专题16 空间角(教师版)
- 格式:doc
- 大小:2.12 MB
- 文档页数:10
专题(三)空间角主干知识整合:立体几何的空间角度中,对三种角度的求解与性质的探究,属于高考永恒的话 题 经典真题感悟:1. (07全国U ?理? 7题)已知正三棱柱ABC- A 1B 1C 1的侧棱长与底面边长相等, 则AB 与侧面ACCA i 所成角的正弦等于(A )O 在二面角- AB 一 ■-的棱上,点P 在〉内,且 ■ POB =45。
若对于1内异于0的任意一点Q,都有.POQ _45,则二面角 a _ AB - B 的大小是 _____ 90 ____ 。
3. (07广东?理? 19题)如图6所示,等腰△ ABC 的底边AB=6,6,高CD=3,点B 是线段BD 上异于点B D 的动点.点F 在BC 边上,且EF 丄AB 现沿EF 将厶BEF 折起到△ PEF 的位置,使PE 丄人&记BE= x ,V(x)表示四棱锥P- ACFE 勺体积(I)求V(x)的表达式;(U)当x 为何值时,V(x)取得最大值?(E)当V(x)取得最大值时,求异面直线AC 与 PF 所成 角的余弦值;解:1)由折起的过程可知,PE!平面ABC S 启BC =9虏,V(x)=6x(9 —丄 x 2) ( 0 :::X ::3.6 ) 3 12(2) V'(x)」(9-丄x 2),所以 x (0,6)时,v'(x) 0 ,V(x)单调递增;6 ::X ::3.634时v'(x) <0 ,V(x)单调递减;因此x=6时,V(x)取得最大值12、6 ;(3)过 F 作 MF//AC 交 AD 与 M,则驰=匪二业 B ^,MB "BE =12,PM=6 2, AB BC BD 1 ADAB在厶PFM 中, cos PFM 二址坐,二异面直线AC 与PF 所成角的余弦值为-;4277热点考点探究:2x 2 54S BDC■^6 2x122 (07浙江?理? 16题)已知点 逅J 54 +9 =辰3MF 二BF 二PF考点一:异面直线所成的角——空间角的最小元素•••/ ACE=90,即AC 和BD 所成的角为90° .直线与直线所成角是立体几何的所成角(线线角、线面角、面面角)中最简 单的一种,只需要把两条直线(或其中一条直线)平移,使它们相交于一点,就 可以把两条异面直线所成角的问题转变为平面中两条相交直线所夹角的问题了 .要注意的是角的取值范围,分清那个角是这两条直线的所成角(或者它的补角). 其范围是0,=〔 \、2」【例1】如图(1)所示,在空间四边形已知AD=1, BD呼,AC撐,求 AC 和结EF 、FH HG GE GF.由三角形中位线定理知,AB BD 的中点E 、F 、G H,连 .QEF// AC,且 EF4 , GE/ BD4且GE 』.4GE 和 EF 所成的锐角(或直角)就是 同理,GH 」,HF 3 , GH/ AD,2 2又 AD L BC,二 GHF =90 .2 2 2二 GF 2二 GH 2HF 2=1.在^ EFG 中, EG 2EF 2=1 =GF 2, ••• • GEF =90,即AC 和BD 所成的角为90 .【解析2】如图(3),在平面BCD 内,过C 作CE// BD ,且 CE=BD 连 DE 贝U DE// BC 且 DE=BC. •••/ ACE 就是AC 和BD 所成的角(若/ ACE 为钝角, 则/ACE 的补角就是AC 和 BD 所成的角). " 又 AD L BC,A AD L DE.2 2 2• •• AE 二 AD DE =4.D 图(3)在^ACE 中, AC 2 CE 2【点评】求异面直线所成的角常采用“平移线段法”.平移的方法一般有下面三【点评】 求直线与平面所成的角常利用射影转化为相交直线所成的角 考点三:二面角 用平面角来量度面面成角是立体几何中的所成角问题的重点,二面角的两个面是两个半平面,因 此二面角中有钝角存在,二面角的取值范围与线线角、线面角不同,它的取值范围是 【0,二】.二面角的大小往往转化为其平面角的大小, 从而又化归为三角形的内角大小求解, 以利用平面几何、三角函数等重要知识.【例3】在棱长为a 的正方体ABC —A B' C D 中,E 、F 分别是BC A D 的中点.种类型:利用图有已有的平行线平移;利用特殊点(线段的端点或中点)作平行线平 移;补形平移,计算异面直线所成的角通常放在三角形中进行 •考点二:线面角——直线与射影的夹角为主体 直线与平面所成的角分两种,一是平面的斜线与平面所成的锐角,即斜线与 平面内的射影所夹的角;二是平面的垂线与平面所成的直角 .直线与平面所成角 不存在补角的问题•直线与平面成角的范围是 0,】.1 2」 【例2】 如图(4),在三棱锥P — ABC 中,AB 丄BC, AB= BC= kPA 点O D 分别是AC PC 的中点, OPL 底面ABC (I )求证:OD/平面PAB1(II )当k =丄时,求直线PA 与平面PBC 所成角的大小.2【解析】(I ):O D 分别为AC PC 的中点: ••• OD/ PA,又 AC 平面 PAB,(4)••• OD/ 平面 PAB. (I ) T AB 丄 BC,OA=OC, ••• OA=OC=OB,又••• OPL 平面 ABC, PA =PB=PC.取BC 中点E,连结PE,则BC L 平面POE 作OF L PE 于F,连结DF,则OF L 平面PBC•••/ ODF 是 OC 与平面PBC 所成的角.又OD/ PA,. PA 与平面PBC 所成角的大小等于/ ODF.在 Rt △ ODF 中 ,sin/ ODF 匹隹,OD 30 .PA 与平面PBC 所成角为arcsin30图(6)⑴求证:四边形B' EDF是菱形;⑵求直线A,C与DE所成的角;⑶求直线AD与平面B,EDF所成的角;⑷求面B' EDF与面ABCD所成的角.【解析】⑴ 证明:如上图所示,由勾股定理,得B' E=ED=DF=FB'=兰a,2 下证B'、E、D、F四点共面,取AD中点G,连结A G EG 由E翼A諾A B'知,B' EGA是平行四边形.••• B1 E// A G又A F ^DG:A GDF为平行四边形.••• A G// FD,.・.B'、E、D F 四点共面故四边形B' EDF是菱形.⑵解:如图(7)所示,在平面ABCD内,过C作CP// DE交直线AD于P,图(7)则/A CP或补角)为异面直线A C与DE所成的角.在厶A CP中,易得A C= 3 a,CP=DE=Va,A' P=』a 2 2由余弦定理得cosA' CP=』15故A C与DE所成角为arccos上15 .15(3)解:〈ADE/ADF二AD在平面B,EDF内的射影在/ EDF的平分线上.•一如下图所图(8)又••• B' EDF为菱形,二DB为/ EDF的平分线, 故直线AD与平面B,EDF所成的角为/ ADB在Rt △ B' AD 中,AD=_2a, AB =, 2 a, B' D=_2 a:3贝U cosADB 亠3故AD与平面B ' EDF所成的角是arccos 3.3⑷解:如图,连结EF、B' D,交于0点,显然O为B' D的中点,从而O 为正方形ABC—A B' C D的中心.图(9)作OH L平面ABCD贝U H为正方形ABCD勺中心,再作HM L DE,垂足为M,连结OM贝U OM L DE, 故/OM为二面角B'—DE —A的平面角.在Rt△ DOE中, OE=空a, OD=-^a,斜边DE^-^ a,2 2 2则由面积关系得O博0D空30 aDE 10在Rt△ OHM中, sinOM日如=旦OM 6故面B' EDF与面ABCD所成的角为arcsin二0 .6【点评】对于第⑴ 问,若仅由B' E=ED=DF=FB'就断定B' EDF是菱形是错误的,因为存在着四边相等的空间四边形,必须证明B'、E、D F四点共面.求线面角关键是作垂线,找射影,求异面直线所成的角采用平移法•求二面角的大小也可应用面积射影法.考点四:探索性问题例4.如图,在三棱锥A— BCD中,侧面ABD, ACD是全等的直角三角形,AD是公共的斜边,且AD =、、3, BD二CD =1,另一个侧面是正三角形,在线段AC上是否存在一点E,使ED与面BCD成30角,若存在,确定请说明理由。
专题25.1 空间向量方法--空间的角(精讲精析篇)提纲挈领点点突破热门考点01 异面直线所成的角1.两条异面直线所成的角①定义:设a,b是两条异面直线,过空间任一点O作直线a′∥a,b′∥b,则a′与b′所夹的锐角或直角叫做a与b所成的角.②范围:两异面直线所成角θ的取值范围是(0,2π.③向量求法:设直线a,b的方向向量为a,b,其夹角为φ,则有cos|cos|||||||a ba bθϕ⋅==⋅r rr r.【典例1】(2018·全国高考真题(理))在长方体1111ABCD A B C D-中,1AB BC==,13AA则异面直线1AD与1DB所成角的余弦值为( )A.15B5C5D2【典例2】(2019·广西高考模拟(理))在直三棱柱111ABC A B C-中,3,3,32AC BC AB===14AA=,则异面直线1A C与1BC所成角的余弦值为__________.【总结提升】向量法求两异面直线所成角的步骤(1)选好基底或建立空间直角坐标系;(2)求出两直线的方向向量v1,v2;(3)代入公式|cos 〈v 1,v 2〉|=|v 1·v 2||v 1||v 2|求解.提醒:两异面直线所成角θ的范围是⎝⎛⎦⎥⎤0,π2,两向量的夹角α的范围是[0,π],当两异面直线的方向向量的夹角为锐角或直角时,就是这两条异面直线所成的角;当两异面直线的方向向量的夹角为钝角时,其补角才是两异面直线所成的角.热门考点02 直线与平面所成角1.直线和平面所成角的求法:如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|e ·n ||e ||n |.【典例3】(2018·江苏高考真题)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.【典例4】(2020·天水市第一中学高三月考(理))如图,在三棱柱ABC A B C '''-中,已知CC '⊥平面ABC ,90ACB ∠=o ,3BC =,4AC CC ='=.(1) 求证:AC A B '⊥';(2) 求直线CC '与平面ABC '所成角的正弦值. 【规律方法】利用向量法求线面角的方法(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); (2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.热门考点03 二面角1.求二面角的大小(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图2、3,12,n n u r u u r分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=<>(或12,n n π-<>).【典例5】(2019年高考全国Ⅲ卷理)图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°,将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ; (2)求图2中的二面角B −CG −A 的大小.【典例6】(2017·北京高考真题(理))如图,在四棱锥P ABCD -中,底面ABCD 为正方形,平面PAD ⊥平面ABCD ,点M 在线段PB 上,PD P 平面MAC ,6PA PD ==4AB =.(1)求证:M 为PB 的中点; (2)求二面角B PD A --的大小;(3)求直线MC 与平面BDP 所成角的正弦值. 【规律方法】利用向量法计算二面角大小的常用方法(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小.但要注意结合实际图形判断所求角的大小.(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.热门考点04 空间角有关的探索性问题【典例7】(2019·浙江高二期中)如图所示的几何体中,PD 垂直于梯形ABCD 所在的平面,,2ADC BAD F π∠=∠=为PA 的中点,12,12PD AB AD CD ====,四边形PDCE 为矩形,线段PC 交DE 于点N .(1)求证:AC P 平面DEF ; (2)求二面角A PB C --的正弦值;(3)在线段EF 上是否存在一点Q ,使得BQ 与平面BCP 所成角的大小为π6?若存在,求出FQ 的长;若不存在,请说明理由.【典例8】(2019·河北名校联盟模拟)如图所示,在梯形ABCD 中,AB ∥CD,AD =DC =CB =1,∠BCD =120°,四边形BFED 是以BD 为直角腰的直角梯形,DE =2BF =2,平面BFED ⊥平面ABCD.(1)求证:AD⊥平面BFED.(2)在线段EF上是否存在一点P,使得平面P AB与平面ADE所成的锐二面角的余弦值为5728?若存在,求出点P的位置;若不存在,说明理由.【总结提升】与空间角有关的探索性问题主要为与两异面直线所成的角、直线与平面所成的角和二面角有关的存在性问题,常利用空间向量法求解.求解时,一般把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等问题,并注意准确理解和熟练应用夹角公式.其步骤是:(1)假设存在(或结论成立);(2)建立空间直角坐标系,设(求)出相关空间点的坐标;(3)构建有关向量;(4)结合空间向量,利用线面角或二面角的公式求解;(5)作出判断.热门考点05 利用向量求空间距离1.空间向量的坐标表示及运算(1)数量积的坐标运算设a=(a1,a2,a3),b=(b1,b2,b3),则①a±b=(a1±b1,a2±b2,a3±b3);②λa=(λa1,λa2,λa3);③a·b=a1b1+a2b2+a3b3.(2)共线与垂直的坐标表示设a=(a1,a2,a3),b=(b1,b2,b3),则a∥b⇔a=λb⇔a1=λb1,a2=λb2,a3=λb3(λ∈R),a⊥b⇔a·b=0⇔a1b1+a2b2+a3b3=0(a,b均为非零向量).(3)模、夹角和距离公式设a=(a1,a2,a3),b=(b1,b2,b3),则|a |=a·a =a 21+a 22+a 23,cos 〈a ,b 〉=a·b |a||b|=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 23. 设A (a 1,b 1,c 1),B (a 2,b 2,c 2), 则222212121||()()()ABd AB a a b b c c ==-+-+-u u u r.2. 点面距的求法如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离d =|AB →·n ||n |.【典例9】(2019·安徽高考模拟(理))在棱长为2的正方体1111ABCD A B C D -中,E ,F 分别为棱1AA 、1BB 的中点,M 为棱11A B 上的一点,且1(02)A M λλ=<<,设点N 为ME 的中点,则点N 到平面1D EF的距离为( )A.3λB.2C.2λ D.5 【典例10】设正方体的棱长为2,则点到平面的距离是( )A. B. C. D.【典例11】(2018·四川省广安石笋中学校高考模拟(理))如图,在棱长为2的正方体中,M是线段AB 上的动点.证明:平面;若点M 是AB 中点,求二面角的余弦值;判断点M 到平面的距离是否为定值?若是,求出定值;若不是,请说明理由.【总结提升】1.点到平面的距离,利用向量法求解比较简单,它的理论基础仍出于几何法,如本题,事实上,作BH ⊥平面CMN 于H .由BH →=BM →+MH →及BH →·n =n ·BM →,得|BH →·n |=|n ·BM →|=|BH →|·|n |,所以|BH →|=|n ·BM →||n |,即d =|n ·BM →||n |.2.利用法向量求解空间线面角、面面角、距离等问题,关键在于“四破”:①破“建系关”,构建恰当的空间直角坐标系;②破“求坐标关”,准确求解相关点的坐标;③破“求法向量关”,求出平面的法向量;④破“应用公式关”.巩固提升1.(2019·四川高二期中(文))已知正方体1111ABCD A B C D 中,E ,F 分别为1BB ,1CC 的中点,那么异面直线AE ,1D F 所成角的余弦值为( ) A .45B .35C .23D .572.(2019·福建高二月考)设动点P 在棱长为1的正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,记11D PD B=λ.当∠APC 为钝角时,λ的取值范围是________.3.(2019·浙江高三期中)如图,已知三棱台111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=o ,30BAC ∠=o ,11114AA CC BC AC ====,,E F 分别是11,ACBC 的中点.(1)证明:BC EF ⊥(2)求直线EB 与平面11BCC B 所成角的正弦值.4.(2018·全国高考真题(理))如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.5.(2019·首都师范大学附属中学高二期中)如图,在四棱锥P ABCD -中,PB ⊥底面ABCD ,底面ABCD 为梯形,AD BC ∥,AD AB ⊥,且3PB AB AD ===,1BC =.(1)若点F 为PD 上一点且13PF PD =,证明:CF P 平面PAB .(2)求二面角B PD A --的大小.6.(2018·北京高考真题(理))如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G 分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC =5,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B −CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交.7.(2020·江苏淮阴中学高三期中)直三棱柱111ABC A B C -中, AB AC ⊥, 2AB =, 4AC =,12AA =, BD DC λ=u u u r u u u r .(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.8.(2017·江苏高考真题) 如图,在平行六面体ABCD -A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值; (2)求二面角B -A 1D -A 的正弦值.9. (2019·江苏高三期中)如图,正三棱柱111ABC A B C -的所有棱长均为2,点E 、F 分别在棱1AA 、1BB 上移动,且1AE AA λ=u u u r u u u r ,1(1)BF BB λ=-u u u r u u u r .(1)若12λ=,求异面直线CE 与1C F 所成角的余弦值; (2)若二面角A EF C --的大小为θ,且25sin θ=,求λ的值. 10.(2019·福建高二月考)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,棱长为2,M ,N 分别为A 1B ,AC 的中点.(1)证明:MN //B 1C ;(2)求A 1B 与平面A 1B 1CD 所成角的大小.11.(2019·天津高考真题(理))如图,AE ⊥平面ABCD ,,CF AE AD BC ∥∥,,1,2AD AB AB AD AE BC ⊥====.(Ⅰ)求证:BF ∥平面ADE ;(Ⅱ)求直线CE 与平面BDE 所成角的正弦值;(Ⅲ)若二面角E BD F --的余弦值为13,求线段CF 的长. 12.(2018·上海交大附中高二月考)如图,在三棱柱111ABC A B C -中,11AAC C 边长为8的正方形,6AB =,110BC A B ==(1)求证:1AA ⊥平面ABC ;(2)求二面角111A BC B --的余弦值;(3)证明:在线段1BC 上存在点D ,使得1AD A B ⊥,并求1BD BC 的值. 13.(2019·湖北高三期中(理))如图,四棱锥P ABCD -中,PA ⊥平面ABCD ,//AD BC ,AB AD ⊥,222AD AB BC ===,2PA =,点M 满足2MD PM =u u u u r u u u u r.(1)求证://PB 平面MAC ;(2)求直线PC 与平面MAC 所成角的正弦值.14.(2019·河北唐山一中高三期中(理))如图,在三棱柱111ABC A B C -中,122AA AB ==,13BAA π∠=,D 为1AA 的中点,点C 在平面11ABB A 内的射影在线段BD 上.(1)求证:1B D ⊥平面CBD ;(2)若BCD ∆是正三角形,求二面角1C BD C --的余弦值.15.(2019·宁夏银川一中高三月考(理))如图,在四棱锥S ABCD -中,侧棱SA ⊥底面ABCD ,底面ABCD 是直角梯形,AD ∥BC ,AB AD ⊥,且2SA AB BC ===,1AD =,M 是棱SB 的中点 .(Ⅰ)求证:AM ∥平面SCD ;(Ⅱ)求平面SCD 与平面SAB 所成锐二面角的余弦值;(Ⅲ)设点N 是线段CD 上的动点,MN 与平面SAB 所成的角为θ,求sin θ的最大值.16.(2019·安徽高三期末(文))如图,在四棱锥P ABCD -中,AC BD ⊥交于点O ,ABC 90=o V ,AD CD =,PO ⊥底面ABCD .()1求证:AC⊥底面PBD;()2若PBCV是边长为2的等边三角形,求O点到平面PBC的距离.。
2023年高考数学----空间角问题规律方法与典型例题讲解【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D −中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11AC 所成的角为θ,则cos θ的取值范围为( )A .⎡⎢⎣⎦B .⎤⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦【答案】C【解析】如图1,设1B D 与平面1ACD 相交于点E ,连接BD 交AC 于点O ,连接11B D , ∵1BB ⊥平面ABCD ,AC ⊂平面ABCD ,则1BB AC ⊥,AC BD ⊥,1BD BB B ⋂=,1,BD BB ⊂平面11BDD B∴AC ⊥平面11BDD B ,由1B D ⊂平面11BDD B ,则1AC B D ⊥, 同理可证:11AD B D ⊥, 1AD AC A =,1,AD AC ⊂平面1ACD ,∴1B D ⊥平面1ACD ,∵111111AC AD CD AB B D B C =====,由正三棱锥的性质可得:E 为1ACD △的中心, 连接1OD ,∵O 为AC 的中点,∴1OD 交1B D 于点E ,连接PE ,由1B D ⊥平面1ACD ,PE ⊂平面1ACD ,则1B D PE ⊥,即PE 是1PB D 的高,设AB a =,PE d =,则1,B D AC =,且1ACD △的内切圆半径r OE ==,则1112PB D S B D PE =⋅=△,))1212ACD S =⨯=△,∵1113PB DACD S S =△△213=,则13d a r =<, ∴点P 的轨迹是以E 为圆心,13a 为半径的圆.∵1B D ⊥平面1ACD ,1OD ⊂平面1ACD ,则11B D OD ⊥,∴DE , 故PD 为底面半径为13a,高为=DE 的圆锥的母线,如图2所示,设圆锥的母线与底面所成的角α,则3tan 13a α== 所以π3α=,即直线PD 与平面1ACD 所成的角为π3. 直线AC 在平面1ACD 内,所以直线PD 与直线AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,因为11AC AC ∥,所以直线PD 与直线11AC 所成角的取值范围为ππ,32⎡⎤⎢⎥⎣⎦,即ππ,32θ⎡⎤∈⎢⎥⎣⎦, 所以10cos 2θ≤≤. 故选:C.例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C −−的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤ D .11A BC A DC θ∠+∠≥【答案】C【解析】等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,可知:30,ACB ACD BD DC ∠=∠=⊥取BD 中点N ,BC 中点M 连接1,A N NM ,则1A N BD ⊥,NM BC ⊥,所以1A NM ∠为 二面角1A BD C −−的平面角,即1A NM θ∠=设122AB AD CD BC ====,则1111,1,2,2A N MN A B A D ==== 2222211111111cos 1222A N NM A M A M A M A N NM θ+−+−∴===−⋅,2222222111111221cos 122228A B BM A M A M A BC A M A B BM +−+−∴∠===−⋅⨯⨯,因为在[]0,π上余弦函数单调递减,又2211111111cos cos 82A M A M A BC A BC θθ−≥−⇒∠≥⇒∠≤,故A 对. 2222222111111221cos 122228A D DC AC AC A DC AC A D CD +−+−∴∠===−⋅⨯⨯222122221111153cos 2416AC AO OC AC AOC AC AO OC +−+−∴∠===−⋅ 当0θ=时,1A 与M 重合,此时160A DC ∠=,故C 不对. 1A DC ∠在翻折的过程中,角度从120减少到60 1AOC ∠在翻折的过程中,角度从180减少到30BD 选项根据图形特征及空间关系,可知正确.. 故选:C例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,BC D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①tan βα,②γβ≤,③γα>. A .① B .①② C .②③ D .①③【答案】B 【解析】如图,设直线BN 与直线CM 垂直相交于点N ,在折叠图里,线段B T '与平面ACM 垂直相交于点T ,,(0,30)BCM θθ∠=∈,由图像知:;B NT B MT αβ''∠=∠=,B N BN θ==', ()sin ;/sin 30B T B M θαθθ=*='︒+',cos NT θα*,()tan 60MN θθ=*︒−,()()2sin 30CM θ=︒+,①tan β==,tan β=≤≤,所以tan βα;② ()Δ1sin 902ACM S CM CA θ=*︒−= 设ACB δ∠'=,则()()()2cos cos cos 90sin sin 90cos cos 0.5sin2δθθθθααθ=*︒−+*︒−=*,Δsin ACB S δ'== 由ΔΔ1133ACM M ACB ACB B T S d S −''**=**',得M ACB d −'=()sin sin 30sin M ACB d B TMC B M γβθα'−====︒+*'',则()()sin sin 2tan 21sin 2sin 30cos 22sin 30γθθβθθθ=≤=≤︒+︒+, 由sin sin γβ≤得γβ≤; ③sin sin sin γγα=⇒,则sin sin 2tan 2sin 2cos 22γθθαθ≤=<sin γα<,所以sin sin γα<,则γα<.故选:B例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B −−的平面角为α,二面角P FC B −−的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥【答案】A【解析】在等边ABC 中,取BC 边中点D ,连接AD ,交EF 于O ,连接PO , 则,EF PO EF DO ⊥⊥,=PO DO O ⋂,PO ⊂平面POD ,DO ⊂平面POD 故EF ⊥平面POD ,又EF ⊂平面EFCB ,则平面POD ⊥平面EFCB 在POD 中,过P 做PM 垂直于OD 于M ,则PM ⊥平面EFCB ,连接MF , 在等边ABC 中,过M 做MN 垂直于AC 于N ,连接PN.由,EF PO EF DO ⊥⊥,则POM ∠为二面角P EF B −−的平面角即POM α∠=, 由PM ⊥平面EFCB ,MN AC ⊥,则PNM ∠为二面角P FC B −−的平面角即PNM β?由PM ⊥平面EFCB ,则PFM ∠直线PF 与平面EFCB 所成角,即PFM γ?,设AO ,则PO ,=FO a ,sin PM α,cos MO αFM ,)1=cos (1cos )2MN αα+=+, 则有FM OM >,FM NM >由cos MO MN α-(1cos )(cos 1)0αα-+=-<可得MO MN <,则有FM MN OM >>,则111FM MN OM<< 又tan tan ,tan PM PM PMOM NM FMαβγ,=== 故tan tan tan αβγ>>,又0,2παβγ⎛⎫∈ ⎪⎝⎭、、故αβγ>> 故选:A例23.(2022·全国·高三专题练习)设三棱锥V ABC −的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B −−的平面角是γ则三个角α,β,γ中最小的角是( ) A .α B .β C .γD .不能确定【答案】B【解析】如图,取BC 的中点 D ,作VO ⊥平面ABC 于点O , 由题意知点O 在AD 上,且AO =2OD .作PE //AC ,PE 交VC 于点E ,作PF ⊥AD 于点F ,连接BF ,则PF ⊥平面ABC 取AC 的中点M ,连接BM ,VM ,VM 交 PE 于点H , 连接BH ,易知BH ⊥PE , 作于点G ,连接FG ,由PG ⊥AC ,PF ⊥AC ,PG PF =P ,由线面垂直判定定理可得AC ⊥平面PGF ,又FG ⊂平面PGF ∴ FG ⊥AC , 作FN ⊥BM 于点N . ∵ PG ∥VM ,PF ∥VN∴ 平面PGF ∥平面VMB , 又 PH ∥FN , 四边形PFNH 为平行四边形, 所以PH =FN因此,直线PB 与直线AC 所成的角=BPE α∠, 直线PB 与平面ABC 所成的角PBF β=∠, 二面角P -AC -B 的平面角PGF γ=∠, 又cos cos PH FN BFPB PB PBαβ==<=又,[0,]2παβ∈,∴ αβ> 因为 tan =tan PF PFGF BF γβ>= ,(0,)2πβγ∈∴ γβ>综上所述,,,αβγ中最小角为β,故选 B.。
【压轴必刷】2023年中考数学压轴大题之经典模型培优案专题16三角形之飞镖模型模型1:角的飞镖模型如图所示,有结论:∠D=∠A+∠B+∠C.模型2:边的飞镖模型如图所示有结论:AB+AC> BD+CD.模型分析如图,延长BD交AC于点E。
∵AB+AC=AB+AE+EC,AB+AE>BE,∴AB+A C>BE+EC.①,∵BE+EC=BD+DE+EC, DE+EC> CD,∴BE+EC>BD+CD. ②,由①②可得:AB+AC>BD+CD.C图①【例1】平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB,CD内部,则∠BPD,∠B,∠D之间有何数量关系?请说明你的结论.(2)在图1中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图2,则∠BPD,∠B,∠D,∠BQD之间的关系为;(3)根据(2)的结论求图3中∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数.【例2】(2019秋•吉州区期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.【例3】(2022春•乐平市期末)在△ABC中,两条高BD、CE所在的直线相交于点O.(1)当∠BAC为锐角时,如图1,求证:∠BOC+∠BAC=180°.(2)当∠BAC为钝角时,如图2,请在图2中画出相应的图形(用三角尺),并回答(1)中结论是否成立?不需证明.【例4】(2022春•衡山县期末)Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.一.选择题1.(2020春•沙坪坝区校级期中)如图,△ABC中,∠A=30°,D为CB延长线上的一点,DE⊥AB于点E,∠D=40°,则∠C为()A.20°B.15°C.30°D.25°2.(2010•武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是()A.100°B.80°C.70°D.50°3.(2010•南昌)如图,⊙O中,AB、AC是弦,O在∠BAC的内部,∠ABO=α,∠ACO=β,∠BOC=θ,则下列关系式中,正确的是()A.θ=α+βB.θ=2α+2βC.θ+α+β=180°D.θ+α+β=360°二.解答题(共20小题)4.(2022•雁塔区模拟)如图,在四边形ABCD中,AB∥CD,点E为对角线BD上一点,且BE=BC,∠F=∠ABD,EF交BC的延长线于点F.求证:FB=DB.5.(2020春•如东县期末)探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=54°,则∠ABX+∠ACX=°;②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=α,∠DBE=β,请直接写出∠DCE的度数(用含α和β的式子表示);③如图4,∠ABD,∠ACD的12等分线相交于点G1、G2…、G11,若∠BDC=115°,∠BG1C=60°,求∠A的度数.6.(2019秋•建平县期末)探究与发现:如图(1)所示的图形,像我们常见的学习用品一圆规,我们,不妨把这样图形叫做“规形图(1)观察“规形图(1)”,试探究∠BDC与∠A、∠B、∠C之间的数量关系,并说明理由;(2)请你直接利用以上结论,解决以下问题:①如图(2),把一块三角尺XYZ放置在△AC上使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=40°,则∠ABX+∠ACX=°.②如图(3),DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数.7.(2019秋•陈仓区期末)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD内部,∠B=50°,∠D=30°,求∠BPD.(2)如图2,将点P移到AB、CD外部,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论.(3)如图3,写出∠BPD、∠B、∠D、∠BQD之间的数量关系?(不需证明)(4)如图4,求出∠A+∠B+∠C+∠D+∠E+∠F的度数.8.(2019•锦江区模拟)在四边形ABCD中,点E,F分别是边AB,AD上的点,连接CE,CF并延长,分别交DA,BA的延长线于点H,G.(1)如图1,若四边形ABCD是菱形,∠ECF=∠BCD,求证:AC2=AH•AG;(2)如图2,若四边形ABCD是正方形,∠ECF=45°,BC=4,设AE=x,AG=y,求y与x的函数关系式;(3)如图3,若四边形ABCD是矩形,AB:AD=1:2,CG=CH,∠GCH=45°,请求tan∠AHG的值.9.(2017春•郫都区期中)平面内的两条直线有相交和平行两种位置关系.(1)如图①,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是∠POD的外角,故∠BOD=∠BPD+∠D得∠BPD=∠B﹣∠D,将点P移到AB、CD内部,如图②,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图②中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图③,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求图④中∠A+∠B+∠C+∠D+∠E的度数.10.(2017春•鼓楼区校级期中)我们容易证明,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?尝试探究:(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间的数量关系.初步应用:(2)如图2,在△ABC纸片中剪去△CED,得到四边形ABDE,∠1=135°,则∠2﹣∠C=.(3)解决问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请利用上面的结论直接写出答案.(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB,请利用上面的结论探究∠P 与∠A、∠D的数量关系.11.(2016春•门头沟区期末)在一次空间与图形的学习中,小明遇到了下面的问题:如图1,若AB∥CD,点P在AB、CD内部,探究∠B,∠D,∠BPD的关系.小明只完成了(1)的部分证明,请你根据学习《观察猜想与证明》的学习经验继续完成(1)的证明并在括号内填入适当的理论依据同时完成(2)﹣(3).(1)过点P作PE∥AB.∵PE∥AB,AB∥CD∴∥∴∠D=又∵PE∥AB∴∠B=∠BPE∴∠BPD=.(2)如图2,若AB∥CD,点P在AB、CD外部,∠B,∠D,∠BPD的关系是否发生变化?若发生变化请写出它们的关系,并证明;若没有发生变化,请说明理由.(3)如图3,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(直接写出结果)12.(2016春•盐都区期中)【课本拓展】我们容易证明,三角形的一个外角等于它不相邻的连个内角的和,那么,三角形的一个内角与它不相邻的两个外角的和之间存在怎样的数量关系呢?【尝试探究】(1)如图1,∠DBC与∠ECB分别为△ABC的两个外角,试探究∠A与∠DBC+∠ECB之间存在怎样的数量关系?为什么?【初步应用】(2)如图2,在△ABCA纸片中剪去△CED,得到四边形ABDE,∠1=130°,则∠2﹣∠C=;(3)小明联想到了曾经解决的一个问题:如图3,在△ABC中,BP、CP分别平分外角∠DBC、∠ECB,∠P与∠A有何数量关系?请直接写出结论.【拓展提升】(4)如图4,在四边形ABCD中,BP、CP分别平分外角∠EBC、∠FCB、∠P与∠A、∠D有何数量关系?为什么?(若需要利用上面的结论说明,可直接使用,不需说明理由)13.(2014春•萧山区期中)同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,我们过点P作AB、CD的平行线PE,则有AB∥CD ∥PE,故∠B=∠BPE,∠D=∠DPE,故∠BPE=∠BPD+∠DPE,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,利用(1)中的结论(可以直接套用)求∠BPD、∠B、∠D、∠BQD之间有何数量关系?(3)设BF交AC于点P,AE交DF于点Q.已知∠APB=130°,∠AQF=110°,利用(2)的结论直接写出∠B+∠E+∠F的度数为度,∠A比∠F大度.14.(2012春•清浦区校级期中)同学们都知道,平面内两条直线的位置关系只有相交和平行两种.已知AB∥CD.如图1,点P在AB、CD外部时,由AB∥CD,有∠B=∠BOD,又因为∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.(1)已知AB∥CD.如图2,点P在AB、CD内部时,上述结论是否成立?若不成立,则∠BPD、∠B、∠D之间有何数量关系?请你说明你的结论;(2)在图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?说明理由;(3)利用第(2)小题的结论求图4中∠A+∠B+∠C+∠D+∠E+∠F的度数.15.(2010春•中卫校级期末)如图1,在∠A内部有一点P,连接BP、CP,请回答下列问题:①求证:∠P=∠1+∠A+∠2;②如图2,利用上面的结论,你能求出五角星五个“角”的和吗?③如图3,如果在∠BAC间有两个向上突起的角,请你根据前面的结论猜想∠1、∠2、∠3、∠4、∠5、∠A之间有什么等量关系,并说明理由.16.(2010•玉溪)平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.17.(2009春•无为县校级期末)星期天,小明见爸爸愁眉苦脸在看一张图纸,他便悄悄地来到爸爸身边,想看爸爸为什么犯愁.爸爸见到他,高兴地对他说:“来帮我一个忙,你看这是一个四边形零件的平面图,它要求∠BDC等于140°才算合格,小明通过测量得∠A=90°,∠B=19°,∠C=40°后就下结论说此零件不合格,于是爸爸让小明解释这是为什么,小明很轻松地说出了原因,并用如下的三种方法解出此题.请你代小明分别说出不合格的理由.(1)如图1,连接AD并延长.(2)如图2,延长CD交AB于E.(3)如图3,连接BC.18.(2008•莆田)平面内的两条直线有相交和平行两种位置关系.(1)如图1,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D.得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图2,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在如图2中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图3,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求如图4中∠A+∠B+∠C+∠D+∠E的度数.19.(2008春•三明期末)探究与思考:(1)如图①,∠BPC是△ABP的一个外角,则有结论:∠BPC=∠A+∠B成立.若点P沿着线段PB 向点B运动(不与点B重合),连接PC形成图形②,我们称之为“飞镖”图形,那么请你猜想“飞镖”图形中∠BPC与∠A、∠B、∠C之间存在的数量关系?并证明你的猜想;(2)利用(1)的结论,请你求出五角星(如图③)中∠A+∠B+∠C+∠D+∠E的值,说明你的理由;(3)若五角星中的点B向右运动,形成如图④⑤形状,(2)中的结论还成立吗?请从图④⑤中任选一个图形说明理由.。
高中数学专题16立体几何与空间向量真题1.如图,正方体的一个截面经过顶点A,C及棱EF上一点K,且将正方体分成体积比为3:1的两部分,则的值为.【答案】【解析】设.截面与FG交于J.,解得(舍去)故.2.设点P到平面的距离为3,点Q在平面上,使得直线PQ与所成角不小于30°且不大于60°,则这样的点Q所构成的区域的面积为.【答案】【解析】设点P在平面上的射影为O.由条件知,.即OQ∈[1,3],故所求的区域面积为.3.在正三棱锥中,,过AB的平面将其体积平分.则棱与平面所成角的余弦值为_____________。
【答案】【解析】设的中点分別为,则易证平面A BM即为平面由平行四边形的性质知,所以,又直线P C在平面上的射影为直线MK,由得因此,棱P C与平面所成角的余弦值为.故答案为:4.设P为一圆锥的顶点,A、B、C为其底面圆周上的三点,满足∠ABC=90°,M为AP的中点.若AB =1,AC=2,AP=,则二面角M-BC-A的大小为________.【答案】【解析】由,知AC为底面圆的直径.如图所示,设底面中心为O.于是,平面ABC.故.设H为M在底面上的射影.则H为AO的中点.在底面中作于点K.由三垂线定理知.从而,为二面角M-BC-A的平面角.由,结合得:.故二面角M-BC-A的大小为.5.四棱锥P-ABCD中,已知侧面是边长为1的正三角形,M、N分别为边AB、BC的中点.则异面直线MN与PC之间的距离为___________.【答案】【解析】如图,设底面对角线AC与BD交于点O,过点C作直线MN的垂线,与MN交于点H.由于PO为底面的垂线,故PO⊥CH.又AC⊥CH,于是,CH与平面POC垂直.从而,CH⊥PC.因此,CH为直线MN与PC的公垂线段.注意到,.故异面直线MN与PC之间的距离为.6.已知正三棱锥底面边长为1,高为.则其内切球半径为______.【答案】【解析】如图,设球心在平面与平面内的射影分别为,边的中点为,内切球半径为.则分别三点共线,,且.故.解得.7.设同底的两个正三棱锥内接于同一个球.若正三棱锥的侧面与底面所成的角为,则正三棱锥的侧面与底面所成角的正切值是______.【答案】4【解析】如图6,联结.则,垂足为正的中心,且过球心.联结并延长与交于点.则为边的中点,且.易知,分别为正三棱锥、正三棱锥的侧面与底面所成二面角的平面角. 则.由.故.8.在四面体中,已知.则四面体的外接球的半径为______.【答案】【解析】易知,为正三角形,且CA=CB.如图,设P、M分别为AB、CD的中点,联结PD、PC.则平面平面PDC.设的外心为N,四面体ABCD的外接球的球心为O.则.可求得由题意知.在中,由余弦定理得又因为D、M、O、N四点在以DO为直径的圆上所以故外接球的体积.9.已知正三棱柱的9条棱长都相等,是边的中点,二面角.则________.【答案】【解析】解法1 如图,以所在直线为轴、线段的中点为原点、所在直线为轴建立空间直角坐标系.设正三棱柱的棱长为2.则.故.设分别与平面、平面垂直的向量为.则由此可设.所以,,即.因此,.解法2如图..设交于点.则平面.又,则平面.过点在平面上作,垂足为,联结.则为二面角的平面角.设.易求得.在中,.又,则.故.1.四面体P-ABC,,则该四面体外接球的半径为________. 【答案】【解析】将四面体还原到一个长方体中,设该长方体的长、宽、高分别为a,b,c,则,所以四面体外接球的半径为.2.四面体ABCD中,有一条棱长为3,其余五条棱长皆为2,则其外接球的半径为____.【答案】【解析】解:设BC=3,AB=AC=AD=BD=CD=2,E,F分别是BC,AD的中点,D在面ABC上的射影H应是△ABC的外心,由于DH上的任一点到A,B,C等距,则外接球心O在DH上,因,所以AE=DE,于是ED为AD的中垂线是,顒球心O是DH,EF的交点,且是等腰△EAD的垂心,记球半径为r,由△DOF~△EAF,得.而,所以.3.如图,在四棱锥P-ABCD中,P A⊥平面ABCD,底面ABCD为正方形,P A=AB.E、F分别为PD、BC的中点,则二面角E-FD-A的正切值为________.【答案】【解析】如图,作EH⊥AD于H,连HF.由P A⊥面ABCD,知P A⊥AD,EH∥P A,EH⊥ABCD.作HG⊥DF于G,连EG,则EG⊥FD,∠EGH为二面角E-FD-A的平面角.∵ABCD为正方形,E、F分别为PD、BC的中点,∴H为AD中点,FH⊥AD.设P A=AB=2,则,FH=2,HD=4,.∴.∴二面角E-FD-A的正切值为.4.已知正四面体内切球的半径是1,则该正四面体的体积为________.【答案】【解析】设正四面体的棱长为.则该正四面体的体积为,全面积为,所以,解得.从而正四面体的体积为.故答案为:5.正方体AC1棱长是1,点E、F是线段DD1,BC1上的动点,则三棱锥E一AA1F体积为___.【答案】【解析】因为F是BC1上的动点,所以在正方体中有,利用等体积转化有.故答案为.6.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆周上的点,B是底面圆内的点,O为底面圆圆心,AB⊥OB,垂足为B,OH⊥HB,垂足为H,且P A=4,C为P A的中点,则当三棱锥O-HPC的体积最大时,OB的长为________.【答案】【解析】法一:AB⊥OB,PB⊥AB,AB⊥面POB,面P AB⊥面POB.OH⊥PB,OH⊥面P AB,OH⊥HC,OH⊥PC,又,PC⊥OC,PC⊥面OCH.PC是三棱锥P-OCH的高.PC=OC=2.而△OCH的面积在时取得最大值(斜边=2的直角三角形).当时,由,知∠OPB=30°,.法二:由C为P A中点,故,而.记则,.∴令,得,.故答案为:7.如图,在正三棱柱中,AB=2,,D、F分别是棱AB、的中点,E为棱AC 上的动点,则△DEF周长的最小值为__________.【答案】【解析】由正三棱锥可得底面ABC,所以AB,AC.在Rt△ADF中,.如图①,把底面ABC与侧面在同一个平面内展开,展开图中只有当D、E、F三点在同一条直线上时,DE+EF取得最小值.如图②,在△ADF中,,由余弦定理可得.所以△DEF周长的最小值为.8.在边长为1的长方体内部有一小球,该小球与正方体的对角线段相切,则小球半径的最大值=___________.【答案】【解析】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点的三个面相切.以为原点,分别为x、y、z轴正方向,建立空间直角坐标系.设A(0,1,1),(1,0,0),小球圆心P(r,r,r),则P到的距离.再由,得.故答案为:9.正方体中,E为AB的中点,F为的中点.异面直线EF与所成角的余弦值是_____. 【答案】【解析】设正方体棱长为1,以DA为x轴,DC为y轴,为z轴建立空间直角坐标系,则.故有.所以.故答案为:10.在半径为R的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】【解析】设内接圆柱底面半径为,则高位,那么全面积为.其中,等号成立的条件是.故最大值为.故答案为:11.已知空间四点满足,且是三棱锥的外接球上的一个动点,则点到平面的最大距离是______.【答案】【解析】将三棱锥补全为正方体,则两者的外接球相同.球心就是正方体的中心,记为,半径为正方体对角线的一半,即为.在正方体里,可求得点到平面的距离为,则点到平面的最大距离是.12.在正四核锥中,已知二面角的正弦值为,则异面直线所成的角为______.【答案】【解析】如图,设的交点为上的射影为,则.又因为,因此,所以,则.因此即为二面角的平面角,从而.设,则.在中,.由此得,因此,解得.从而四棱锥各侧面均为正三角形,则异面直线所成的角为.13.半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________【答案】14【解析】设四个球的球心分别为A、B、C、D,则AB=BC=CA=12,DA=DB=DC=13,即A、B、C、D两两连结可构成正三棱锥.设待求的球心为X,半径为r.,则由对称性可知DX平面ABC.也就是说,X在平面ABC上的射影是正三角形ABC的中心O.易知.设OX=x,则由于球A内切于球X,所以AX=r-6即①又DX=OD-OX=11-x,且由球D内切于球X可知DX=r-7于是②从①②两式可解得即大球的半径为14.故答案为:1414.一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2【解析】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为,小正四面体的外接球(大正四面体的内切球)半径为,易知,故小正四面体棱长的最大值为.15.已知棱长的正方体内部有一圆柱,此圆柱恰好以直线为轴,则该圆柱体积的最大值为_____.【答案】【解析】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A点的三个面相切,且切点分别在、AC、上.设线段上的切点为E,圆柱上底面中心为,半径.由,则圆柱的高为,由导数法或均值不等式得.。
专题16 古诗词内容主旨分析评价(解析版)考点穿透【考向阐释】“诗歌的内容主旨”是指诗歌中描写的人、事、物的总和,是作者写作的主要用意或目的。
分析诗歌的内容要结合诗歌中的意象、人物、事件等因素,综合观照,这样才能顺利地解读清歌,领会诗歌的内容,体味作者的创作意图。
一、分析评价的技巧1.知人论世,理解文字“人即作者,也就是与所写诗歌有关的作者的一些情况。
“世”即作者所生活的时代,也就是诗歌的写作背景。
在此基础上真正理解作品的文字所负载的思想内容及作者的情感、观点、态度。
一位作家选择什么样的题材,表现什么思想,抒发什么感情,这一切均由他的人生观和生活经历决定,又与他所处的时代密切相关。
因此,我们在鉴赏诗歌时,首先要明晓作者的生平、思想,了解当时的创作背景。
同时,由于作家的感情气质、艺术素养等各不相同,因而在创作中表现出各自独特的格调、气派和趣味,形成了作品的不同风格。
比如李白的飘逸洒脱、杜甫的沉郁顿挫、苏轼的旷达豪迈、柳永的柔美婉丽等,熟知作家气质的人有时仅看诗词本身,就能判断它的作者。
因此,我们在平时的学习过程中,对作家特别是著名作家的生平、经历、思想等方面注意积累,这就为鉴赏诗歌准备了条件。
“知人论世,了解风格流派”作为鉴赏诗歌的第一步,在诗歌鉴赏里的作用是毋庸置疑的。
2.观象取意,理解诗境诗歌的描写、抒情、议论,表达了诗人深刻的认知和独特的感悟。
把握诗歌主旨,应抓住诗人所描绘的意象,体察诗人所展示的诗境,体悟诗人所抒发的真情,综合总结出诗歌主旨。
3.分析评价,诗本为重(1)分析评价的“助手”标题、序言、关键语句、注解。
在诗歌中,情感的抒发多是间接的。
抓住标题、序言、注解,理解关键语句,体味出省略的、含蓄的内容部分,对理解诗歌主旨会更如鱼得水。
(2)分析评价的角度----人事、景、物(以上从属于“写作内容”角度),情、理趣(以上从属于“写作目的"角度)。
分析概括时,要明确该诗所写的内容是什么(或是人,或是事,或是景,或是物);作者通过所写的内容(人、事、景、物),要抒发怎样的感情,阐发怎样的观点态度,表现怎样的人生志趣(或是感情,或是道理,或是情趣)。
专题16 语言文字运用(病句类)【2023年】(2022·全国甲卷)阅读下面的文字,完成下面小题。
能否将珍贵的文物置于掌中观赏品味?能否步入千年墓穴一探究竟?能否与未曾展出的国宝亲密接触?……与过去相比,今天的博物馆已经发生了①_______________的变化。
有了科技的助力,这些往日因时空限制而②_______________的事情都已成为现实。
“博物馆+高科技”让那些沉睡千年的古物“活”在了今人面前,为越来越多的人带来不一样的观展体验,让他们可以去那些原本“去不了”的地方,看那些本来“看不到的事物”。
故宫博物院举办的那场名为《清明上河图3.0》的高科技互动展演艺术,用现代超高清数字技术完美融合古代绘画艺术。
观众们沿着张择端的笔触走进繁华的北宋都城汴梁,穿梭于楼台之间,泛舟于汴河之上,观两岸人来人往,看水鸟掠过船篷。
沉浸其中,确有一种③______________的情趣。
在2016年的纪念殷墟妇好墓考古发掘四十周年特展上,首都博物馆利用虚拟技术带领观众“回到”妇好墓的考古发掘现场,上下6层、深达7.5米的妇好墓葬④_______________。
此外还有一些博物馆利用虚拟技术,以数字化方式展现文物全貌。
观众只需在屏幕上滑动手指,就可近距离、全角度现赏文物,将静置于展柜中、封存进仓库里、消散在过往中的历史“托在手上”,全方位观察岁月留下的每一处细痕。
18.文中画横线的句子有语病,请进行修改,使语言表达准确流畅。
可少量增删词语,不得改变原意。
(2022·全国乙卷)阅读下面的文字,完成下面小题。
近日,眼科门诊一连来了几名特殊患者,都是晚上熬夜看手机,第二天早上看不见东西了,这种疾病被称为“眼中风”。
“中风”一词原指脑中风,包括缺血性和出血性脑中风,近几年被引入眼科。
临床上,眼科医生把视网膜动脉阻塞这类缺血性眼病和视网膜静脉阻塞这类出血性眼病统称为“眼中风”。
“眼中风”是眼科临床急症之一,不及时治疗会导致严重的视力损害。
用向量方法求空间角和距离在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题.1 求空间角问题空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角.(1)求异面直线所成的角设a 、b 分别为异面直线a 、b 的方向向量,则两异面直线所成的角α=arccos ||||||a b a b (2)求线面角设l 是斜线l 的方向向量,n 是平面α的法向量,则斜线l 与平面α所成的角α=arcsin ||||||l n l n(3)求二面角法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos ||||a b a b法二、设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角α=1212arccos ||||n n n n 2 求空间距离问题构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的距离、线面距离;面面距离都可化为点面距离来求.(1)求点面距离法一、设n 是平面α的法向量,在α内取一点B,则 A 到α的距离|||||cos |||AB n d AB n θ==法二、设AO α⊥于O,利用AO α⊥和点O 在α内的向量表示,可确定点O 的位置,从而求出||AO .(2)求异面直线的距离法一、找平面β使b β⊂且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离.法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直线a 、b 的方向向量,求n (n a ⊥,n b ⊥),则异面直线a 、b 的距离|||||cos |||AB n d AB n θ==(此方法移植于点面距离的求法).例1.如图,在棱长为2的正方体1111ABCD A BC D -中,E 、F 分别是棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角;(II )求1BC 和面EFBD 所成的角;(III )求1B 到面EFBD 的距离解:(Ⅰ)记异面直线1DE FC 与所成的角为α,则α等于向量1DE FC 与的夹角或其补角,(II )如图建立空间坐标系Dxyz -, 11||||111111cos ||()()||||||22||,arccos 55DE FC DE FC DD D E FB B C DE FC αα∴=++===∴=则(1,0,2)DE =,(2,2,0)DB =设面EFBD 的法向量为(,,1)n x y = 由00DE n DB n ⎧⋅=⎪⎨⋅=⎪⎩得(2,2,1)n =- 又1(2,0,2)BC =-记1BC 和面EFBD 所成的角为θ则 1112sin |cos ,|||2||||BC n BC n BC n θ⋅=〈〉== ∴ 1BC 和面EFBD 所成的角为4π. (III )点1B 到面EFBD 的距离d等于向量1BB 在面EFBD 的法向量上的投影的绝对值,1||||BB n d n ∴==23 设计说明:1.作为本专题的例1,首先选择以一个容易建立空间直角坐标系的多面体―――正方体为载体,来说明空间角和距离的向量求法易于学生理解.2.解决(1)后,可让学生进一步求这两条异面直线的距离,并让学生体会一下:如果用传统方法恐怕很难(不必多讲,高考对公垂线的作法不作要求).3.完成这3道小题后,总结:对于易建立空间直角坐标系的立几题,无论求角、距离还是证明平行、垂直(是前者的特殊情况),都可用向量方法来解决,向量方法可以人人学会,它程序化,不需技巧.例2.如图,三棱柱中,已知A BCD 是边长为1的正方形,四边形B B A A '' 是矩形,。
高考数学复习考点题型专题讲解专题16 立体几何中的折叠、探究问题高考定位 1.立体几何中的折叠问题是历年高考命题的一大热点与难点,主要包括两个方面:一是平面图形的折叠问题,多涉及到空间中的线面关系、体积的求解以及空间角、距离的求解等问题;二是几何体的表面展开问题,主要涉及到几何体的表面积以及几何体表面上的最短距离等;2.以空间向量为工具,探究空间几何体中线面关系或空间角存在的条件,计算量较大,一般以解答题的形式考查,难度中等偏上.1.(2019·全国Ⅲ卷)图①是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图②.(1)证明:图②中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图②中的平面BCG与平面CGA夹角的大小.(1)证明由已知得AD∥BE,CG∥BE,所以AD∥CG,所以AD,CG确定一个平面,从而A,C,G,D四点共面.由已知得AB⊥BE,AB⊥BC,且BE∩BC=B,BE,BC⊂平面BCGE,所以AB⊥平面BCGE.又因为AB ⊂平面ABC ,所以平面ABC ⊥平面BCGE . (2)解 作EH ⊥BC ,垂足为H .因为EH ⊂平面BCGE ,平面BCGE ⊥平面ABC ,平面BCGE ∩平面ABC =BC , 所以EH ⊥平面ABC .由已知,菱形BCGE 的边长为2,∠EBC =60°,可求得BH =1,EH = 3.以H 为坐标原点,HC →的方向为x 轴的正方向,建立如图所示的空间直角坐标系H -xyz ,则A (-1,1,0),C (1,0,0),G (2,0,3),CG →=(1,0,3),AC →=(2,-1,0). 设平面ACGD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧CG →·n =0,AC →·n =0,即⎩⎨⎧x +3z =0,2x -y =0. 所以可取n =(3,6,-3).又平面BCGE 的法向量可取m =(0,1,0), 设平面BCG 与平面CGA 夹角的大小为θ, 所以cos θ=|cos 〈n ,m 〉|=|n ·m ||n ||m |=32.因此平面BCG 与平面CGA 夹角的大小为30°.2.(2021·全国甲卷)已知直三棱柱ABC -A 1B 1C 1中,侧面AA 1B 1B 为正方形,AB =BC =2,E ,F 分别为AC 和CC 1的中点,D 为棱A 1B 1上的点,BF ⊥A 1B 1.(1)证明:BF⊥DE;(2)当B1D为何值时,平面BB1C1C与平面DFE所成的二面角的正弦值最小?(1)证明因为E,F分别是AC和CC1的中点,且AB=BC=2,侧面AA1B1B为正方形,所以CF=1,BF= 5.如图,连接AF,由BF⊥A1B1,AB∥A1B1,得BF⊥AB,于是AF=BF2+AB2=3,所以AC =AF2-CF2=2 2.由AB2+BC2=AC2,得BA⊥BC.∵三棱柱ABC-A1B1C1为直三棱柱,∴BB1⊥AB且BB1⊥BC,则BA,BC,BB1两两互相垂直,故以B为坐标原点,以BA,BC,BB1所在直线分别为x,y,z轴建立空间直角坐标系B -xyz,则B(0,0,0),E(1,1,0),F(0,2,1),BF→=(0,2,1).设B1D=m(0≤m≤2),则D(m,0,2),于是DE→=(1-m,1,-2).所以BF →·DE →=0,所以BF ⊥DE .(2)解 易知平面BB 1C 1C 的一个法向量为n 1=(1,0,0). 设平面DFE 的法向量为n 2=(x ,y ,z ), 则⎩⎪⎨⎪⎧DE →·n 2=0,EF →·n 2=0,又由(1)得DE →=(1-m ,1,-2),EF →=(-1,1,1), 所以⎩⎨⎧(1-m )x +y -2z =0,-x +y +z =0,令x =3,得y =m +1,z =2-m ,于是,平面DFE 的一个法向量为n 2=(3,m +1,2-m ), 所以cos 〈n 1,n 2〉=32⎝⎛⎭⎪⎫m -122+272.设平面BB 1C 1C 与平面DFE 所成的二面角为θ, 则sin θ=1-cos 2〈n 1,n 2〉=1-92⎝ ⎛⎭⎪⎫m -122+272,故当m =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小为33,即当B 1D =12时,平面BB 1C 1C 与平面DFE 所成的二面角的正弦值最小.热点一 折叠问题解答折叠问题的关键是分清翻折前后图形的位置和数量关系的变与不变,一般地,位于“折痕”同侧的点、线、面之间的位置和数量关系不变,而位于“折痕”两侧的点、线、面之间的位置关系会发生变化;对于不变的关系应在平面图形中处理,而对于变化的关系则要在立体图形中解决.考向1 折叠后的位置关系及空间角例1(2022·青岛模拟)在直角梯形ABCD 中,AB ∥CD ,AB ⊥AD ,AB =2CD =4,E ,F 分别为AD ,BC 的中点,沿EF 将四边形EFCD 折起,使得DE ⊥BF (如图2).(1)求证:平面ABFE ⊥平面EFCD ;(2)若直线AC 与平面ABFE 所成角的正切值为63,求平面CEB 与平面EBF 夹角的余弦值.(1)证明 由题设条件,得EF ∥AB ∥CD ,AB ⊥AD , 则DE ⊥EF ,又DE ⊥BF 且BF ∩EF =F ,BF ,EF ⊂平面ABFE , 则DE ⊥平面ABFE , 又DE ⊂平面EFCD , 故平面ABFE ⊥平面EFCD .(2)解 如图过点C 作CG ⊥EF ,交EF 于点G ,连接AG ,因为平面ABFE ⊥平面 EFCD ,且平面ABFE ∩平面EFCD =EF , 所以CG ⊥平面ABFE ,故直线AC 与平面ABFE 所成的角为∠CAG , 设DE =h ,则在Rt△CAG 中 ,CG =DE =h ,AG =EG 2+EA 2=h 2+4,所以tan∠CAG =CG AG =h h 2+4=63,解得h =22,如图,建立空间直角坐标系E -xyz ,则E (0,0,0),B (22,4,0),C (0,2,22), 所以EC →=(0,2,22),EB →=(22,4,0), 则平面EBF 的法向量为m =(0,0,1), 设平面CEB 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·EC →=2y +22z =0,n ·EB →=22x +4y =0,令y =-2,则n =(2,-2,1),则平面CEB 与平面EBF 夹角的余弦值为 |cos 〈m·n 〉|=|m·n ||m |·|n |=77.所以平面CEB 与平面EBF 夹角的余弦值为77. 易错提醒 注意图形翻折前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置与数量关系.考向2 展开后的数字特征例2 (1)(2022·青岛质检)如图所示,在直三棱柱ABC-A1B1C1中,底面为直角三角形,∠ACB=90°,AC=6,BC=CC1=2,P是BC1上一动点,则CP+PA1的最小值是________.(2)如图,一立在水平地面上的圆锥形物体的母线长为4 m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处.若该小虫爬行的最短路程为4 3 m,则圆锥底面圆的半径等于________m.答案(1)5 2 (2)4 3解析(1)如图,以BC1为轴,把平面BCC1翻折到与平面A1BC1共面,则A1BCC1在同一个平面内,图中A1C就是所求最小值.通过计算可得∠A1C1B=90°,∠BC1C=45°,所以∠A1C1C=135°,由余弦定理可得A1C=5 2.(2)圆锥顶点记为O,把圆锥侧面沿母线OP展开成如图所示的扇形,由题意OP=4,PP′=43,则cos∠POP′=42+42-(43)22×4×4=-12,又∠POP′为△POP′一内角,所以∠POP′=2π3.设底面圆的半径为r,则2πr=2π3×4,所以r=4 3 .易错提醒几何体表面上的最短距离要注意棱柱的侧面展开图可能有多种,如长方体的表面展开图等,要把不同展开图中的最短距离进行比较,找出其中的最小值.训练1 如图1,在直角梯形ABCD中,AB∥DC,∠D=90°,AB=2,DC=3,AD=3,CE=2ED.沿BE将△BCE折起,使点C到达点C1的位置,且AC1=6,如图2.(1)求证:平面BC1E⊥平面ABED;(2)求直线BC1与平面AC1D所成角的正弦值.(1)证明在图①中,连接AE,由已知得AE=2.图①∵CE∥AB,CE=AB=AE=2,∴四边形ABCE为菱形.连接AC交BE于点F,则CF⊥BE.在Rt△ACD中,AC=32+(3)2=23,所以AF=CF= 3.图②如图②中,由翻折,可知C1F=3,C1F⊥BE.∵AC1=6,AF=C1F=3,∴AF2+C1F2=AC21,∴C1F⊥AF,又BE∩AF=F,BE⊂平面ABED,AF⊂平面ABED,∴C1F⊥平面ABED.又C1F⊂平面BC1E,所以平面BC1E⊥平面ABED.(2)解如图②,建立空间直角坐标系,则D(0,0,0),A(3,0,0),B(3,2,0),C 1⎝⎛⎭⎪⎫32,32,3, 所以BC 1→=⎝ ⎛⎭⎪⎫-32,-12,3,DA →=(3,0,0),DC 1→=⎝ ⎛⎭⎪⎫32,32,3,设平面AC 1D 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DA →·n =0,DC 1→·n =0,即⎩⎨⎧3x =0,32x +32y +3z =0, 令z =3,则x =0,y =-2,所以n =(0,-2,3)为平面AC 1D 的一个法向量. 设直线BC 1与平面AC 1D 所成的角为θ,则sin θ=|cos 〈BC 1→,n 〉|=|BC 1→·n ||BC 1→||n |=42×7=277.所以直线BC 1与平面AC 1D 所成角的正弦值为277. 热点二 探究问题与空间向量有关的探究性问题主要有两类:一类是探究线面的位置关系;另一类是探究线面角或平面与平面的夹角满足特定要求时的存在性问题.解题思路:先建立空间直角坐标系,引入参数(有些是题中已给出),设出关键点的坐标,然后探究这样的点是否存在,或参数是否满足要求,从而作出判断. 考向1 探究线面位置关系例3(2022·济南质检)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,E ,F 分别为棱AA 1,CC 1的中点,G 为棱DD 1上的动点.(1)求证:B,E,D1,F四点共面;(2)是否存在点G,使得平面GEF⊥平面BEF?若存在,求出DG的长;若不存在,说明理由.(1)证明如图,连接D1E,D1F,取BB1的中点为M,连接MC1,ME,因为E为AA1的中点,所以EM∥A1B1∥C1D1,且EM=A1B1=C1D1,所以四边形EMC1D1为平行四边形,所以D1E∥MC1,又F为CC1的中点,所以BM∥C1F,且BM=C1F,所以四边形BMC1F为平行四边形,所以BF∥MC1.所以BF∥D1E,所以B,E,D1,F四点共面.(2)解以D为坐标原点,DA,DC,DD1所在直线分别为x轴,y轴,z轴建立空间直角坐标系,假设存在满足题意的点G (0,0,t ), 由已知B (1,1,0),E (1,0,1),F (0,1,1),则EF →=(-1,1,0),EB →=(0,1,-1),EG →=(-1,0,t -1), 设平面BEF 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·EF →=0,n 1·EB →=0,即⎩⎨⎧-x 1+y 1=0,y 1-z 1=0,取x 1=1,则y 1=1,z 1=1,n 1=(1,1,1).设平面GEF 的法向量为n 2=(x 2,y 2,z 2), 则⎩⎪⎨⎪⎧n 2·EF →=0,n 2·EG →=0,即⎩⎨⎧-x 2+y 2=0,-x 2+(t -1)z 2=0, 取x 2=t -1,则y2=t-1,z2=1,n2=(t-1,t-1,1). 因为平面GEF⊥平面BEF,所以n1·n2=0所以t-1+t-1+1=0,所以t=1 2,所以存在满足题意的点G,使得平面GEF⊥平面BEF,且DG的长为1 2 .考向2 与空间角有关的探究性问题例4 如图,四棱锥P-ABCD的底面ABCD是等腰梯形,AB∥CD,BC=CD=1,AB=2.△PBC 是等边三角形,平面PBC⊥平面ABCD,点M在棱PC上.(1)当M为棱PC的中点时,求证:AP⊥BM;(2)是否存在点M,使得平面DMB与平面MBC夹角的余弦值为34?若存在,求CM的长;若不存在,请说明理由.(1)证明连接AC,由底面ABCD是等腰梯形且AB=2,BC=CD=1,得∠ABC=π3,在△ABC中,由余弦定理得AC=3,∴AC2+BC2=AB2,∴∠ACB=π2,∴AC⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,AC⊂平面ABCD,∴AC ⊥平面PBC , ∵BM ⊂平面PBC ,∴AC ⊥BM ,又M 为棱PC 的中点,且△PBC 是等边三角形, ∴BM ⊥PC ,又∵PC ∩AC =C ,PC ⊂平面APC ,AC ⊂平面APC , ∴BM ⊥平面APC , ∵AP ⊂平面APC , ∴AP ⊥BM .(2)解 假设存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34.过点P 作PO ⊥BC 交BC 于点O ,∵平面PBC ⊥平面ABCD ,平面PBC ∩平面ABCD =BC ,PO ⊂平面PBC ,∴PO ⊥平面ABCD ,取AB 的中点E ,连接OE ,则OE ∥CA ,由(1)知OE ⊥平面PBC ,因此以O 为原点,以OC ,OE ,OP 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系O -xyz .∴O (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,C ⎝ ⎛⎭⎪⎫12,0,0,B ⎝ ⎛⎭⎪⎫-12,0,0,D ⎝ ⎛⎭⎪⎫1,32,0,则DB →=⎝ ⎛⎭⎪⎫-32,-32,0,CP →=⎝ ⎛⎭⎪⎫-12,0,32.设CM →=tCP→(0<t ≤1),则M ⎝⎛⎭⎪⎫1-t 2,0,32t .则DM →=⎝ ⎛⎭⎪⎫-t -12,-32,32t ,设平面DMB 的法向量为a =(x ,y ,z ), 则⎩⎪⎨⎪⎧a ·DM →=-1+t 2x -32y +32tz =0,a ·DB →=-32x -32y =0,令x =3,则y =-3,z =t -2t,∴a =⎝⎛⎭⎪⎫3,-3,t -2t 为平面DMB 的一个法向量, 易知平面MBC 的一个法向量为b =(0,1,0), 则|cos 〈a ,b 〉|=|a·b||a||b|=33+9+⎝⎛⎭⎪⎫t -2t 2=312+⎝⎛⎭⎪⎫t -2t 2=34, 则⎝ ⎛⎭⎪⎫t -2t 2=4,即t -2t =-2,解得t =23,故CM =|CM →|=23|CP →|=23.所以存在点M ,使得平面DMB 与平面MBC 夹角的余弦值为34,且CM 的长为23.规律方法 解决立体几何中探索性问题的基本方法(1)通常假设问题中的数学对象存在或结论成立,再在这个前提下进行推理,如果能推出与条件吻合的数据或事实,说明假设成立,并可进一步证明,否则假设不成立.(2)探索线段上是否存在满足条件的点时,一定注意三点共线的应用.训练2(2022·盐城模拟)如图,三棱柱ABC -A 1B 1C 1的所有棱长都为2,B 1C =6,AB ⊥B 1C .(1)求证:平面ABB 1A 1⊥平面ABC ;(2)在棱BB 1上是否存在点P ,使直线CP 与平面ACC 1A 1所成角的正弦值为45,若不存在,请说明理由,若存在, 求BP 的长.(1)证明 如图,取AB 的中点D ,连接CD ,B 1D ,因为三棱柱ABC -A 1B 1C 1的所有棱长都为2, 所以AB ⊥CD ,CD =3,BD =1. 又因为AB ⊥B 1C ,且CD ∩B 1C =C ,CD ,B 1C ⊂平面B 1CD , 所以AB ⊥平面B 1CD . 又因为B 1D ⊂平面B 1CD , 所以AB ⊥B 1D .在Rt△B 1BD 中,BD =1,B 1B =2, 所以B 1D = 3.在△B 1CD 中,CD =3,B 1D =3,B 1C =6,所以CD 2+B 1D 2=B 1C 2, 所以CD ⊥B 1D ,又因为AB ⊥B 1D ,AB ∩CD =D ,AB ,CD ⊂平面ABC , 所以B 1D ⊥平面ABC . 又因为B 1D ⊂平面ABB 1A 1, 所以平面ABB 1A 1⊥平面ABC .(2)解 假设存在,以DC ,DA ,DB 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (0,1,0),B (0,-1,0),C (3,0,0),B 1(0,0,3), 因此BB 1→=(0,1,3),AC →=(3,-1,0),AA 1→=BB 1→=(0,1,3), CB →=(-3,-1,0). 因为点P 在棱BB 1上, 设BP →=λBB 1→=λ(0,1,3),其中0≤λ≤1.则CP →=CB →+BP →=CB →+λBB 1→=(-3,-1+λ,3λ). 设平面ACC 1A 1的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AC →=0,n ·AA 1→=0,得⎩⎪⎨⎪⎧3x -y =0,y +3z =0,取x =1,则y =3,z =-1,所以平面ACC 1A 1的一个法向量为n =(1,3,-1). 因为直线CP 与平面ACC 1A 1所成角的正弦值为45,所以|cos 〈n ,CP →〉|=|n ·CP →||n ||CP →|=⎪⎪⎪⎪⎪⎪-235×3+(λ-1)2+3λ2=45, 化简得16λ2-8λ+1=0,解得λ=14,所以|BP →|=14|BB 1→|=12, 故BP 的长为12.一、基本技能练1.(2022·丽水质检)如图1,矩形ABCD 中,点E ,F 分别是线段AB ,CD 的中点,AB =4,AD =2,将矩形ABCD 沿EF 翻折.(1)若所成二面角的大小为π2(如图2),求证:直线CE ⊥平面DBF ; (2)若所成二面角的大小为π3(如图3),点M 在线段AD 上,当直线BE 与平面EMC 所成角为π4时,求平面DEM 和平面EMC 夹角的余弦值. (1)证明 由题设易知:四边形BEFC 是边长为2的正方形,BF ,EC 是其对角线, 所以BF ⊥EC ,又平面BEFC ⊥平面AEFD ,平面BEFC ∩平面AEFD =EF ,DF ⊥EF ,DF ⊂平面AEFD , 所以DF ⊥平面BEFC , 又EC ⊂平面BEFC ,则DF ⊥EC ,又DF ∩BF =F ,BF ,DF ⊂平面BDF ,则EC ⊥平面BDF .(2)解 过E 作Ez ⊥平面AEFD ,而AE ,EF ⊂平面AEFD ,则Ez ⊥AE ,Ez ⊥EF ,而AE ⊥EF , 可建立如图所示的空间直角坐标系,由题设知:∠BEA =∠CFD =π3,所以E (0,0,0),B (1,0,3),C (1,2,3),M (2,m ,0)且0≤m ≤2, 则EB →=(1,0,3),EC →=(1,2,3),EM →=(2,m ,0),若n =(x ,y ,z )是平面EMC 的法向量,则⎩⎪⎨⎪⎧EC →·n =x +2y +3z =0,EM →·n =2x +my =0,令x =m ,则n =(m ,-2,4-m3), |cos 〈EB →,n 〉|=|EB →·n ||EB →||n |=1m 2-2m +73=12,可得m=1,则n =(1,-2,3),又l =(0,0,1)是平面EMD 的一个法向量, 所以|cos 〈l ,n 〉|=|l ·n ||l ||n |=322=64,所以平面DEM 和平面EMC 夹角的余弦值为64.2.如图,四棱锥S -ABCD 的底面是正方形,每条侧棱的长都是底面边长的2倍,P 为侧棱SD 上的点.(1)求证:AC ⊥SD ;(2)若SD ⊥平面PAC ,求平面PAC 与平面ACS 夹角的大小;(3)在(2)的条件下,侧棱SC 上是否存在一点E ,使得BE ∥平面PAC ?若存在,求SC ∶SE 的值;若不存在,试说明理由.(1)证明 连接BD 交AC 于点O ,连接SO ,由题意知SO ⊥AC . 在正方形ABCD 中,AC ⊥BD .因为BD ∩SO =O ,BD ,SO ⊂平面SBD ,所以AC ⊥平面SBD ,又SD ⊂平面SBD ,所以AC ⊥SD .(2)解 由题设知,SO ⊥平面ABCD .以O 为坐标原点,OB →,OC →,OS →的方向分别为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系O -xyz ,如图.设底面边长为a ,则高SO =62a , 则B ⎝ ⎛⎭⎪⎫22a ,0,0,S ⎝ ⎛⎭⎪⎫0,0,62a ,D ⎝ ⎛⎭⎪⎫-22a ,0,0,C ⎝ ⎛⎭⎪⎫0,22a ,0, 又SD ⊥平面PAC ,则平面PAC 的一个法向量为DS →=⎝ ⎛⎭⎪⎫22a ,0,62a , 平面SAC 的一个法向量为OD →=⎝ ⎛⎭⎪⎫-22a ,0,0, 设平面PAC 与平面ACS 夹角的大小为θ.则cos θ=|cos 〈DS →,OD →〉|=|DS →·OD →||DS →||OD →|=12, 所以平面PAC 与平面ACS 夹角的大小为π3. (3)解 在棱SC 上存在一点E 使BE ∥平面PAC .理由如下:由(2)知DS →是平面PAC 的一个法向量,且DS →=⎝ ⎛⎭⎪⎫22a ,0,62a ,CS →=⎝ ⎛⎭⎪⎫0,-22a ,62a ,BC →=⎝ ⎛⎭⎪⎫-22a ,22a ,0. 设CE →=tCS→,t ∈[0,1], 则BE →=BC →+CE →=BC →+tCS →=⎝ ⎛⎭⎪⎫-22a ,22a (1-t ),62at .因为BE ∥平面PAC ,所以BE →·DS →=0,所以-12a 2+32a 2t =0,解得t =13. 故侧棱SC 上存在一点E ,使得BE ∥平面PAC ,此时SC ∶SE =3∶2.3.(2022·全国名校大联考)如图1,直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,E 为AD 边上的点,且AD =2AE =2AB =2BC =2.将△ABE 沿BE 向上折起,使得异面直线AB 与ED 所成的角为60°,F 为线段AD 上一点,如图2.(1)若DE ⊥CF ,求AF FD的值; (2)求平面ABC 与平面AED 所成锐二面角的余弦值.解 (1)如图①中,连接CE .图①由题意可知,△ABE ,△CED ,△BCE 均为等腰直角三角形,因为BC ∥ED ,所以∠ABC 即为异面直线AB 与ED 所成的角,所以∠ABC =60°,所以AC =1.取BE 的中点O ,连接OC ,OA ,OD ,则OA ⊥BE ,OC ⊥BE ,且OA =OC =22,因为OA 2+OC 2=AC 2,所以OA ⊥OC ,因为BE ∩OC =O ,BE ,OC ⊂平面BCDE .所以OA ⊥平面BCDE .连接EF ,因为DE ⊥EC ,DE ⊥CF ,CE ∩CF =C ,CE ,CF ⊂平面ECF ,所以DE ⊥平面ECF , 又DE ⊂平面BCDE ,所以平面ECF ⊥平面BCDE ,故OA ∥平面ECF .连接OD 交CE 于点G ,连接FG ,因为平面AOD ∩平面ECF =FG ,所以OA ∥GF ,故AF FD =OG GD =OE CD =12.图②(2)如图②,以O 为坐标原点,OB ,OC ,OA 所在直线分别为x ,y ,z 轴,建立空间直角坐标系O -xyz .则A ⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0,B ⎝ ⎛⎭⎪⎫22,0,0, E ⎝ ⎛⎭⎪⎫-22,0,0,D ⎝ ⎛⎭⎪⎫-2,22,0. 所以AB →=⎝ ⎛⎭⎪⎫22,0,-22, BC →=⎝ ⎛⎭⎪⎫-22,22,0,AE →=⎝ ⎛⎭⎪⎫-22,0,-22,ED →=⎝ ⎛⎭⎪⎫-22,22,0. 设平面ABC 的法向量为n 1=(x 1,y 1,z 1),则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧22x 1-22z 1=0,-22x 1+22y 1=0, 令x 1=2,则y 1=2,z 1=2,所以平面ABC 的一个法向量为n 1=(2,2,2),设平面AED 的法向量为n 2=(x 2,y 2,z 2),则⎩⎪⎨⎪⎧n 2·AE →=0,n 2·ED →=0,即⎩⎪⎨⎪⎧-22x 2-22z 2=0,-22x 2+22y 2=0, 令x 2=2,则y 2=2,z 2=-2,所以平面AED 的一个法向量为n 2=(2,2,-2),所以|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=|2×2+2×2-2×2|22+22+22·22+22+(-2)2=13, 故平面ABC 与平面AED 所成锐二面角的余弦值为13. 二、创新拓展练4.如图1,四边形ABCD 为梯形,AD ∥BC ,BM ⊥AD 于点M ,CN ⊥AD 于点N ,∠A =45°,AD =4BC =4,AB =2,现沿CN 将△CDN 折起,使△ADN 为正三角形,且平面ADN ⊥平面ABCN ,过BM 的平面与线段DN ,DC 分别交于点E ,F ,如图2.(1)求证:EF⊥DA;(2)在棱DN上(不含端点)是否存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,若存在,请确定E点的位置;若不存在,说明理由.(1)证明因为BM⊥AD,CN⊥AD,所以BM∥CN.在四棱锥D-ABCN中,CN⊂平面CDN,BM⊄平面CDN,所以BM∥平面CDN.又平面BMEF∩平面CDN=EF,所以BM∥EF.因为平面ADN⊥平面ABCN且交于AN,BM⊥AN,所以BM⊥平面ADN,即EF⊥平面ADN.又DA⊂平面ADN,所以EF⊥DA.(2)解存在,E为棱DN上靠近N点的四等分点.因为∠A=45°,AD=4BC=4,AB=2,所以AM=MN=BM=CN=1,DN=2,因为DA=DN,连接DM ,所以DM ⊥AN .又平面ADN ⊥平面ABCN 且交于AN ,故DM ⊥平面ABCN .如图,以M 为坐标原点,分别以MA ,MB ,MD 所在直线为x ,y ,z 轴建立空间直角坐标系,则D (0,0,3),B (0,1,0),M (0,0,0),N (-1,0,0),DB →=(0,1,-3),BM →=(0,-1,0),ND →=(1,0,3). 设NE →=λND →(0<λ<1),则E (λ-1,0,3λ),ME →=(λ-1,0,3λ).设平面BMEF 的法向量n =(x ,y ,z ),则⎩⎪⎨⎪⎧BM →·n =0,ME →·n =0,即⎩⎨⎧-y =0,(λ-1)x +3λz =0,不妨令x =3λ,则z =1-λ,n =(3λ,0,1-λ).设直线DB与平面BMEF所成的角为α,则有sin α=|cos〈n,DB→〉|=|n·DB→||n||DB→|=|3(λ-1)|23λ2+(1-λ)2=34.解得λ=14或λ=-12(舍去),所以NE→=14ND→,即在棱DN上存在点E,使得直线DB与平面BMEF所成角的正弦值为3 4,此时E为棱DN上靠近N点的四等分点.。
专题16 空间向量与立体几何考点1 利用空间向量证明平行与垂直调研1 如图,在正方体1111ABCD A B C D-中,O是AC的中点,E是线段1D O上一点,且1D E EOλ=⋅u u u u r u u u r.(1)求证:11DB CD O⊥平面;(2)若平面CDE ⊥平面1CD O ,求λ的值. 【答案】(1)证明见解析;(2)2λ=.【解析】(1)不妨设正方体的棱长为1,如图建立空间直角坐标系,则1111(0,0,0),(1,1,1),(,,0),(0,1,0),(0,0,1)22D B O C D ,于是1111(1,1,1),(,,0),(0,1,1)22DB OC CD ==-=-u u u u r u u u u r u u u r ,因为1110,0DB CD DB OC ⋅=⋅=u u u r u u u r u u u u u u ru r ,所以111,DB CD DB OC ⊥⊥, 故11DB CD O ⊥平面.(2)由(1)可知1CD O 平面的一个法向量为1(1,1,1)DB ==u u u u rm , 由1D E EO λ=⋅u u u u r u u u r,则1(,,)2(1)2(1)(1)E λλλλλ+++,设平面CDE 的法向量为(,,)x y z =n ,由·0,0CD DE =⋅=u u u r u u u r n n ,得0,02(1)2(1)(1)y x y zλλλλλ=⎧⎪⎨++=⎪+++⎩∴可取(2,0,)λ=-n ,因为1CD O CED ⊥平面平面,所以·0,2λ=∴=m n .☆技巧点拨☆直线与平面、平面与平面的平行与垂直的向量判定方法设直线l 的方向向量为a =(a 1,b 1,c 1),平面α,β的法向量分别为μ=(a 2,b 2,c 2),v =(a 3,b 3,c 3),则 (1)线面平行:l ∥α⇔a ⊥μ⇔a·μ=0⇔a 1a 2+b 1b 2+c 1c 2=0; (2)线面垂直:l ⊥α⇔a ∥μ⇔a =k μ⇔a 1=ka 2,b 1=kb 2,c 1=kc 2; (3)面面平行:α∥β⇔μ∥v ⇔μ=λv ⇔a 2=λa 3,b 2=λb 3,c 2=λc 3; (4)面面垂直:α⊥β⇔μ⊥v ⇔μ·v =0⇔a 2a 3+b 2b 3+c 2c 3=0.注意:用向量知识证明立体几何问题,仍然离不开立体几何中的定理.如要证明线面平行,只需要证明平面外的一条直线和平面内的一条直线平行,即化归为证明线线平行,用向量方法证明直线a ∥b ,只需证明向量a =λb (λ∈R )即可.若用直线的方向向量与平面的法向量垂直来证明线面平行,仍需强调直线在平面外.考点2 求空间角题组一 求异面直线所成的角调研1 如图所示,在三棱锥P –ABC 中,P A ⊥平面ABC ,D 是棱PB 的中点,已知P A =BC =2,AB =4,CB ⊥AB ,则异面直线PC ,AD 所成角的余弦值为A .−3010 B .−305 C .305D .3010【答案】D【解析】因为P A ⊥平面ABC ,所以P A ⊥AB ,P A ⊥BC .过点A 作AE ∥CB ,又CB ⊥AB ,则AP ,AB ,AE 两两垂直.如图,以A 为坐标原点,分别以AB ,AE ,AP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,0),P (0,0,2),B (4,0,0),C (4,−2,0).因为D 为PB 的中点,所以D (2,0,1).故CP uu r =(−4,2,2),AD uuu r =(2,0,1).所以cos 〈AD uuu r ,CP uu r 〉=||||AD CPAD CP ⋅⋅uuu r uu ruuur uu r =-65×26=−3010. 设异面直线PC ,AD 所成的角为θ,则cos θ=|cos 〈AD uuu r ,CP uu r〉|=3010.调研 2 在正方体1111ABCD A B C D -中,点P 在1A C 上运动(包括端点),则BP 与1AD 所成角的取值范围是ABCD 【答案】D【解析】以点D 为原点,DA 、DC 、1DD 所在直线分别为x y z 、、轴建立空间直角坐标系,设正方体棱长为1,点P 坐标为(),1,x x x -,则()()11,,,1,0,1BP x x x BC =--=-u u u r u u u u r ,设1BP BC u u u ru u u u r、的夹角为α,则所以当13x =时,cos α取最大值当1x =时,cos α因为11BC AD ∥,所以BP 与1AD 所成角的取值范围是故选D. 【名师点睛】空间向量的引入为求空间角带来了方便,解题时只需通过代数运算便可达到解题的目的,由于两向量夹角的范围为[0,π],因此向量的夹角不一定等于所求的空间角,因此在解题时求得两向量的夹角(或其余弦值)后还要分析向量的夹角和空间角大小间的关系.解题时要根据所求的角的类型得到空间角的范围,并在此范围下确定出所求角(或其三角函数值).☆技巧点拨☆利用向量求异面直线所成的角一是几何法:作—证—算;二是向量法:把角的求解转化为向量运算,应注意体会两种方法的特点,“转化”是求异面直线所成角的关键,一般地,异面直线AC ,BD 的夹角β的余弦值为cos β=||||AC BD AC BD ⋅⋅uuu r uu u ruuur uu u r . 注意:两条异面直线所成的角α不一定是两直线的方向向量的夹角β,即cos α=|cos β|.题组二 求线面角调研3 如图,四棱锥P –ABCD 中,底面ABCD 是直角梯形,∠DAB =90°,AD ∥BC ,AD ⊥侧面P AB ,△P AB 是等边三角形,DA =AB =2,BC =12AD ,E 是线段AB 的中点.(1)求证:PE ⊥CD ;(2)求PC 与平面PDE 所成角的正弦值. 【答案】(1)见解析;(2) 35.【解析】(1)因为AD ⊥侧面P AB ,PE ⊂平面P AB ,所以AD ⊥PE . 又△P AB 是等边三角形,E 是线段AB 的中点,所以PE ⊥AB . 因为AD ∩AB =A ,所以PE ⊥平面ABCD , 而CD ⊂平面ABCD ,所以PE ⊥CD .(2)以E 为坐标原点,建立如图所示的空间直角坐标系E −xyz . 则E (0,0,0),C (1,−1,0),D (2,1,0),P (0,0,3). 所以ED →=(2,1,0),EP →=(0,0,3),PC →=(1,−1,−3). 设n =(x ,y ,z )为平面PDE 的法向量.由,得⎩⎨⎧2x +y =0,3z =0.令x =1,可得n =(1,−2,0).设PC 与平面PDE 所成的角为θ,则sin θ=|cos 〈PC →,n 〉|=|||||PC PC ⋅⋅uu u ruu ur n n |=35. 所以PC 与平面PDE 所成角的正弦值为35.调研4 如图,四棱锥P ABCD -中,PD ABCD ⊥平面,底面ABCD 是梯形,AB ∥CD ,BC CD ⊥,AB=PD=4,CD=2,AD =M 为CD 的中点,N 为PB 上一点,且(01)PN PB λλ=<<u u u r u u u r.(1)若14λ=时,求证:MN ∥平面P AD ; (2)若直线AN 与平面PBCAD 与直线CN 所成角的余弦值. 【答案】(1)见解析;(2. 【解析】(114PN PB =u u u r u u u r .在P A 上取点EEN ,DE ,Q 1444PN PB PE PA AB ===u u u r u u u r u u r ,,,∴EN ∥AB ,且14EN AB ==,Q M 为CD 的中点,CD=2,∴112DM CD ==,又AB ∥CD ,∴EN ∥DM ,EN =DM ,∴四边形DMNE 是平行四边形,∴MN ∥DE ,又DE ⊂平面P AD ,MN ⊄平面P AD ,∴MN ∥平面P AD .(2)如图所示,过点D 作DH ⊥AB 于H ,则DH ⊥CD .以D 为坐标原点建立空间直角坐标系D −xyz . 则D (0,0,0),M (0,1,0),C (0,2,0),B (2,2,0),A (2,−2,0),P (0,0,4),∴()()2,0,0,0,2,4CB CP ==-u u u r u u u r ,()()2,2,42,2,4AN AP PN AP PB λλ=+=+=-+-u u u r u u u r u u u r u u u r u u u r()22,22,44λλλ=-+-.该平面PBC 的法向量为(),,x y z =n ,则由20240CB x CP y z ⎧⋅==⎪⎨⋅=-+=⎪⎩u u u r u u u r n n ,得02x y z =⎧⎨=⎩,令z =1,得()0,2,1=n .该直线AN 与平面PBC 所成的角为θ,则 ,解得1,3λ=∴()228248,,,,2,2,0333333N CN AD ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭u u ur u u u r ,,, 设直线AD 与直线CN 所成的角为α所以直线AD 与直线CN.☆技巧点拨☆利用向量求直线与平面所成的角①分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角); ②通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.注意:直线和平面所成的角的正弦值等于平面法向量与直线方向向量夹角的余弦值的绝对值,即注意函数名称的变化.直线与平面的夹角计算设直线l 的方向向量为a =(a 1,b 1,c 1),平面α的法向量为μ=(a 3,b 3,c 3),直线l 与平面α的夹角为θ⎝⎛⎭⎫0≤θ≤π2,则sin θ=|a·μ||a ||μ|=|cos 〈a ,μ〉|.题组三 求二面角调研5 二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB ,已知2AB =,3AC =,4BD =,CD = A .45︒ B .60︒ C .120︒D .150︒【答案】B【解析】由已知可得:0,0AB AC AB BD ⋅=⋅=u u u r u u u r u u u r u u u r ,CD CA AB BD =++u u u r u u u u r u u r u u u r,,∴cos CA 12,即CA ,∴二面角的大小为60°,故选B.【名师点睛】这个题目考查的是立体几何中空间角的求法;解决立体几何的小题,通常有以下几种方法:一是建系法,二是用传统的方法,利用定义直接在图中找到要求的角;还有就是利用空间向量法来解决问题.注意向量夹角必须是共起点的,还有就是异面直线夹角必须是锐角或直角.调研6 如图,在四棱锥P ABCD -中,AP ,AB ,AD 两两垂直,BC AD ∥,且4AP AB AD ===,2BC =.(1)求二面角P CD A --的余弦值;(2)已知点H 为线段PC 上异于C 的点,且DC DH =,求PHPC的值. 【答案】(1)23;(2【思路分析】(1)先根据条件建立空间直角坐标系,设立各点坐标,根据方程组解得各平面法向量,利用向量数量积求向量夹角,最后根据二面角与向量夹角关系求结果;(2)设PH PC λ=u u u v u u u v,根据向量坐标表示距离,再根据距离相等解得λ,即为PHPC的值. 【解析】以{},,A AB AP D u u u r u u u r u u u r为正交基底,建立如图所示的空间直角坐标系A xyz -.则()0,0,0A ,()4,0,0B ,()4,2,0C ,()0,4,0D ,()0,0,4P .(1)易知()0,4,4DP =-u u u r ,()4,2,0DC =-u u u r.设平面PCD 的法向量为()1,,x y z =n ,则1100DP DC ⎧⋅=⎪⎨⋅=⎪⎩u u u v u u u v n n ,即440420y z x y -+=⎧⎨-=⎩,令1x =,则2y =,2z =.所以()11,2,2=n .易知平面ACD 的法向量为()20,0,1=n ,P CD A --的余弦值为23. (2)由题意可知,()4,2,4PC =-u u u r ,()4,2,0DC =-u u u r ,设()4,2,4PH PC λλλλ==-u u u r u u u r,则DH DP PH =+=u u u u r u u u r u u u r()4,24,44λλλ--, 因为DC DH ==,化简得23410λλ-+=,所以1λ=或13λ=.点H 异于点C ,所以13λ=调研7 如图,在三棱柱111ABC A B C -中,侧棱1CC ⊥底面ABC ,且122,CC AC BC AC BC ==⊥,D 是棱AB 的中点,点M 在侧棱1CC 上运动.(1)当M 是棱1CC 的中点时,求证:CD ∥平面1MAB ; (2)当直线AM 与平面ABC 所成的角的正切值为32时,求二面角11A MB C --的余弦值.【答案】(1)见解析;(2)14-. 【思路分析】(1)取线段1AB 的中点E ,连接,DE EM ,可得四边形CDEM 是平行四边形,CD EM ∥,即可证明CD ∥平面1MAB ;(2)以C 为原点,CA ,CB ,1CC 所在直线分别为x ,y ,z 轴建立空间直角坐标系,利用向量法求二面角11A MB C --的余弦值. 【解析】(1)取线段1AB 的中点E ,连接,DE EM . ∵1,AD DB AE EB ==,∴1DE BB ∥,且112DE BB =. 又M 为1CC 的中点,∴1CM BB ∥,且112CM BB =, ∴CM DE ∥,且CM DE =,∴四边形CDEM 是平行四边形,∴CD EM ∥. 又EM ⊂平面1,AB M CD ⊄平面1AB M ,∴CD ∥平面1MAB .(2)∵1,,CA CB CC 两两垂直,∴以C 为原点,1,,CA CB CC 所在直线分别为x ,y ,z 轴,建立空间直角坐标系C xyz -,如图,∵三棱柱111ABC A B C -中,1CC ⊥平面ABC ,∴MAC ∠即为直线AM 与平面ABC 所成的角. 设1AC =,则由3tanMAC ∠=,得3CM =.设平面1AMB 的一个法向量为(),,x y z =n ,2z =,得3,1x y ==-,即()3,1,2=-n .又平面11BCC B 的一个法向量为()1,0,0CA =u u ur,∴,又二面角11A MB C --的平面角为钝角,∴二面角11A MB C --的余弦值为14-.☆技巧点拨☆利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系; (2)求出相关点的坐标; (3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a 3,b 3,c 3),v =(a 4,b 4,c 4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v ||μ||v |=|cos 〈μ,v 〉|.题组四 解决探索性问题调研8 如图,在五面体ABCDPE 中,PD ⊥平面ABCD ,∠ADC =∠BAD =90°,F 为棱P A 的中点,PD =BC =2,AB =AD =1,且四边形CDPE 为平行四边形.(1)判断AC 与平面DEF 的位置关系,并给予证明;(2)在线段EF 上是否存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36?若存在,请求出QE 的长;若不存在,请说明理由.【答案】(1) AC ∥平面DEF ,证明见解析;(2) 在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36,此时QE =194. 【解析】(1)AC ∥平面DEF .理由如下: 设线段PC 交DE 于点N ,连接FN ,如图所示,因为四边形PDCE 为平行四边形,所以点N 为PC 的中点, 又点F 为P A 的中点,所以FN ∥AC , 因为FN ⊂平面DEF ,AC ⊄平面DEF , 所以AC ∥平面DEF .(2)假设在线段EF 上存在一点Q ,使得BQ 与平面PBC 所成角的正弦值为36,设FQ →=λFE →(0≤λ≤1),如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系. 因为PD =BC =2,AB =AD =1,所以CD =2,所以P (0,0,2),B (1,1,0),C (0,2,0),A (1,0,0),所以PB →=(1,1,−2),BC →=(−1,1,0). 设平面PBC 的法向量为m =(x ,y ,z ),则,即⎩⎨⎧ x +y -2z =0,-x +y =0,解得⎩⎨⎧x =y ,z =2x ,令x =1,得平面PBC 的一个法向量为m =(1,1,2). 假设存在点Q 满足条件.由F ⎝⎛⎭⎫12,0,22,E (0,2,2),可得FE →=⎝⎛⎭⎫-12,2,22.由FQ→=λFE →(0≤λ≤1),整理得1)(,2,)22Q λλλ-+,则BQ →=1)(,21,)22λλλ-+--, 因为直线BQ 与平面PBC 所成角的正弦值为36,所以|cos 〈BQ →,m 〉|=|||||BQ BQ ⋅⋅uu u ruu ur m m |=|5λ-1|219λ2-10λ+7=36, 化简可得14λ2-5λ-1=0, 又0≤λ≤1,所以λ=12,故在线段EF 上存在一点Q ⎝⎛⎭⎫14,1,324,使得BQ 与平面PBC 所成角的正弦值为36, 且QE=194.调研9 棱台1111ABCD A B C D -的三视图与直观图如图所示. (1)求证:平面11ACC A ⊥平面11BDD B ;(2)在线段1DD 上是否存在一点Q ,使CQ 与平面11BDDB ?若存在,指出点Q 的位置;若不存在,说明理由.【答案】(1)见解析;(2)存在,点Q 在1DD 的中点位置,理由见解析.【思路分析】(1)首先根据三视图特征可得1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥.再由1AA BD ⊥即可得线面垂直,从而得出面面垂直;(2)直接建立空间直角坐标系写出各点坐标求出法向量,再根据向量的夹角公式列等式求出12λ=. 【解析】(1)根据三视图可知1AA ⊥平面ABCD ,四边形ABCD 为正方形,所以AC BD ⊥. 因为BD ⊂平面ABCD ,所以1AA BD ⊥, 又1AA AC A =I ,所以BD ⊥平面11ACC A .因为BD ⊂平面11BDD B ,所以平面11ACC A ⊥平面11BDD B .(2)以A 为坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴建立空间直角坐标系,如图所示,根据三视图可知四边形ABCD 为边长为2的正方形,四边形1111A B C D 为边长为1的正方形,1AA ⊥平面ABCD ,且11AA =.所以()11,0,1B ,()10,1,1D ,()2,0,0B ,()0,2,0D ,()2,2,0C . 因为Q 在1DD 上,所以可设()101DQ DD λλ=≤≤u u u r u u u u r.因为()10,1,1DD =-u u u u r ,所以1AQ AD DQ AD DD λ=+=+u u u r u u u u u r u u r u u u r u u u r()()()0,2,00,1,10,2,λλλ=+-=-. 所以()0,2,Q λλ-,()2,,CQ λλ=--u u u r.设平面11BDD B 的法向量为(),,x y z =n ,根据()()()()1,,2,2,00,0,,0,1,10,0x y z BD x y z DD ⎧⎧⋅-=⋅=⎪⎪⇒⎨⎨⋅-=⋅=⎪⎪⎩⎩u u u r u u u ur n n令1x =,可得1y z ==,所以()1,1,1=n .设CQ 与平面11BDD B 所成的角为θ,9==. 所以12λ=,即点Q 在1DD 的中点位置. 调研10 如图(1),在边长为4的菱形ABCD 中,∠BAD =60°,DE ⊥AB 于点E ,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1D ⊥DC ,如图(2).(1)求证:A 1E ⊥平面BCDE . (2)求二面角E −A 1B −C 的余弦值.(3)判断在线段EB 上是否存在一点P ,使平面A 1DP ⊥平面A 1BC ?若存在,求出EPPB 的值;若不存在,说明理由.【答案】(1)见解析;(2) −77;(3)在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC . 【解析】(1)∵DE ⊥BE ,BE ∥DC ,∴DE ⊥DC .又∵A 1D ⊥DC ,A 1D ∩DE =D ,∴DC ⊥平面A 1DE ,∴DC ⊥A 1E . 又∵A 1E ⊥DE ,DC ∩DE =D ,∴A 1E ⊥平面BCDE . (2)∵A 1E ⊥平面BCDE ,DE ⊥BE ,∴以EB ,ED ,EA 1所在直线分别为x 轴,y 轴和z 轴,建立空间直角坐标系(如图).易知DE =23,则A 1(0,0,2),B (2,0,0),C (4,23,0),D (0,23,0),∴1BA uuu r =(−2,0,2),BC uu u r=(2,23,0),易知平面A 1BE 的一个法向量为n =(0,1,0).设平面A1BC的法向量为m =(x ,y ,z ),由1BA uuu r ·m =0,BC uu u r·m =0,得⎩⎨⎧-2x +2z =0,2x +23y =0.令y =1,得m =(−3,1,−3),∴cos 〈m ,n 〉=m·n|m |·|n |=17×1=77.由图得二面角E −A 1B −C 为钝二面角, ∴二面角E −A 1B −C 的余弦值为−77.(3)假设在线段EB 上存在一点P ,使得平面A 1DP ⊥平面A 1BC .设P (t ,0,0)(0≤t ≤2),则1A P uuu r =(t ,0,−2),1A D uuu r=(0,23,−2),设平面A 1DP 的法向量为p =(x 1,y 1,z 1),由得⎩⎨⎧23y 1-2z 1=0,tx 1-2z 1=0.令x 1=2,得p =⎝⎛⎭⎫2,t 3,t .∵平面A 1DP ⊥平面A 1BC ,∴m·p =0,即23−t3+3t =0,解得t =−3. ∵0≤t ≤2,∴在线段EB 上不存在点P ,使得平面A 1DP ⊥平面A 1BC .☆技巧点拨☆用向量解决探索性问题的方法1.确定点在线段上的位置时,通常利用向量共线来求.2.确定点在平面内的位置时,充分利用平面向量基本定理表示出有关向量的坐标而不是直接设出点的坐标. 3.解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法解题.1.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)已知(2,1,3)=-a ,(1,4,2)=--b ,(7,5,)x =c ,若a ,b ,c 三向量共面,则实数x =A .627 B .637C .607D .6572.(四川省成都市树德中学2019-2020学年高三11月阶段性检测数学试题)如图三棱锥S ABC -中,SA ⊥底面ABC ,AB BC ⊥,2AB BC ==,SA =SC 与AB 所成角的大小为A .90︒B .60︒C .45︒D .30°3.(甘肃省天水市第一中学2020年高三上学期12月月考数学试题)如图1四边形ABCD 与四边形ADEF分别为正方形和等腰梯形,,AD EF AF =∥4,2AD EF ==,沿AD 边将四边形ADEF 折起,使得平面ADEF ⊥平面ABCD ,如图2,动点M 在线段EF 上,,N G 分别是,AB BC 的中点,设异面直线MN 与AG 所成的角为α,则cos α的最大值为A BC D 4.(山东省泰安第二中学2019-2020学年高三上学期9月月考数学试题)在正方体1111ABCD A B C D -中,点M 是1AA 的中点,已知AB =u u u r a ,AD =u u u rb ,1AA =u u u r c ,用a ,b ,c 表示CM u u u u r ,则CM =u u u u r ______. 5.(河南省天一大联考2019-2020学年高三阶段性测试(三)数学试题)在直四棱柱1111ABCD A B C D -中,底面ABCD 是菱形,60BAD ∠=o ,1122AB AA ==,E 、F 分别是线段1AA 、11C D 的中点.(1)求证:BD CE ⊥;(2)求平面ABCD 与平面CEF 所成锐二面角的余弦值.6.(四川省南充市高中2019-2020学年高三第一次高考适应性考试数学试题)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,2AB =,BC a =,PA ABCD 底面⊥.(1)当a 为何值时,BD PAC ⊥平面?证明你的结论; (2)当122PA a ==时,求面PDC 与面PAB 所成二面角的正弦值.7.(河北省承德市第一中学2019-2020学年高三上学期12月月考数学试题)如图,已知点H 在正方体1111ABCD A B C D -的对角线11B D 上,∠HDA =60︒.(1)求DH 与1CC 所成角的大小;(2)求DH 与平面1A BD 所成角的正弦值.8.(湖北省“荆、荆、襄、宜四地七校考试联盟2019-2020学年高三上学期10月联考数学试题)已知在多面体ABCDE 中,DE AB ∥,AC BC ⊥,24BC AC ==,2AB DE =,DA DC =且平面DAC ⊥平面ABC .(1)设点F 为线段BC 的中点,试证明EF ⊥平面ABC ;(2)若直线BE 与平面ABC 所成的角为60o ,求二面角B AD C --的余弦值.9.(广东省广州市番禺区广东仲元中学2019-2020年高三上学期11月月考数学试题)如图1,PAD △是以AD 为斜边的直角三角形,1PA =,BC AD ∥,CD AD ⊥,22AD DC ==,12BC =,将PAD △沿着AD 折起,如图2,使得2PC =.(1)证明:平面PAD ⊥平面ABCD ; (2)求二面角A PB C --大小的余弦值.10.(天津市部分区2019-2020学年高三上学期期末数学试题)如图,在三棱柱111ABC A B C -中,P 、O 分别为AC 、11A C 的中点,11PA PC ==1111A B B C =1PB ==114A C =.(1)求证:PO ⊥平面111A B C ; (2)求二面角111B PA C --的正弦值;(3)已知H 为棱11B C 上的点,若11113B H BC =u u u u r u u u u r,求线段PH 的长度.1.(2018新课标全国Ⅱ理科)在长方体1111ABCD A B C D -中,1AB BC ==,1AA =则异面直线1AD 与1DB 所成角的余弦值为A .15 BC .5D .22.(2017新课标全国Ⅲ理科)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60°角时,AB 与b 成30°角; ②当直线AB 与a 成60°角时,AB 与b 成60°角; ③直线AB 与a 所成角的最小值为45°; ④直线AB 与a 所成角的最大值为60°.其中正确的是________________.(填写所有正确结论的编号)3.(2018新课标全国Ⅰ理科)如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥. (1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.4.(2018新课标全国Ⅱ理科)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.5.(2018新课标全国Ⅲ理科)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.6.(2017新课标全国Ⅰ理科)如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o . (1)证明:平面P AB ⊥平面P AD ;C(2)若P A =PD =AB =DC ,90APD ∠=o ,求二面角A −PB −C 的余弦值.7.(2017新课标全国Ⅱ理科)如图,四棱锥P −ABCD 中,侧面P AD 为等边三角形且垂直于底面ABCD ,o 1,90,2AB BC AD BAD ABC ==∠=∠= E 是PD 的中点. (1)证明:直线CE ∥平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为o 45,求二面角M AB D --的余弦值.8.(2017新课标全国Ⅲ理科)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD .(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.9.(2019年高考全国Ⅰ卷理数)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.10.(2019年高考全国Ⅱ卷理数)如图,长方体ABCD–A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B–EC–C1的正弦值.11.(2019年高考全国Ⅲ卷理数)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B−CG−A的大小.。
O a b 600专题16 空间角★★★高考在考什么【考题回放】1.如图,直线a 、b 相交与点O 且a 、b 成600,过点O 与a 、 b 都成600角的直线有( C ) A .1 条 B .2条 C .3条 D .4条2.在一个450的二面角的一个平面内有一条直线与二面角棱成450角,则此直线与 二面角的另一个面所成的角为 ( A )A .300B .450C .600D .9003.直三棱住A 1B 1C 1—ABC ,∠BCA=090,点D 1、F 1 分别是A 1B 1、A 1C 1的中点,BC=CA=CC 1,则BD 1与AF 1所成角的余弦值是( A )A .1030B .21C .1530D .15 4.已知正四棱锥的体积为12,底面对角线的长为则侧面与底面所成的二面角等于3π. 5.PA,PB,PC 是从P 点引出的三条射线,他们之间每两条的夹角都是60°,则直线PC 与平面PAB 所成的角的余弦值为 33. 6.在棱长为a 的正方体ABCD —A 1B 1C 1D 1, E 、F 分别为BC 与A 1D 1的中点,(1) 求直线A 1C 与DE 所成的角;(2) 求直线AD 与平面B 1EDF 所成的角;(3) 求面B 1EDF 与 面ABCD 所成的角。
【专家解答】(1)如图,在平面ABCD 内,过C 作CP//DE 交直线AD 于P ,则CP A 1∠(或补角)为异面直线A 1C 与 DE 所成的角。
在ΔCP A 1中,易得a P A a DE CP a C A 213,25,311====,由余弦定理得1515cos 1=∠CP A 。
故异面直线A 1C 与DE 所成的角为1515arccos 。
(2)ADF ADE ∠=∠ ,∴AD 在面B 1EDF 内的射影在∠EDF 的平分线上。
而B 1EDF 是菱形,∴DB 1为∠EDF 的平分线。
故直线AD 与面B 1EDF 所成的角为∠ADB 1.在RtΔB 1AD 中,,3,2,11a D B a AB a AD ===则33cos 1=∠ADB 。
故直线AD 与平面B 1EDF 所成的角为33arccos。
(3)连结EF 、B 1D ,交于点O ,显然O 为B 1D 的中点,从而O 为正方体ABCD —A 1B 1C 1D 1的中心,作OH ⊥平面ABCD ,则H 为正方形ABCD 的中心。
再作HM ⊥DE ,垂足为M ,连结OM ,则OM ⊥DE (三垂线定理),故∠OMH 为二面角B 1-DE-A 的平面角。
在RtΔDOE 中,23,22a OD a OE ==a DE 25=, 则由面积关系得a DE OE OD OM 1030=⋅=。
在RtΔOHM 中630sin ==∠OM OH OMH 。
故面B 1EDF 与 面ABCD 所成的角为630arcsin ★★★高考要考什么【考点透视】异面直线所成角,直线与平面所成角,求二面角每年必考,作为解答题可能性最大.【热点透析】1.转化思想:① ⇔⇔⊥⇔⊥⇔⊥线线平行线面平行面面平行,线线线面面面② 将异面直线所成的角,直线与平面所成的角转化为平面角,然后解三角形2.求角的三个步骤:一猜,二证,三算.猜是关键,在作线面角时,利用空间图形的平行,垂直,对称关系,猜斜线上一点或斜线本身的射影一定落在平面的某个地方,然后再证3.二面角的平面角的主要作法:①定义 ②三垂线定义 ③ 垂面法★★★高考将考什么【范例1】在0120的二面角βα--a 中,βα∈∈B A , ,已知点A 和B 到棱的距离分别为2和4,且AB=10。
求(1)直线AB 与棱a 所成的角;(2)直线AB 与平面β所成的角。
解:(1)如图所示,在平面α内,过A 作AC ⊥α,垂足为C ;在平面β内,过B 作BD ⊥β,垂足为D ;又在平面β内,过B 作BE //CD ,连结CE ,则∠ABE 为AB 与α所成的角,CE //BD ,从而CE ⊥α,∠ACE=1200,∠AEB=900。
在ΔACE 中,由余弦定理得 022120cos 2EC AC EC AC AE ⋅-+=72120cos 42242022=⋅⋅-+=在RtΔAEB 中,57sin ==∠AB AE ABE 。
故直线AB 与棱a 所成的角为57arcsin (2)过点A 作β⊥'A A ,则垂足A '在β的另一半平面上。
在RtΔAA′C 中,360sin 0=='AC A A 。
ODC在RtΔA A 'B 中,sin 10AA ABA AB ''∠==故直线AB 与平面β所成的角为103arcsin 【点晴】本题源于课本,高于课本,不难不繁,体现了通过平移求线线、通过射影求线面角的基本方法。
【文】如右下图,在长方体ABCD —A 1B 1C 1D 1中,已知AB= 4, AD =3, AA 1= 2. E 、F 分别是线段AB 、BC 上的点,且EB= FB=1. (1) 求二面角C —DE —C 1的正切值;(2) 求直线EC 1与FD 1所成的余弦值.解:(I )以A 为原点,1,,AA 分别为x 轴,y 轴,z 轴的正向建立空间直角坐标系,则有D(0,3,0)、D 1(0,3,2)、E(3,0,0)、F(4,1,0)、C 1(4,3,2),故)2,2,4(),2,3,1(),0,3,3(11-==-=FD EC DE 设向量),,(z y x =与平面C 1DE 垂直,则有22t an 36400411220101||||cos ,)2,0,0(,),2,1,1(0),2,1,1(2),2,2(21023033101011011001=∴=++⨯++⨯+⨯-⨯-=⨯=--∴=--=>--=--=∴-==⇒⎭⎬⎫=++=-⇒⎪⎭⎪⎬⎫⊥⊥θθθAA n C DE C AA n CDE AA DE C n n z z z z z z y x z y x y x EC 的平面角为二面角所成的角与垂直与平面向量垂直的向量是一个与平面则取其中(II )设EC 1与FD 1所成角为β,则142122)4(2312223)4(1||||cos 2222221111=++-⨯++⨯+⨯+-⨯=⨯=FD EC β。
【点晴】空间向量在解决含有三维直角的立体几何题中更能体现出它的优点,但必须注意其程序化的过程及计算的公式,本题使用纯几何方法也不难,同学不妨一试。
【范例2】如图,在四棱锥P —ABC 右,底面ABCD 为矩形,侧棱PA ⊥底面ABCD ,AB=3,BC=1,PA=2,E 为PD 的中点 (Ⅰ)求直线AC 与PB 所成角的余弦值;(Ⅱ)在侧面PAB 内找一点N ,使NE ⊥面PAC , 并求出N 点到AB 和AP 的距离解法一:(Ⅰ)建立如图所示的空间直角坐标系,则A 、B 、C 、D 、P 、E的坐标分别为A(0,0,0),B(3,0,0),C(3,1,0),D(0,1,0),P(0,0,2),E(0,21,2). 从而AC =(3,1,0),=(3,0,-2).设与的夹角为θ,则1473723cos ===θ, ∴AC 与PB 1473 (Ⅱ) N 点在侧面PAB 内,故可设N 点坐标为(x , 0, z ),则1(,,1)2ME x z =--由NE ⊥面PAC 可得⎪⎩⎪⎨⎧=⋅=⋅,0,0AP NE 即⎪⎪⎩⎪⎪⎨⎧=⋅--=⋅--,0)0,1,3()1,21,(,0)2,0,0()1,21,(z x z x 化简得⎪⎩⎪⎨⎧==⇒⎪⎩⎪⎨⎧=+-=-.1,63.0213,01z x x z 即N 点的坐标为(63,0,1),从而N 点到AB 、AP 的距离分别为163 解法二:(Ⅰ)设AC∩BD=O ,连OE ,则OE//PB ,∴∠EOA 即为AC 与PB 所成的角或其补角, 在ΔAOE 中,AO=1,OE=21PB=27,AE=21PD=25, ∴14173127245471cos =⨯⨯-+=EOA , 即AC 与PB 所成角的余弦值为14173 (Ⅱ)在面ABCD 内过D 作AC 的垂线交AB 于F ,则6π=∠ADF . 连PF ,则在RtΔADF 中DF=33tan ,332cos ===ADF AD AF ADF AD . 设N 为PF 的中点,连NE ,则NE//DF ,∵DF ⊥AC ,DF ⊥PA ,∴DF ⊥面PAC 从而NE ⊥面PAC∴N 点到AB 的距离=21AP=1,N 点到AP 的距离=21AF=63 【点晴】由线线、线面、面面的位置寻找满足某些条件的点的位置,它能考查学生分析问题、解决问题的能力,两种方法各有优缺点,在向量方法中注意动点的设法,在方法二中注意用分析法寻找思路。
【文】在梯形ABCD 中,AB=BC=1,AD=2, 90=∠=∠BAD CBA ,沿对角线AC 将折起,使点B 在平面ACD 内的射影O 恰在AC 上。
(1)求证:AB ⊥平面BCD(2)求异面直线BC 与AD 所成的角。
解:(1)在梯形ABCD 中,AC DC ==,222AD DC AC =+∴,DC AC ⊥∴又⊥BO 平面ACD ,故CD AB ⊥又BC AB ⊥,且C CD BC =⋂⊥∴AB 平面BCD(2)因为BA=BC ,AC BO ⊥,O ∴为AC 中点,取CD 中点E ,AB 中点F ,连结OE 、OF 、EF ,则OE//AD , OF//BC ,所以AD 与BC 所成的角为EOF ∠或其补角.作FH//BO 交AC 于H ,连结HE, 则FH ⊥平面ACD472242342222222222=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=++=+=∴EC HC FH EH FH EF 在三角形EOF 中,又21=FO ,EO=1 由余弦定理知 120,21cos =∠∴-=∠EOF EOF 故异面直线BC 与AD 所成的角为 120 【点晴】折叠问题必须注意折叠前后之间的关系和区别,本题使用空间向量的方法也不失一种好方法。
【范例3】如图,在斜三棱柱111C B A ABC -中,11,,A AB A AC AB AC ∠=∠= 11A A A B a ==,侧面11BCC B 与底面ABC 所成的二面角为 120,E 、F 分别是棱 A A C B 111、的中点 (Ⅰ)求A A 1与底面ABC 所成的角 (Ⅱ)证明E A 1∥平面FC B 1(Ⅲ)求经过C B A A 、、、1四点的球的体积 解:(Ⅰ)过1A 作⊥H A 1平面ABC ,垂足为H连结AH ,并延长交BC 于G , 于是AH A 1∠为A A 1与底面ABC 所成的角∵AC A AB A 11∠=∠,∴AG 为BAC ∠的平分线又∵AC AB =,∴BC AG ⊥,且G 为BC 的中点. 由三垂线定理BC A A ⊥1. ∵B B A A 11//,且B B EG 1//,∴BC EG ⊥.于是AGE ∠为二面角E BC A --的平面角,即 120=∠AGE .由于四边形AGE A 1为平行四边形,得 601=∠AG A .(Ⅱ)证明:设EG 与C B 1的交点为P ,则点P 为EG 的中点.连结PF . 在平行四边形1AGEA 中,因F 为A A 1的中点,故FP E A //1.1而⊂FP 平面FC B 1,⊄E A 1平面FC B 1,所以//1E A 平面FC B 1.(Ⅲ)连结C A 1.在AC A 1∆和AB A 1∆中,由于AB AC =,AC A AB A 11∠=∠, A A A A 11=,则AC A 1∆≌AB A 1∆,故B A C A 11=.由已知得a C A B A A A ===111 又∵⊥H A 1平面ABC ,∴H 为ABC ∆的外心设所求球的球心为O ,则H A O 1∈,且球心O 与A A 1中点的连线A A OF 1⊥在FO A Rt 1∆中,3330cos 21cos 111a a H AA F A O A === . 故所求球的半径a R 33=,球的体积33273434a R V ππ==. 【点晴】(Ⅰ)(Ⅱ)两小题注意使用二面角属于简单立几问题。