本题考查二元一次方程的运用,解题关键是将题干中的信息转化为等量关系式,然后列写等量方程.28.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.【答案】(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭【解析】【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论. 【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG 证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠ ∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒ ∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒ ∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.29.为加强爱国主义教育,提高思想道德素质,某中学决定组织部分班级去山西国民师范旧址革命活动纪念馆开展红色旅游活动,在参加此次活动的师生中,若每位教师带17名学生,还剩12名学生没人带;若每位教师带18名学生,就有一位教师少带4名学生.现有甲、乙两种大客车,两种客车的载客量和租金如下表所示.(1)参加此次红色旅游活动的教师和学生各有多少人?(2)为了安全,每辆客车上要有2名教师.则怎样租车可以保证师生均有车坐,而且每辆车上都没有空座,也不超载,此时租车的费用为多少元?【答案】(1)教师有16位,学生有284名;(2)应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元【解析】【分析】(1)设教师有x 位,学生有y 名,根据题意列出方程组即可;(2)由(1)知每辆客车上要有2名教师需1628÷=辆车,设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据学生和老师的总人数列出方程即可,再算出相应的费用.【详解】(1)设教师有x 位,学生有y 名,根据题意,得1712,18 4.x y x y =-⎧⎨=+⎩解,得16,284.x y =⎧⎨=⎩答:教师有16位,学生有284名.(2)1628÷=,需要租8辆车.设学校应租用甲种客车m 辆,乙种客车()8m -辆,根据题意,得()3042828416m m +-=+,解得3m =,85m -=,330054203000⨯+⨯=(元).答:应租用甲种客车3辆,乙种客车5辆,此时租车的费用为3000元.【点睛】本题考查了二元一次方程组、一元一次方程的实际应用,正确寻找等量关系是解题关键.30.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?【答案】每枚黄金重1434两,每枚白银重1174两 【解析】【分析】设每枚黄金重x 两,每枚白银重y 两,根据题意可得等量关系:①9枚黄金重量=11枚白银重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13,解方程即可.【详解】(1)设每枚黄金重x 两,每枚白银重y 两,根据题意,得()()911,10813.x y x y x y =⎧⎨+-+=⎩解得143,4117.4x y ⎧=⎪⎪⎨⎪=⎪⎩答:每枚黄金重1434两,每枚白银重1174两. 【点睛】 本题考查二元一次方程组实际应用,正确找出等量关系是解题关键.。
课题: 8.3 再探实际问题与二元一次方程(3)
教学过程(师生活动)设计理念估时
必做题:教科书116页习题8.3第2、6题。
选做题:教科书117页习题8.3第9题。
备选题:
)一批蔬菜要运往某批发市场,菜农准备租用汽车公
评价与反思
本课是实际问题与二元一次方程组的最后一节课,问题更加贴近现实生活,解决的难度明显加大,为让学生能从总体上把握题意,一方面设计部分思考题引导学生讨论交流,另一方面利用表格将题目中的数量关系清晰的呈现出来,学生踏着这些台阶,一步步找到了解决问题的途径。
由于本课涉及内容丰富,如何突出重点,突破难点成为这节课能否成功的关键,为此,开始先设计一个简单题目做准备,这样的学习过程符合学生的认知规律,能达到学习的目标。