1.4.2正弦函数、余弦函数的性质2
- 格式:ppt
- 大小:668.00 KB
- 文档页数:14
1.4.2 正弦函数、余弦函数的性质(二)课时目标 1.掌握y =sin x ,y =cos x 的最大值与最小值,并会求简单三角函数的值域或最值.2.掌握y =sin x ,y =cos x 的单调性,并能用单调性比较大小.3.会求函数y =A sin(ωx +φ)及y =A cos(ωx +φ)的单调区间.______时,y min =-1一、选择题1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( ) A .第一象限B .第二象限 C .第三象限D .第四象限2.若α,β都是第一象限的角,且α<β,那么( ) A .sin α>sin βB .sin β>sin αC .sin α≥sin βD .sin α与sin β的大小不定 3.函数y =sin 2x +sin x -1的值域为( )A.[]-1,1B.⎣⎡⎦⎤-54,-1 C.⎣⎡⎦⎤-54,1D.⎣⎡⎦⎤-1,54 4.函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π,3π2D.⎝⎛⎭⎫3π2,2π 5.下列关系式中正确的是( ) A .sin 11°<cos 10°<sin 168° B .sin 168°<sin 11°<cos 10° C .sin 11°<sin 168°<cos 10° D .sin 168°<cos 10°<sin 11°6.下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2)B .y =cos(2x +π2)C .y =sin(x +π)D .y =cos(x +π)7.函数y =sin(π+x ),x ∈⎣⎡⎦⎤-π2,π的单调增区间是____________. 8.函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.9.sin1,sin2,sin3按从小到大排列的顺序为__________________.10.设|x |≤π4,函数f (x )=cos 2x +sin x 的最小值是______.三、解答题11.求下列函数的单调增区间.(1)y =1-sin x2;(2)y =log 12(cos2x ).12.已知函数f (x )=2a sin ⎝⎛⎭⎫2x -π3+b 的定义域为⎣⎡⎦⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.能力提升13.已知sin α>sin β,α∈⎝⎛⎭⎫-π2,0,β∈⎝⎛⎭⎫π,32π,则( ) A .α+β>πB .α+β<πC .α-β≥-32πD .α-β≤-32π14.已知函数f (x )=2sin ωx (ω>0)在区间⎣⎡⎦⎤-π3,π4上的最小值是-2,则ω的最小值等于( ) A.23B.32C .2D .31.4.2 正弦函数、余弦函数的性质(二)答案知识梳理R R [-1,1] [-1,1] 奇函数 偶函数 2π 2π [-π2+2k π,π2+2k π](k ∈Z ) [π2+2k π,3π2+2k π] (k ∈Z ) [-π+2k π,2k π] (k ∈Z ) [2k π,π+2k π] (k ∈Z ) x =π2+2k π (k ∈Z ) x =-π2+2k π (k ∈Z ) x =2k π (k ∈Z ) x =π+2k π (k ∈Z )作业设计 1.C 2.D3.C [y =sin 2x +sin x -1=(sin x +12)2-54当sin x =-12时,y min =-54;当sin x =1时,y max =1.]4.C [由y =|sin x |图象易得函数单调递增区间⎣⎡⎦⎤k π,k π+π2,k ∈Z ,当k =1时,得⎝⎛⎭⎫π,32π为y =|sin x |的单调递增区间.]5.C [∵sin168°=sin (180°-12°)=sin12°, cos 10°=sin (90°-10°)=sin 80° 由三角函数线得sin 11°<sin 12°<sin 80°, 即sin 11°<sin 168°<cos 10°.]6.A [因为函数周期为π,所以排除C 、D.又因为y =cos(2x +π2)=-sin 2x 在⎣⎡⎦⎤π4,π2上为增函数,故B 不符合.故选A.] 7.⎣⎡⎦⎤π2,π 8.[0,2]解析 ∵-π6≤x ≤π6,∴0≤2x +π3≤2π3.∴0≤sin(2x +π3)≤1,∴y ∈[0,2]9.b <c <a解析 ∵1<π2<2<3<π,sin(π-2)=sin 2,sin(π-3)=sin 3.y =sin x 在⎝⎛⎭⎫0,π2上递增,且0<π-3<1<π-2<π2, ∴sin(π-3)<sin 1<sin(π-2),即sin 3<sin 1<sin 2. ∵b <c <a . 10.1-22解析 f (x )=cos 2x +sin x =1-sin 2x +sin x=-(sin x -12)2+54∵|x |≤π4,∴-22≤sin x ≤22.∴当sin x =-22时,f (x )min =1-22. 11.解 (1)由2k π+π2≤x 2≤2k π+32π,k ∈Z ,得4k π+π≤x ≤4k π+3π,k ∈Z .∴y =1-sin x2的增区间为[4k π+π,4k π+3π] (k ∈Z ).(2)由题意得cos2x >0且y =cos2x 递减.∴x 只须满足:2k π<2x <2k π+π2,k ∈Z .∴k π<x <k π+π4,k ∈Z .∴y =log 12(cos2x )的增区间为⎝⎛⎫k π,k π+π4,k ∈Z . 12.解 ∵0≤x ≤π2,∴-π3≤2x -x 3≤23π,∴-32≤sin ⎝⎛⎭⎫2x -π3≤1,易知a ≠0. 当a >0时,f (x )max =2a +b =1, f (x )min =-3a +b =-5.由⎩⎪⎨⎪⎧ 2a +b =1-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63b =-23+123. 当a <0时,f (x )max =-3a +b =1, f (x )min =2a +b =-5.由⎩⎪⎨⎪⎧ -3a +b =12a +b =-5,解得⎩⎪⎨⎪⎧a =-12+63b =19-123. 13.A [∵β∈⎝⎛⎭⎫π,32π, ∴π-β∈⎝⎛⎭⎫-π2,0,且sin(π-β)=sin β. ∵y =sin x 在x ∈⎝⎛⎭⎫-π2,0上单调递增, ∴sin α>sin β⇔sin α>sin(π-β) ⇔α>π-β⇔α+β>π.]14.B [要使函数f (x )=2sin ωx (ω>0)在区间[-π3,π4]上的最小值是-2,则应有T 4≤π3或34T ≤π4,即2π4ω≤π3或6πω≤π,解得ω≥32或ω≥6. ∴ω的最小值为32,故选B.]。